Принципы организации информационных процессов в вычислительных устройствах

Рассмотрение истории развития ЭВМ. Изучение методов обработки информации и представления результатов обработки в удобном для человека виде на вычислительных средствах. Анализ принципов Фон-Неймана. Оценка структурной схемы вычислительной машины.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 27.01.2018
Размер файла 47,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ. ПРИНЦИПЫ ОРГАНИЗАЦИИ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ В ВЫЧИСЛИТЕЛЬНЫХ УСТРОЙСТВАХ

План

Введение

Краткая история развития ЭВМ

Принципы организации информационных процессов в вычислительных устройствах

Принципы Фон-Неймана

Введение

30 мая 2002 года в Республике Узбекистан Президентом был издан указ УП №3080 «О дальнейшем развитии компьютеризации и информационно-коммутационных технологий», была утверждена «Программа развития компьютеризации и информационно- коммутационных технологий на 2002-2010 годы». Таким образом, на приоритетные позиции в нашей республике выходят компьютерные и информационные технологии, развиваются и модернизируются сети телекоммуникаций, передачи данных, доступ к услугам интернет. Реализация мер, определенных указом, обеспечит создание национальных информационных систем, ресурсов, условий для массового внедрения в экономику и жизнь каждого члена общества компьютерной техники и информационных технологий, повысит конкурентоспособность отечественной экономики на мировом рынке. Основой для принятия этих важных решений явилась высокая потребность отраслей экономики и общества в оперативном обмене информации, доступе к мировым информационным ресурсам, необходимость компьютеризации образовательных процессов и повседневной жизни людей, а также потребность в обеспечении сохранности информации и базы данных.

Во второй половине XX века человечество вступило в новый этап своего развития. В этот период начался переход от индустриального общества к информационному. Процесс, обеспечивающий этот переход получил название информатизации. Информатизация - это процесс создания, развития и всеобщего применения информационных средств и технологий, обеспечивающих достижение и поддержание уровня информированности всех членов общества, необходимого и достаточного для кардинального улучшения качества труда и условий жизни в обществе. При этом информация становится важнейшим стратегическим ресурсом общества и занимает ключевое место в экономике, образовании и культуре.

В современном мире информация, как правило, обрабатывается на вычислительных машинах. Поэтому основным инструментарием является вычислительная машина или компьютер.

Компьютер (англ. computer -- вычислитель) представляет собой программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами.

Компьютер представляет собой устройство, способное исполнять четко определенную последовательность операций, предписанную программой. Понятие «компьютер» является более широким, чем «электронно-вычислительная машина» (ЭВМ), поскольку в последнем акцент делается на вычисления. Персональный компьютер (ПК) характерен тем, что им может пользоваться один человек, не прибегая к помощи обслуживающего персонала и не отводя под него специального зала с особым климатом, мощной системой электропитания и прочими атрибутами больших вычислительных машин. Персональный компьютер обычно в значительной степени ориентирован на интерактивное взаимодействие с одним пользователем (в играх иногда и с двумя), причем взаимодействие происходит через множество сред общения - от алфавитно-цифрового и графического диалога посредством дисплея, клавиатуры и мыши до устройств виртуальной реальности, в которой пока не задействованы, наверное, только запахи. Когда используется аббревиатура РС (Personal Computer), подразумевается ПК, совместимый с самым массовым семейством персональных компьютеров фирмы IBM и их клонов. Возможности многих компьютеров этого семейства позволяют использовать их в качестве серверов в сетях или локальных многотерминальных системах. Словосочетание PC-сервер предполагает повышенную мощность (скорость вычислений, объем оперативной и внешней памяти) и особое конструктивное исполнение (просторный корпус) компьютера. Персональный компьютер может предоставить свои ресурсы (дисковое пространство, принтеры или модемы) другим компьютерам, для которых он будет являться невыделенным сервером. Понятие рабочая станция (workstation, WS), в который может быть вложено два значения. В компьютерной сети рабочей станцией называют компьютер пользователя (как противоположность серверу). Однако рабочая станция может быть и изолированным (standalone computer), но особенно мощным компьютером (его подключение к сети не исключается). В этом случае часто подразумевается архитектура, отличающаяся от IBM PC - совместимой (например, компьютер на RISC-процессоре). Для мощного IBM PC - совместимого компьютера применяют англоязычный термин High End PC, которому короткого русского аналога пока нет.

Существует два основных класса компьютеров:

- цифровые компьютеры, обрабатывающие данные в виде числовых двоичных кодов;

- аналоговые компьютеры, обрабатывающие непрерывно меняющиеся физические величины (электрическое напряжение, время и т.д.), которые являются аналогами вычисляемых величин.

Поскольку, в настоящее время подавляющее большинство компьютеров являются цифровыми, далее будем рассматривать только этот класс компьютеров и слово "компьютер" употреблять в значении "цифровой компьютер".

Основу компьютеров образует аппаратура (HardWare), построенная, в основном, с использованием электронных и электромеханических элементов и устройств. Принцип действия компьютеров состоит в выполнении программ (SoftWare) -- заранее заданных, четко определённых последовательностей арифметических, логических и других операций.

Любая компьютерная программа представляет собой последовательность отдельных команд.

Команда -- это описание операции, которую должен выполнить компьютер. Как правило, у команды есть свой код (условное обозначение), исходные данные (операнды) и результат.

Например, у команды "сложить два числа" операндами являются слагаемые, а результатом -- их сумма. А у команды "стоп" операндов нет, а результатом является прекращение работы программы.

Результат команды вырабатывается по точно определенным для данной команды правилам, заложенным в конструкцию компьютера.

Совокупность команд, выполняемых данным компьютером, называется системой команд этого компьютера.

Компьютеры работают с очень высокой скоростью, составляющей миллионы - сотни миллионов операций в секунду.

Персональные компьютеры, более чем какой-либо другой вид ЭВМ, способствуют переходу к новым компьютерным информационным технологиям, которым свойственны:

дружественный информационный, программный и технический интерфейс с пользователем;

выполнение информационных процессов в режиме диалога с пользователем;

- сквозная информационная поддержка всех процессов на основе интегрированных баз данных, так называемая «безбумажная технология».

Компьютер - это многофункциональное электронное устройство для накопления, обработки и передачи информации.

Под архитектурой компьютера понимается его логическая организация, структура и ресурсы, т.е. средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный интервал времени.

Архитектура ПК определяет принцип действия, информационные связи и взаимное соединение основных логических узлов компьютера:

Краткая история компьютерной техники

Поколения вычислительных средств

Первые проекты электронных вычислительных машин (ВМ) появились в конце 30-х -- начале 40-х годов XX в. Технические предпосылки для этого уже были созданы, развивалась электроника и счетно-аналитическая вычислительная техника. В 1904 г. был изобретен первый ламповый диод, а в 1906 г. -- первый триод (соответственно двух- и трехэлектродная электронная лампа); в 1918 г. -- электронное реле (ламповый триггер). Триггерные схемы стали широко применяться в электронике для переключения и релейной коммутации.

Другой технической предпосылкой создания ЭВМ стало развитие электромеханической счетно-аналитической техники. Благодаря накопленному опыту в области развития вычислительной техники в середине 30-х годов стало возможным создание программно-управляемых вычислительных машин, а построение ВМ на электронных схемах открывало широкие перспективы, связанные с увеличением надежности и быстродействия.

ЭВМ появились, когда возникла острая необходимость в проведении трудоемких и точных расчетов. Уровень прогресса в таких областях науки и техники, как, например, атомная энергетика, аэрокосмические исследования, во многом зависел от возможности выполнения сложных расчетов, которые нельзя было осуществить в рамках электромеханических счетных машин. Требовался переход к вычислительным машинам, работающим с большей производительностью.

В истории развития ЭВМ выделяют пять этапов, соответствующих пяти поколениям ЭВМ.

Период машин первого поколения начинается с переходом к серийному производству ЭВМ в начале 50-х годов XX в. В них были реализованы основные принципы, предложенные Джоном фон-Нейманом.

1. Принцип хранимой программы. Машина имеет память, в которой хранятся программа, данные и результаты промежуточных вычислений. Программа вводится в машину, так же как и данные, в виде двоичных кодов (а не штекерным методом, т.е. коммутацией проводов в определенной последовательности).

2. Адресный принцип. В команде указываются не сами числа, над которыми нужно выполнять арифметические действия, а адреса ячеек памяти, где эти числа находятся.

3. Автоматизм. После ввода программы и данных машина работает автоматически, выполняя предписания программы без вмешательства человека. Для этого машина запоминает адрес выполняемой команды, а каждая команда содержит указание об адресе следующей команды. Указание может быть одним из трех типов: неявным (перейти к команде, следующей по адресу за выполняемой), безусловным (перейти к команде по заданному адресу), условным (проверить заданное условие и в зависимости от его выполнения перейти к команде по тому или иному адресу).

4. Переадресация. Адреса ячеек памяти, указанные в команде, можно вычислять и преобразовывать как числа.

Структура ЭВМ, в которой реализованы принципы фон-Неймана, впоследствии получила название структуры «фон-Неймана» (или классической). Все дальнейшее развитие ЭВМ шло двумя путями: совершенствование структуры фон«Неймана и поиск новых структур.

Технической основой элементной базы процессоров первых ЭВМ были электронные вакуумные лампы, а в качестве оперативных запоминающих устройств использовались электронно-лучевые трубки. Это были громоздкие по габаритам машины, занимающие много места и потребляющие много электроэнергии. Они делали несколько тысяч операций в секунду и обладали памятью в несколько тысяч машинных слов. Эти машины предполагали монопольный режим использования, т.е. в распоряжении пользователя были все ресурсы машины и ее управление. Программист писал свою программу в машинных кодах и отлаживал ее за пультом машины, которая на время отладки была полностью в его распоряжении. При этом 90% времени машина простаивала в ожидании команд, т.е. использование машинных ресурсов было малоэффективным из-за отсутствия развитой операционной системы. Использовались ЭВМ первого поколения в основном для научных расчетов. Первой отечественной ЭВМ была МЭСМ (малая электронная счетная машина), разработанная в 1947--1951 гг. под руководством акад. С.А.Лебедева. В 1952 г. была введена в эксплуатацию БЭСМ (большая электронная счетная машина), созданная под руководством С.А.Лебедева. В 1955 г. начался выпуск малой ЭВМ «Урал-1» (руководитель проекта Б.И.Рамеев).

Примером зарубежной серийной модели ЭВМ является IBM-701 (США).

Второе поколение ЭВМ (конец 50-х -- середина 60-х годов) называют транзисторно-ферритовым, так как транзисторы (твердые диоды и триоды) заменили электронные лампы в процессорах, а ферритовые (намагничиваемые) сердечники -- электронно-лучевые трубки в оперативных запоминающих устройствах.

Применение транзисторов существенно повлияло на характеристики и структуру машин. Транзисторные схемы позволили повысить плотность монтажа электронной аппаратуры на порядок и существенно (на несколько порядков) снизить потребляемую электроэнергию. Срок службы транзисторов на два-три порядка превосходил срок службы электронных ламп. Скорость ЭВМ возросла до сотен тысяч операций в секунду, а память -- до десятков тысяч машинных слов.

Создание долговременной памяти на магнитных дисках и лентах, а также возможность подключения к ЭВМ изменяемого состава внешних устройств существенно расширили функциональные возможности вычислительных машин.

В организации вычислительного процесса крупным достижением было совмещение во времени вычислений и ввода-вывода информации, переход от монопольного режима использования ресурсов машины к пакетной обработке. Задания для ЭВМ (на перфокартах, магнитных лентах или дисках) собирались в пакет, который обрабатывался без перерыва между заданиями. Это позволило более экономно использовать ресурсы машины.

В программировании были разработаны методы программирования в символических обозначениях, созданы первые алгоритмические языки и трансляторы с этих языков, созданы библиотеки стандартных программ.

Наиболее широкое применение нашли отечественные ЭВМ, такие, как БЭСМ-4, М-220, «Минск-32». Типичным представителем зарубежной ЭВМ второго поколения является IBM-7090.

Третье поколение ЭВМ (конец 60-х -- начало 70-х годов) характеризуется появлением в качестве элементной базы процессора интегральных полупроводниковых схем (вместо отдельных транзисторов), что привело к дальнейшему увеличению скорости до миллиона операций в секунду и памяти до сотен тысяч слов.

ЭВМ третьего поколения также характеризуются крупнейшими сдвигами в архитектуре ЭВМ, их программном обеспечении, организации взаимодействия человека с машиной. Это прежде всего наличие развитой конфигурации внешних устройств (алфавитно-цифровые терминалы, графопостроители и т.п.) с использованием стандартных средств сопряжения, развитая операционная система, обеспечивающая работу в мультипрограммном режиме (несколько одновременно размещаемых в оперативной памяти программ совместно используют ресурсы процессора). Метод использования ресурсов ЭВМ -- режим разделения времени совместно с пакетной обработкой. Высокое быстродействие позволяет время обслуживания пользователей разбить на кванты, обрабатывая в течение кванта задание каждого, возвращаться к пользователю за такое малое время, что у него за дисплеем создается иллюзия, что он один пользуется ресурсами машины.

Переход к машинам четвертого поколения -- ЭВМ на больших интегральных схемах (БИС) -- происходил во второй половине 70-х годов и завершился приблизительно к 1980 г. Теперь на одном кристалле размером 1 см2 стали размещаться сотни тысяч электронных элементов. Скорость и объем памяти возросли в десятки тысяч раз по сравнению с машинами первого поколения и составили примерно 109 оп/с и 107 слов соответственно.

Характерными особенностями машин четвертого поколения являются тесная связь аппаратурной и программной реализации в структуре машины, отход от принципа минимизации аппаратуры и поручение ей функций программы, что стало возможным благодаря относительно низкой стоимости БИС.

Развитие архитектуры ЭВМ в период машин четвертого поколения привело к появлению структур, в которых вычислительный процесс может протекать по нескольким ветвям параллельно, что приводит к увеличению производительности вычислительных машин. Идея параллелизма была технически реализована в многопроцессорных системах, состоящих из двух или более взаимосвязанных процессоров, работающих с общей памятью и управляемых общей операционной системой.

В результате возросшего быстродействия ЭВМ стало возможным расширить оперативную память за счет введения виртуальной памяти, основанной на страничном обмене информации между внешней и основной памятью.

Наиболее крупным достижением, связанным с применением БИС, стало создание микропроцессоров, а затем на их основе микроЭВМ. Если прежние поколения ЭВМ требовали для своего расположения специальных помещений, системы вентиляции, специального оборудования для электропитания, то требования, предъявляемые к эксплуатации микроЭВМ, ничем не отличаются от условий эксплуатации бытовых электроприборов. При этом они имеют достаточно высокую производительность, экономичны в эксплуатации и дешевы. МикроЭВМ используются в измерительных комплексах, системах числового программного управления, в управляющих системах различного назначения.

1943г. Говард Эйкен создает «ASCC Mark I» - машину, считающуюся дедушкой современных компьютеров. Её вес составлял более 7 тонн и состоял из 750 000 частей. Машина применялась в военных целях - для расчёта артиллерийских таблиц.

1945г. Джон фон Нейман разработал теоретическую модель устройства компьютера - первое в мире описание компьютера, использовавшего загружаемые извне программы. В этом же году Мочли и Эккерт создали ENIAC -самый грандиозный и мощный ламповый компьютер той эпохи. Компьютер весит более 70 тон и содержит в себе почти 18 тысяч электронных ламп. Рабочая частота компьютера не превышает 100КГц (несколько сот операций в секунду).

1956г. В Массачусетском технологическом институте создан первый компьютер на транзисторной основе. В этом же году IBM создала первый накопитель информации - прототип винчестера - жёсткий диск КАМАС 305.

1958-1959г. Д. Килби и Р. Нойс создали уникальную цепь логических элементов на поверхности кремниевого кристалла, соединённого алюминиевыми контактами - первый прототип микропроцессора, интегральную микросхему.

1960г. АТ разработали первый модем.

1963г. Дуглас Энгельбарт получил патент на изобретённый им манипулятор - «мышь».

1968г. Основание фирмы Intel Робертом Нойсем и Гордоном Мурем.

1969г. Intel представляет первую микросхему оперативной памяти объёмом 1 Кб. В этом же году фирма Xerox создаёт технологию лазерного копирования изображений, которая через много лет ляжет в основу технологии печати лазерных принтеров. Первые «ксероксы».

1971г. ПО заказу японского производителя микрокалькуляторов Busicom команда разработчиков Intel под руководством Теда Хоффа создаёт первый 4-разрядный микропроцессор Intel-4004. Скорость процессора - 60 тысяч операций в секунду. В этом же году команда и исследователей лаборатории IBM в Сан-Хосе создает первый 8-дюймовый «флоппи-диск».

1972г. Новый микропроцессор от Intel - 8-разрядный Intel-8008. Xerox создаёт первый микрокомпьютер Dynabook, размером чуть больше записной книжки.

1973г. В научно-исследовательском центре Xerox создан прототип первого персонального компьютера. Первый герой, появившийся на экране, - Коржик, персонаж детского телесериала «Улица Сезам». В этом же году Scelbi Computer Consulting Company выпускает на рынок первый готовый персональный компьютер, укомплектованный процессором Intel-8008 и с 1 Кб оперативной памяти. В этом же году IBM представляет жёсткий диск IBM 3340. Ёмкость диска составляла 16 Кб, он содержал 30 магнитных цилиндров по 30 дорожек в каждом. Из-за этого и был назван «винчестером» (30/30” - марка знаменитой винтовки). И в этом же году Боб Мэткэлф изобретает систему связи компьютеров, получившую название Ethernet.

1974г. Новый процессор от Intel - 8-разрядный Intel-8080. Скорость 640 тысяч операций в секунду. В скором времени на рынке появляется недорогой компьютер Altair на основе этого процессора, работающий под управлением операционной системы CP/M. В этом же году первый процессор выпускает главный конкурент Intel в 70-х годах - фирма Zilog.

1975г. IBM выпускает первый лэптоп. Первой музыкальной композицией, воспроизведённой с помощью компьютера, слала мелодия песни The Beatles «Fool On The Hill».

1976г. Фирма Advanced Micro Devices (AMD) получает право на копирование инструкций и микрокода процессоров Intel. Начало «войны процессоров». В этом же году Стив Возняк и Стив Джобс собирают в собственной гаражной мастерской компьютер серии Apple. А 1 апреля того же года на свет появляется компания Apple Computer. Компьютер Apple I поступает в широкую продажу с весьма сакраментальной цифрой на ценнике - 666.66$.

1977г. В продажу поступают массовые компьютеры Commodore и Apple II. Который снабжён оперативной памятью в 4 Кб, постоянной памятью 16 Кб, клавиатурой и дисплеем. Цена за всё удовольствие - 1300$. Apple II обзаводится модной добавкой - дисководом флоппи-дисков.

1978г. Intel представляет новый микропроцессор - 16 разрядный Intel-8086, работающий с частотой 4,77 МГц (330 тысяч операций в секунду). Основана компания Hayes - будущий лидер в производстве модемов. Commodore выпустила на рынок первые модели матричных принтеров.

1979г. Появление процессора Intel-8088, а также первых видеоигр и компьютерных приставок для них. Японская фирма NEC выпускает первый микропроцессор в этой стране. Hayes выпускает первый модем со скоростью 300 бод, предназначенный для нового компьютера Apple.

1980г. Компьютер Atari становится самым популярным компьютером года. Seagate Technologies представляет первый винчестер для персональных компьютеров - жёсткий диск диаметров 5.25 дюймов.

1981г. Появляется компьютер Apple III. Intel представляет первый сопроцессор. Основана фирма Creative Technology (Сингапур) - создатель первой звуковой карты. Появляется в продаже первый массовый жёсткий диск ёмкостью 5 Мб и стоимостью 1700$.

1982г. На рынке появляется новая модель от IBM - знаменитая IBM PC AT - и первые клоны IBM PC. IBM представляет процессор 16-разрядный 80286. Рабочая частота 6 МГц. (1,5 млн. операций в секунду). Hercules представляет первую чёрно-белую видеокарту - Hercules Graphics Adapter (HGA).

1983г. Commodore выпускает первый портативный компьютер с цветным дисплеем (5 цветов). Вес компьютера 10кг, цена 1600$. IBM представляет компьютер IBM PC XT, укомплектованный 10 Мб жёстким диском, дисководом на 360 Кб и 128 (позднее 768) Кб оперативной памяти. Цена компьютера составляла 5000$. Выпущен миллионный компьютер Apple II. Появляются первые модули памяти SIMM. Philips и Sony представляют миру технологию CD-ROM.

1984г. Apple выпускает модем на 1200 бод. Hewlett-Packard выпускает первый лазерный принтер серии LaserJet с разрешением до 300 dpi. Philips выпускает первый дисковод CD-ROM. IBM представляет первые мониторы и видеоадаптеры EGA (16 цветов, разрешение - 630х350 точек на дюйм), а также профессиональные 14-дюймовые мониторы, поддерживающие 256 цветов и разрешение в 640х480 точек.

1985г. Новый процессор от Intel - 32 разрядный 80386DX (со встроенным сопроцессором). Рабочая частота 16 МГц, скорость около 5 млн. операций в секунду. Первый модем от U.S. Robotics - Courier 2400 бод.

1986г. На компьютере Amiga демонстрируется первый анимационный ролик со звуковыми эффектами. Рождение технологии мультимедиа. Рождение стандарта SCSI (Small Computer System Interface).

1987г. Intel представляет новый вариант процессора 80386DX с рабочей частотой 20 МГц. Шведским национальным институтом контроля и измерений утверждается первый стандарт допустимых значений излучения мониторов. U.S. Robotics представляет модем Courier HST 9600

1988г. Compaq выпускает первый компьютер с оперативной памятью 640 Кб - стандартная память для всех последующих поколений DOS. Hewlett-Packard выпускает первый струйный принтер серии DeskJet. Стив Джобс и основанная им компания NexT выпускает первую рабочую станцию, оснащённую новым процессором Motorola, фантастическим для того времени объёмом памяти (8 Мб), 17-дюймовым монитором и жёстким диском на 256 Мб. Цена компьютера - 6500$.

1989г. Creative Labs представляет Sound Blaster 1.0, 8-битную монофоническую звуковую карту. Рождение стандарта SuperVGA (разрешение 800х600 точек с поддержкой 16 тысяч цветов).

1990г. Рождение сети Интернет. Intel представляет новый процессор - 32-разрядный 80486SX. Скорость 27 миллионов операций в секунду. IBM представляет новый стандарт видеоплат - XGA - в качестве замены традиционному VGA (разрешение 1024х768 точек с поддержкой 65 тысяч цветов).

1991г. Apple представляет первый монохромный ручной сканер. AMD представляет усовершенствованные «клоны» процессоров Intel - 386DX с тактовой частотой 40 МГц и 486SX с частотой 20 МГц. Первая стерео музыкальная карта - 8-битный Sound Blaster Pro.

1992г. NEC выпускает первый привод CD-ROM с удвоенной скорость (2х).

1993г. Intel представляет новый стандарт шины и слота для подключения дополнительных плат - PCI. Первый процессор нового поколения процессоров Intel - 32-разрядный Pentium. Рабочая частота от 60 МГ, быстродействие - от 100 млн. операций в секунду. Microsoft и Intel совместно с крупнейшими производителями ПК вырабатывают технологию Plug&Play (включи и работай), допускающую автоматическое распознавание компьютером новых устройств, а также их конфигурацию.

1994г. Iomega представляет диски и дисководы ZIP и JAZ - альтернативу существующим дискетам 1.44 Мб. US Robotics выпускает первый модем со скоростью 28800 бод.

1995г. Анонсирован стандарт новых носителей на лазерных дисках - DVD. AMD выпускает последний процессор поколения 486 - AMD 486DX-120. Intel представляет процессор Pentium Pro, предназначенный для мощных рабочих станций. Компания 3dfx выпускает набор микросхем Voodoo, который лёг в основу первых ускорителей трёхмерной графики для домашних ПК. Первые очки и шлемы «виртуальной реальности» для домашних ПК.

1996г. Рождение шины USB. Intel выпускает процессор Pentium MMX с поддержкой новых инструкций для работы с мультимедиа. Начало производства массовых жидкокристаллических мониторов для домашних ПК.

1997г. Появление процессоров Pentium II, и альтернативных процессоров AMD K6. Первые дисководы DVD. Выпуск первых звуковых плат формата PCI. Новый графический порт AGP.

1998г. Apple выпускает новый компьютер iMac, отличающийся не только своей мощью и потрясающим дизайном. Выпуск процессоров Celeron с урезанной кэш-памятью второго уровня. «Трёхмерная революция»: на рынке появляется десяток новых моделей трёхмерных ускорителей, интегрированных в обычные видеокарты. В течение года прекращён выпуск видеокарт без 3D-ускорителей.

1999г. Выпуск новых процессоров Pentium III.

2000-2001г.г. Жёсткая конкурентная борьба между Intel и AMD, приведшая к созданию процессоров с ужасающей скоростью 1900 МГц. Это привело и к росту оперативной памяти, объёму жёстких дисков и видеокарт и т.д.

Принципы организации информационных процессов в вычислительных устройствах

Обработка информации и представление результатов обработки в удобном для человека виде производится с помощью вычислительных средств. Научно-технический прогресс привел к созданию разнообразных вычислительных средств: электронных вычислительных машин (ЭВМ), вычислительных систем (ВС), вычислительных сетей (ВСт). Они различаются структурной организацией и функциональными возможностями.

Дать определение такому явлению, как ЭВМ, представляется сложным. Достаточно сказать, что само по себе название ЭВМ, т.е. электронные вычислительные машины, не отражает полностью сущность концепции. Слово «электронные» подразумевало электронные лампы в качестве элементной базы, современные ЭВМ правильнее следовало бы называть микроэлектронными. Слово «вычислительный» подразумевает, что устройство предназначено для проведения вычислений, однако анализ программ показывает, что современные ЭВМ не более 10 -- 15% времени тратят на чисто вычислительную работу -- сложение, вычитание, умножение и т.д. Основное время затрачивается на выполнение операций пересылки данных, сравнения, ввода-вывода и т.д. То же самое относится и к англоязычному термину «компьютер», т.е. «вычислитель». К понятию ЭВМ можно подходить с нескольких точек зрения.

Представляется разумным определить ЭВМ с точки зрения ее функционирования. Целесообразно описать минимальный набор устройств, который входит в состав любой ЭВМ, и тем самым определить состав минимальной ЭВМ, а также сформулировать принципы работы отдельных блоков ЭВМ и принципы организации ЭВМ как системы, состоящей из взаимосвязанных функциональных блоков.

Если же рассматривать ЭВМ как ядро некоторой информационно-вычислительной системы, может оказаться полезным показать информационную модель ЭВМ -- определить ее в виде совокупности блоков переработки информации и множества информационных потоков между этими блоками.

Принципы Фон-Неймана

Большинство современных ЭВМ строится на базе принципов, сформулированных американским ученым, одним из «отцов» кибернетики Дж. фон Нейманом (одношинная, или принстонская). Впервые эти принципы были опубликованы фон Нейманом в 1945 г. в его предложениях по машине EDVAC. Эта ЭВМ была одной из первых машин с хранимой программой, т.е. с программой, запомненной в памяти машины, а не считываемой с перфокарты или другого подобного устройства. В целом эти принципы сводятся к следующему:

Основными блоками фон-неймановской машины являются блок управления, арифметико-логическое устройство, память и устройство ввода-вывода (рис.1).

Рисунок 1.Структурная схема вычислительной машины Фон Неймана:

УПД - устройство подготовки данных; УВВ - устройство ввода-вывода информации; ОЗУ - оперативное запоминающее устройство; ВЗУ - внешнее запоминающее устройство; АЛУ - арифметико - логическое устройство; УУ - устройство управления; ПУ - пульт управления; Увыв - устройство вывода информации.

информация вычислительный машина нейман

2) Информация кодируется в двоичной форме и разделяется на единицы, называемые словами.

3) Алгоритм представляется в форме последовательности управляющих слов, которые определяют смысл операции. Эти управляющие слова называются командами. Совокупность команд, представляющая алгоритм, называется программой.

4) Программы и данные хранятся в одной и той же памяти. Разнотипные слова различаются по способу использования, но не по способу кодирования.

5) Устройство управления и арифметическое устройство обычно объединяются в одно, называемое центральным процессором. Они определяют действия, подлежащие выполнению, путем считывания команд из оперативной памяти. Обработка информации, предписанная алгоритмом, сводится к последовательному выполнению команд в порядке, однозначно определяемом программой.

Принципы фон-Неймана практически можно реализовать множеством различных способов. Здесь приведем два из них: ЭВМ с шинной и канальной организацией. Перед тем как описать принципы функционирования ЭВМ, введем несколько определений.

Архитектура ЭВМ -- абстрактное определение машины в терминах основных функциональных модулей, языка, структур данных. Архитектура не определяет особенности реализации аппаратной части ЭВМ, времени выполнения команд, степени параллелизма, ширины шин и других аналогичных характеристик. Архитектура отображает аспекты структуры ЭВМ, которые являются видимыми для пользователя: систему команд, режимы адресации, форматы данных, набор программно-доступных регистров. Одним словом, термин «архитектура» используется для описания возможностей, предоставляемых ЭВМ. Весьма часто употребляется термин конфигурация ЭВМ, под которым понимается компоновка вычислительного устройства с четким определением характера, количества, взаимосвязей и основных характеристик его функциональных элементов. Термин «организация ЭВМ» определяет, как реализованы возможности ЭВМ.

Команда -- совокупность сведений, необходимых процессору для выполнения определенного действия при выполнении программы. Команда состоит из кода операции, содержащего указание на операцию, которую необходимо выполнить, и нескольких адресных полей, содержащих указание на места расположения операндов команды. Способ вычисления адреса по информации, содержащейся в адресном поле команды, называется режимом адресации. Множество команд, реализованных в данной ЭВМ образует ее систему команд.

Центральный процессор (АЛУ с блоком управления) реализуется микропроцессором реализуется микропроцессором семейства х86 - от 8086/88 до Pentium 4 и Athlon. В центральном процессоре используются наборы и принципы последовательной передачи управления. Набор арифметических, логических и прочих инструкций насчитывает несколько сотен, а для потоковой обработки применен принцип SIMD - множество комплектов данных, обрабатываемых одной инструкцией (расширения MMX, 3Dnow!, SSE). Процессор имеет набор регистров, часть которых доступна для хранения операндов, выполнения действий над ними и формирования адреса инструкций и операндов в памяти. Другая часть регистров используется процессором для служебных (системных) целей, доступ к ним может быть ограничен (есть даже программно-невидимые регистры). Все компоненты компьютера представляются для процессора в виде наборов ячеек памяти или (и) портов ввода-вывода, в которые процессор может производить запись или (и) считывание содержимого.

Память распределилась по многим компонентам. Оперативная память (ОЗУ) - самый большой массив ячеек памяти со смежными адресами - реализуется, как правило, на модулях (микросхемах) динамической памяти. Для повышения производительности обмена данными (включая и считывание команд) оперативная память кэшируется сверхоперативной памятью. Первый, а зачастую и второй уровень кэширования территориально располагается в микропроцессоре. Оперативная память вместе с кэшем всех уровней (в настоящее время до трех) представляет собой единый массив памяти, непосредственно доступный процессору для записи и чтения данных, а также считывания программного кода Кроме оперативной память включает также постоянную (ПЗУ), из которой можно только считывать команды и данные, и некоторые виды специальной памяти (например, видеопамять графического адаптера). Вся эта память вместе с оперативной располагается в едином пространстве с линейной адресацией. В любом компьютере обязательно есть постоянная память, в которой хранится программа начального запуска компьютера и минимально необходимый набор сервисов (ROM BIOS). Память дополняется устройствами хранения данных, например, дисковыми. Эти устройства предназначены для записи данных с целью последующего считывания (возможно, и на другом компьютере). От рассмотренной выше памяти, называемой также внутренней, устройства хранения отличаются тем, что процессор не имеет непосредственного доступа к данным по линейному адресу. Доступ к данным на устройствах хранения выполняется с помощью специальных программ, обращающихся к контроллерам этих устройств.

Устройства ввода-вывода (УВВ) служат для преобразования информации из внутреннего представления в компьютере (биты, байты) в форму, доступную окружающим, и обратно. Под окружающими следует понимать как людей, так и другие машины (например, технологическое оборудование, которым управляет компьютер). К традиционным устройствам ввода относятся клавиатура, мышь, джойстик, к устройствам вывода - дисплей, принтер. Устройства хранения к УВВ относить некорректно, поскольку здесь преобразования информации ради доступности внешнему миру не происходит - что сохранил (неважно на каком носителе), то и прочитал.

Существует еще большой класс коммуникационных устройств, предназначенных для передачи информации между компьютерами и (или) их частями. Эти устройства обеспечивают, например, соединение компьютеров в локальной сети или подключение терминала (УВВ) к компьютеру через пару модемов.

Процессор, память и устройства ввода-вывода взаимодействуют между собой с помощью шин и интерфейсов, аппаратных и программных; стандартизация интерфейсов делает архитектуру компьютеров открытой.

Данный тип архитектуры микропроцессорных систем -- архитектура с общей, единой шиной для данных и команд (одношинная, или принстонская, фон-неймановская архитектура). Соответственно, в составе системы в этом случае присутствует одна общая память, как для данных, так и для команд (рис.2).

Рисунок 2. Архитектура с общей шиной данных и команд

Контрольные вопросы.

Расскажите краткую историю развития компьютеров.

Как формулируются принципы Фон Неймана?

Что понимается под «архитектурой ЭВМ»?

Что означает термин «организация ЭВМ»?

Расскажите о принстонской структуре ЭВМ?

Размещено на Allbest.ru

...

Подобные документы

  • Ранние приспособления и устройства для счета. Появление перфокарт, первые программируемые машины, настольные калькуляторы. Работы Джона Фон Неймана по теории вычислительных машин. История создания и развития, поколения электронно-вычислительных машин.

    реферат [37,7 K], добавлен 01.04.2014

  • Определение перспектив, направлений и тенденций развития вычислительных систем как совокупности техники и программных средств обработки информации. Развитие специализации вычислительных систем и проблема сфер применения. Тенденции развития информатики.

    реферат [19,5 K], добавлен 17.03.2011

  • Периодизация развития электронных вычислительных машин. Счетные машины Паскаля и Лейбница. Описаний эволюционного развития отечественных и зарубежных пяти поколений электронных вычислительных машин. Сущность внедрения виртуальных средств мультимедиа.

    доклад [23,6 K], добавлен 20.12.2008

  • Архитектуры вычислительных систем сосредоточенной обработки информации. Архитектуры многопроцессорных вычислительных систем. Классификация и разновидности компьютеров по сферам применения. Особенности функциональной организации персонального компьютера.

    контрольная работа [910,2 K], добавлен 11.11.2010

  • Изучение особенностей информационного процесса обработки данных. Процессы, связанные с поиском, хранением, передачей, обработкой и использованием информации. Основные режимы обработки данных на ЭВМ. Организация обслуживания вычислительных задач.

    реферат [130,9 K], добавлен 28.09.2014

  • Требования, предъявляемые к свойствам систем распределенной обработки информации. Логические слои прикладного программного обеспечения вычислительных систем. Механизмы реализации распределенной обработки информации. Технологии обмена сообщениями.

    курсовая работа [506,8 K], добавлен 03.03.2011

  • Моделирование работы системы массового обслуживания: рассмотрение структурной схемы и временной диаграммы функционирования вычислительного центра, разработка алгоритмического и программного способов решения поставленной задачи, анализ результатов.

    курсовая работа [886,5 K], добавлен 24.06.2011

  • История развития вычислительной техники, основные характеристики. Основное отличие вычислительной системы от компьютера, виды архитектур. Классификация уровней программного параллелизма. Главные особенности векторной, матричной обработки регистров.

    курсовая работа [36,0 K], добавлен 21.07.2012

  • Информатика - наука об общих свойствах и закономерностях информации. Появление электронно-вычислительных машин. Математическая теория процессов передачи и обработки информации. История компьютера. Глобальная информационная сеть.

    реферат [120,1 K], добавлен 18.04.2004

  • Общая характеристика информационных систем, предназначенных для передачи, преобразования и хранения информации. Изучение форм представления детерминированных сигналов. Энтропия сложных сообщений. Рассмотрение основных элементов вычислительных машин.

    лекция [1,5 M], добавлен 13.04.2014

  • Основные этапы развития вычислительных устройств до начала 50-х годов (появление серийных ЭВМ с хранимой программой). История создания новых полностью электронных цифровых компьютеров. Принципы Неймана как основополагающие концепции построения ЭВМ.

    реферат [36,7 K], добавлен 07.12.2012

  • Рассмотрение понятия персонального компьютера, в частности истории его развития, принципов функционирования, структуры, строения и видов. Особенности этапов развития поколений ЭВМ. Виды современных мультимедиа-технологий и их значение в жизни человека.

    дипломная работа [131,1 K], добавлен 23.04.2011

  • Микропроцессор как универсальное устройство для выполнения программной обработки информации. Функциональные возможности и архитектурные решения. Микроконтроллеры в системах управления и обработки информации. Классификация электронно-вычислительных машин.

    курсовая работа [189,6 K], добавлен 12.10.2015

  • Периоды применения средств вычислительной техники. Переход к новому поколению электронно-вычислительных машин. Системы, основанные на знаниях. Экспертные системы и искусственный интеллект. Этапы обработки данных на ЭВМ. Иерархическая структура знания.

    презентация [170,6 K], добавлен 14.08.2013

  • Изучение характеристик и режимов работы ВТА 2000-30. Составление блок-схемы алгоритма программы. Рассмотрение особенностей интерфейса вычислительных систем. Описание кодов символьных и функциональных клавиш, полученных при выполнении практической работы.

    отчет по практике [26,6 K], добавлен 04.04.2015

  • История развития вычислительной техники. Понятие высокой готовности и отказоустойчивости системы. Разработка функциональной схемы отказоустойчивого кластера и структурной схемы виртуального стенда. Технико-экономическое обоснование объекта проектирования.

    дипломная работа [2,7 M], добавлен 26.02.2013

  • Особенности ламповых вычислительных устройств. Программные мониторы, мультипрограммирование, многотерминальные системы. Разработка формализованного языка. Переход от транзисторов к микросхемам. Система пакетной обработки. Глобальные компьютерные сети.

    реферат [282,6 K], добавлен 19.09.2009

  • Роль компьютеров и информационных технологий в жизни современно человека. Основные принципы функционирования современных персональных электронных вычислительных машин. Основные устройства компьютера, компоненты системного блока и их взаимодействие.

    реферат [29,2 K], добавлен 10.12.2012

  • Основные этапы развития вычислительных машин. Роль абстракции в вычислительной технике. Понятие "алгоритм" в контексте понятия "вычислительная техника". Изобретатели механических вычислительных машин. Многообразие подходов к процессу программирования.

    презентация [104,7 K], добавлен 14.10.2013

  • Иcпoльзoвaние мoдeлиpoвaния для oцeнки функциoниpoвaния peaльныx cиcтeм, иccлeдoвaние peжимов paбoты вычиcлитeльныx cиcтeм. Системы обработки данных: реального времени и оперативной обработки. Однопрограммные и мультипрограммные режимы обработки данных.

    лабораторная работа [21,6 K], добавлен 27.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.