Система когнитивного моделирования "канва"

Когнитивный подход к поддержке принятия решений. Положительные и отрицательные причинно-следственные связи. Основные требования к компьютерным системам когнитивного моделирования. Разработка стратегии поведения субъекта на основе когнитивной модели.

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 19.01.2018
Размер файла 470,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1

Размещено на http://www.allbest.ru/

Система когнитивного моделирования «канва»

Введение

При принятии решений в неструктурированных ситуациях у субъекта (ЛПР или эксперта) возникает модель проблемной области, на основе которой он пытается объяснить происходящие в реальности процессы. При этом объективные закономерности реального мира представляются субъективными экспертными оценками. В результате образ наблюдаемой ситуации отражает не только законы и закономерности ситуации, но и мировоззрение субъекта, его систему убеждений, ценностей, уровень образования, опыт и т.д. Checkland, 1981.

В этих условиях принятие решений - это искусство, включающее рациональные (логические) и интуитивные начала. В синтезе рационального и интуитивного возникает способность ЛПР принимать своевременные и адекватные решения.

Когнитивный подход к поддержке принятия решений ориентирован на то, чтобы активизировать интеллектуальные процессы субъекта и помочь ему зафиксировать свое представление проблемной ситуации в виде формальной модели. В качестве такой модели обычно используется так называемая когнитивная карта ситуации, которая представляет известные субъекту основные законы и закономерности наблюдаемой ситуации в виде ориентированного знакового графа, в котором вершины графа - это факторы (признаки, характеристики ситуации), а дуги между факторами - причинно-следственные связи между факторами Робертс, 1986.

В когнитивной модели выделяют два типа причинно-следственных связей: положительные и отрицательные. При положительной связи увеличение значения фактора-причины приводит к увеличению значения фактора-следствия, а при отрицательной связи увеличение значения фактора-причины приводит к уменьшению значения фактора-следствия. Пример когнитивной карты некоторой экономической ситуации приведен на рис.1.

Рис.1

Причинно-следственный граф представляет собой упрощенную субъективную модель функциональной организации наблюдаемой системы и является «сырым» материалом для дальнейших исследований и преобразований - когнитивного моделирования.

Цель когнитивного моделирования заключается в генерации и проверке гипотез о функциональной структуре наблюдаемой ситуации до получения функциональной структуры, способной объяснить поведение наблюдаемой ситуации.

Основные требования к компьютерным системам когнитивного моделирования - это открытость к любым возможным изменениям множества факторов ситуации, причинно-следственных связей, получение и объяснение качественных прогнозов развития ситуации (решение прямой задачи «Что будет, если …»), получение советов и рекомендаций по управлению ситуацией (решение обратной задачи «Что нужно, чтобы …»).

Узким местом существующих систем когнитивного моделирования ситуаций Максимов, 1999; Кулинич, 1998; Силов, 1995 является несогласованность их пользовательского интерфейса и алгоритмов обработки с психологическими особенностями субъективного измерения значений и силы взаимовлияния факторов наблюдаемой ситуации. Эта несогласованность приводит к ошибкам и заблуждениям эксперта при определении силы взаимовлияния факторов, которые включаются в когнитивную модель ситуации. Разработка стратегии поведения субъекта на основе когнитивной модели с заблуждениями, естественно, приводит к стратегиям-заблуждениям.

В предлагаемой компьютерной системе концептуального моделирования неструктурированных ситуаций «Канва» влияние заблуждений эксперта ослабляется с помощью специальных программных модулей и подсистем, учитывающих особенности организации человеческой системы измерения, оценки и переработки субъективной информации.

Подсистемы системы концептуального моделирования «Канва» обеспечивают поддержку представления субъективной информации, извлечения предпочтений эксперта, обработку, представление результатов моделирования и поддержку аналитической деятельности эксперта.

Описание функционального назначения всех подсистем системы концептуального моделирования и их взаимодействие в процессе когнитивного анализа и моделирования плохо определенной ситуации приводится ниже.

1. Подсистема представления субъективной информации

когнитивный компьютерный моделирование

Подсистема представления субъективной информации обеспечивает:

Ввод в систему факторов, описывающих ситуацию, множество факторов - F={fi}.

Задание числовых или лингвистических значений фактора в виде упорядоченного множества их абсолютных значений.

Графический интерфейс для построения когнитивной модели ситуации в виде ориентированного знакового графа.

В подсистеме представления субъективной информации в качестве измерительных шкал значений наблюдаемых факторов ситуации используются порядковые шкалы, что позволяет интегрировать в единую модель ситуации факторы, имеющие числовые и лингвистические значения.

Когнитивная модель ситуации представляется в виде ориентированного знакового графа и задается матрицей смежности W={wij}, wij{-1,0,1} .

Окно графического редактора системы «Канва» для построения и редактирования орграфа ситуации приведено на рис.2.

Графический интерфейс представляет собой полноценный графический редактор, обеспечивающий: ввод нового фактора, установку причинной связи между факторами, определение направления и типа связи (положительная, отрицательная), удаление фактора, удаление связи, изменение масштаба представления графа.

Рис.2

2. Подсистема извлечения предпочтений эксперта

Для определения силы взаимовлияния факторов в систему моделирования встроена подсистема извлечения предпочтений эксперта. В этой подсистеме в качестве исходной информации используется информация о числовых или лингвистических значениях факторов ситуации и знаковый граф ситуации, введенные в подсистеме представления субъективной информации.

Система обеспечивает генерацию вопросов эксперту и определение силы причинных связей между факторами в трех режимах:

Прямого оценивания. В этом режиме сила причинной связи определяется как передаточный коэффициент, вычисляемый по известным отклонениям фактора причины и фактора следствия. Задание отклонения значений факторов выполняется в двух режимах:

точное задание значений отклонений факторов причины и следствия;

задание отклонения значений факторов причины или следствия в виде нечеткого множества - функции принадлежности, заданной на множестве значений факторов.

Парного сравнения. В этом режиме с помощью процедуры парного сравнения осуществляется упорядочивание факторов причин по силе влияния на фактор следствия. В режиме парного сравнения осуществляется автоматическое обнаружение ошибок (нетранзитивных оценок) эксперта и их автоматическая или ручная корректировка.

Задание функциональной зависимости. В этом режиме значение фактора следствия определяется как функция от значений факторов причин. Этот режим используется в случае, если все значения факторов причин имеют числовые значения и известна их функциональная зависимость.

3. Подсистема обработки

После определения силы взаимовлияния всех связанных причинными связями факторов, знаковый орграф преобразуется во взвешенный орграф. Динамика процессов ситуации описывается системой уравнений продукций «Если, … То …». В матричном виде эта система уравнений записывается в следующем виде:

Z(t+1)=WZ(t) (1)
где, Z(t)=(zi(t)) - начальный вектор приращений значений факторов в момент времени t; Z(t+1)=(zi(t+1)) - вектор приращений значений факторов в момент времени t+1, zi(t)_1,1; W=|wij| - матрица смежности, wij-1,1 - характеризует силу причинной связи.
Приращения значений факторов в последовательные дискретные моменты времени Z(t+1), … , Z(t+n) вычисляются с применением следующего правила композиции Силов, 1995:
zi(t)=max(zi+(t), zi-(t)),
где, zi+(t)=(zj(t-1).wij) - максимальное положительное, а zi-(t) - максимальное по модулю отрицательное zi-(t)=(|zj(t-1).wij)| приращение значения фактора-следствия.
Приращение значения фактора zi(t) Z(t), t, представляется парой Силов, 1995: zi(t), ci(t), где, ci(t) - консонанс значения фактора, 0 ci(t) 1,
ci(t)=.
Консонанс фактора характеризует уверенность субъекта в приращении значения zi(t) фактора fi. При ci(t)1, т.е. zi+(t)>>|zi-(t)| или |zi-(t)|>>zi+(t) уверенность субъекта в значении фактора zi(t) максимальна, а при ci(t) 0, т.е. zi+(t) |zi-(t)| минимальна. Интервалы значений консонанса в системе «Канва» имеют лингвистическую интерпретацию типа «Невозможно», «Возможно», «Достоверно» и т.д.

Результаты моделирования представляются в виде двумерного массива, строки которого - значения одного фактора в последовательные моменты времени, столбцы - значения всех факторов в последовательные моменты времени. Информация из двумерного массива данных избирательно используется подсистемами представления результатов моделирования и поддержки аналитической деятельности эксперта.

4. Подсистема представления результатов моделирования

Результаты моделирования в системе «Канва» представляются в графическом или табличном виде.

Рис.3.

Прогнозные абсолютные числовые и лингвистические значения факторов, а также отклонения значений факторов представляются в графическом виде или в таблицах на естественном и понятном эксперту языке.

На рис.3 показана форма системы «Канва» с представлениями результатов моделирования в графическом виде.

5. Подсистема поддержки аналитической деятельности эксперта

Подсистема поддержки аналитической деятельности эксперта является ядром системы концептуального моделирования «Канва». Функциональность и организация этой подсистемы ориентирована на стимуляцию мышления и интуиции эксперта и включает подсистемы:

Подсистема объяснения прогноза развития ситуации. Эта подсистема обеспечивает автоматическую генерацию отчета, включающего описание последовательных шагов (причинно-следственных цепочек) получения прогнозного значения любого фактора ситуации. Отчет включает положительную и отрицательную причинно-следственные цепочки. Положительная цепочка объясняет причину увеличения значения признака, а отрицательная его уменьшения.

Рис. 4.

На рис. 4 Показана форма расшифровки значения фактора «Тариф на транспортные услуги» падает на 35,2%. В этой форме приведено объяснение изменение значения фактора «Тариф на транспортные услуги» при увеличении объема перевозок на 42,4 %. Правый список формы показывает причинно-следственную цепочку увеличивающую (+1,6%), а левый уменьшающую (-35,2%) значение анализируемого фактора.

Советующая подсистема. Эта подсистема обеспечивает интеллектуальную поддержку разработки стратегии достижения векторной цели с выдачей рекомендаций (советов) для выбора управляющих воздействий. Для получения совета эксперт из описания векторной цели (это множество факторов и их целевых значений) последовательно выбирает целевые факторы. Система, для каждого выбранного фактора предлагает два множества альтернативных управляющих воздействий. Первое множество включает факторы, значения которых для достижения целевого значения фактора необходимо увеличивать, а второе множество, соответственно, уменьшать. Эксперт, опираясь на собственные предпочтения, может выбрать любой фактор из любого предложенного множества в качестве альтернативного управляющего воздействия. Система, при этом в оперативном режиме отображает, во-первых, рекомендуемую абсолютную величину управляющего воздействия, а во-вторых, результат применения этого управляющего воздействия в графическом виде.

Таким образом, советующая подсистема поддерживает диалоговый режим разработки стратегии достижения векторной цели: эксперт выбирает целевой фактор; система дает ему советы и рекомендации по выбору управляющих факторов; эксперт выбирает управляющий фактор и величину воздействия; система оперативно отображает результаты применения этого воздействия. Советующий режим конструирования стратегии достижения векторной цели раскрепощает мышление и стимулирует интуицию эксперта, позволяет сформулировать множество различных сценариев (стратегий) достижения поставленной цели.

Подсистема поддержки сценарного исследования ситуации. Эта подсистема обеспечивает ввод, редактирование, просмотр и активизацию (загрузку) любого сценария. Сценарное исследование различных стратегий достижения цели осуществляется в подсистеме сравнения сценариев развития ситуации. Эта подсистема обеспечивает возможность парного сравнения и анализа двух любых сценариев развития ситуации.

Результаты моделирования: таблицы прогноза развития ситуации, графики, описание сценариев, расшифровки значений факторов в системе «Канва» могут быть распечатаны на принтере или в файл документа «Word».

Заключение

Система «Канва» может быть использована для концептуального анализа и моделирования сложных и плохо определенных политических, экономических или социальных ситуаций, разработки стратегий управления и механизмов их реализации, разработки программных документов стратегического развития страны, региона, предприятия, фирмы и т.д., а также, в качестве инструментария для непрерывного мониторинга состояния ситуации, порождения и проверки гипотез механизмов развития и механизмов управления ситуацией.

Применение системы концептуального моделирования «Канва» значительно расширяет горизонты аналитических возможностей экспертов, освобождая их интеллект от рутинной работы, стимулирует воображение и интуицию для генерации оригинальных решений и находок управления и рефлексивного поведения в запутанной ситуации.

Литература

Checkland, 1981 Checkland P.B. Systems Thinking, Systems Practice. - New York: Wiley. 1981.

Робертс, 1986 Робертс Ф.С. Дискретные математические модели с приложениями к социальным, биологическим и экономическим задачам. - М.: Наука, 1986.

Максимов, 1999 Максимов В.И., Григорян А.К., Корноушенко Е.К. Программный комплекс «Ситуация» для моделирования и решения слабоформализованных проблем. Международная конференция по проблемам управления. Т. 2. Москва, ИПУ РАН, 29 июня_2 июля 1999 г.

Кулинич, 1998 Кулинич А.А., Максимов В.И. Система концептуального моделирования социально-политических ситуаций ПК «КОМПАС». Сборник докладов: Современные технологии управления. Москва. ИПУ. 21-22 мая 1998 г.

Силов, 1995 Силов В.Б. Принятие стратегических решений в нечеткой обстановке. М., ИНПРО-РЕС, 1995.

Кулинич, 2001 Кулинич А.А. Субъектно-ориентированная система концептуального моделирования «Канва». Материалы 1-й Международной конференции «Когнитивный анализ и управление развитием ситуаций». Москва, октябрь, 2001 г.

Размещено на Allbest.ru

...

Подобные документы

  • Предмет и этапы когнитивного анализа задач, его основные методы и их реализация на псевдокодовом языке. Виды факторов, использующихся при когнитивном моделировании систем. Предъявляемые к библиотеке требования, оценка ее экономической эффективности.

    дипломная работа [1,3 M], добавлен 29.01.2013

  • Концепция систем поддержки принятия решений. Диапазон применения Analytica 2.0. Программное обеспечение количественного моделирования. Графический интерфейс для разработки модели. Основные способы моделирования. Диаграмма влияния и дерево решений.

    контрольная работа [1,1 M], добавлен 08.09.2011

  • Разработка имитационной модели "Перекресток" для анализа бизнес-процессов предприятия и принятия решения в сложных условиях. Алгоритм построения имитационной модели на основе CASE-средств. Обзор программного обеспечения для имитационного моделирования.

    дипломная работа [2,6 M], добавлен 22.11.2015

  • Теоретические основы моделирования систем в среде имитационного моделирования AnyLogic. Средства описания поведения объектов. Анимация поведения модели, пользовательский интерфейс. Модель системы обработки информации в среде компьютерного моделирования.

    курсовая работа [1,5 M], добавлен 15.05.2014

  • Основы технологии моделирования Arena. Построение простой имитационной модели. Моделирование работы системы обслуживания покупателей на кассе супермаркета. Построение модели IDEF3. Анализ результатов имитационного моделирования и аналитического решения.

    курсовая работа [659,1 K], добавлен 24.03.2012

  • Особенности моделирования биологических систем с использованием программы "AnyLogic". Влияние различных факторов на популяции жертв и хищников. Принципы имитационного моделирования и его общий алгоритм с помощью ЭВМ. Анализ результатов моделирования.

    курсовая работа [922,2 K], добавлен 30.01.2016

  • Анализ существующих решений системы поддержки принятия решений для корпоративной сети. Многоагентная система. Разработка концептуальной модели. Структура базы знаний. Разработка модели многоагентной системы на базе сетей Петри. Методика тестирования.

    дипломная работа [5,1 M], добавлен 19.01.2017

  • Обзор средств компьютерного имитационного моделирования по созданию веб-приложения для визуализации имитационных моделей. Система имитационного моделирования AnyLogic, Arena, SimuLab. Серверная, клиентская часть. Модель работы отдела банка и участка цеха.

    дипломная работа [3,3 M], добавлен 25.05.2015

  • Основные модели представления знаний. Системы поддержки принятия решений. Диаграмма UseCase. Разработка базы данных на основе трех моделей: продукционные правила, семантическая сеть, фреймовая модель. Программная реализация системы принятия решений.

    курсовая работа [715,1 K], добавлен 14.05.2014

  • Разработка граф-схемы имитационной модели финансовых потоков предприятия и реализация модели программными средствами Pilgrim. Алгоритм моделирования с постоянным шагом. Выполнение моделирования на полученной программе, разработка программного кода.

    курсовая работа [1,8 M], добавлен 22.11.2013

  • Система массового обслуживания модели функционирования мастерской. Структурная и Q-схемы, построение временной диаграммы, варианты по оптимизации модели. Составление программы на языке имитационного моделирования GPSS и разбор результатов моделирования.

    курсовая работа [74,2 K], добавлен 23.06.2011

  • Расчет параметров моделирования в системе Fortran. Описание алгоритма и математической модели системы, их составляющих. Моделирование шума с заданной плотностью распределения вероятностей. Выполнение моделирования работы системы при входном сигнале N(t).

    курсовая работа [896,3 K], добавлен 20.06.2012

  • Значение компьютерного моделирования, прогнозирования событий, связанных с объектом моделирования. Совокупность взаимосвязанных элементов, важных для целей моделирования. Особенности моделирования, знакомство со средой программирования Турбо Паскаль.

    курсовая работа [232,6 K], добавлен 17.05.2011

  • Начало современного этапа развития систем искусственного интеллекта. Особенности взаимодействия с компьютером. Цель когнитивного моделирования. Перспективы основных направлений современного развития нейрокомпьютерных технологий, моделирование интеллекта.

    реферат [24,7 K], добавлен 05.01.2010

  • Язык GPSS как один из наиболее эффективных и распространенных языков моделирования сложных дискретных систем. Транзакт - элемент системы массового обслуживания. Решение задач на основе моделирования с применением языка GPSS, создание имитационной модели.

    курсовая работа [54,7 K], добавлен 25.11.2010

  • Основные понятия теории моделирования. Виды и принципы моделирования. Создание и проведение исследований одной из моделей систем массового обслуживания (СМО) – модели D/D/2 в среде SimEvents, являющейся одним из компонентов системы MATLab+SimuLink.

    реферат [1,2 M], добавлен 02.05.2012

  • Практические навыки моделирования законов движения многосвязных механических систем на примере трехзвенного манипулятора. Основные этапы моделирования: исходная система; формирование исходных данных, геометрической, динамической и математической модели.

    презентация [535,0 K], добавлен 25.06.2013

  • Особенности и преимущества 3D-моделирования. Базовые функции нелинейного редактирования и комбинирования видео. Проектирование 3D-модели для игрового проекта по созданию дома и моста. Просмотр взаимодействий с игроком объектов в Unreal Engine 4.7.

    дипломная работа [3,6 M], добавлен 14.06.2015

  • Создание систем имитационного моделирования AnyLogic, Arena, SimuLab, Simbigraph и Forio. Серверная и клиентская часть. Разработка модели работы отдела банка, участка цеха, движения автобуса по маршруту и социальной сети. Описание web-приложения.

    дипломная работа [3,4 M], добавлен 25.05.2015

  • Методология процесса моделирования IDEF, которая входит в семейство стандартов США по комплексной компьютерной поддержке производства ICAM. Распространенные методологии структурного подхода. Метод функционального моделирования SADT, иерархия диаграмм.

    лекция [188,5 K], добавлен 27.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.