Информационная система поддержки принятия решений на основе мультиагентного подхода
Изучение проблемы автоматизации процессов принятия решений по стратегическому управлению муниципальным образованием. Анализ перспективности применения мультиагентного подхода для моделирования путем объединения частных задач в рамках отдельных агентов.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 10.03.2018 |
Размер файла | 261,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Информационная система поддержки принятия решений на основе мультиагентного подхода
Клебанов Борис Исаевич,
кандидат технических наук, доцент,
профессор кафедры Автоматизированных систем управления
Крицкий Алексей Владимирович,
аспирант,
Уральский Государственный Технический Университет - УПИ.
Муниципальное образование (МО) представляет собой комплексную слабоструктурированную социально-экономической систему, являющуюся результатом взаимодействия часто противоречащих друг другу по целям функционирования элементов, и обладает множеством неявных прямых и обратных связей. Необходимость учета при управлении городской средой большого количества разнообразных факторов увеличивает риск принятия неверного решения, которое может пагубно сказаться на всех субъектах экономики и социальной сферы города при проверке в реальной обстановке.
Значительный интерес для решения данной задачи представляет исследование перспективности применения мультиагетного подхода для моделирования развития городской инфраструктуры с целью получения общей картины путем объединения частных задач, решаемых в рамках отдельных агентов (субъектов МО). Современный уровень развития вычислительной техники делает возможным использование таких сложных микроэкономических моделей для автоматизации прогнозирования процессов развития МО.
В связи с вышеизложенным, представляется актуальным создание информационной системы поддержки принятия решений на основе многоагентного подхода, обеспечивающей прогнозирование процессов развития МО и анализ эффективности стратегических проектов (СП).
Предлагаемая методика прогнозирования, основанная на имитационной мультиагентной системе (МАС), представлена на рисунке 1.
Рисунок 1. Предлагаемая методика стратегического прогнозирования.
В основу описания поведения агентов МАС положена модель жизненного цикла, который может быть представлен в виде дискретной системы, при определенных условиях меняющей свои внутренние состояния (режимы функционирования) и задан в виде графа переходов между стадиями (режимами) существования агента (рисунок 2).
Рисунок 2. Жизненный цикл агента.
Каждый интеллектуальный агент развивается в соответствие с собственной моделью поведения, которая может изменяться в рамках его индивидуального жизненного цикла.
Динамическая модель перехода интеллектуального агента из одного режима функционирования в другой может быть представлена в виде продукционной системы [1-4], определяемой выражением (1):
PS=<R,B,I>, (1)
где R - множество режимов функционирования агента; B - множество правил преобразования (база знаний); I -интерпретатор (машина логического вывода). мультиагентный автоматизация стратегический управление
Структура правил [5,6] имеет форму, определяемую выражением (2):
If(Rv&qj)then(Rm), (2)
где Rv - текущий режим функционирования агента; qj - множество параметров, контролируемых в данном состоянии; Rm - новый режим функционирования агента.
С точки зрения моделирования коллектива интеллектуальных агентов были определены следующие типы режимов функционирования агентов, представленные на рисунке 3.
Рисунок 3. Базовые режимы функционирования агентов.
Агенты, присутствующие в МАС, в каждом состоянии реализуют какой-либо определенный базовый режим функционирования или сочетают в себе несколько. В качестве примера, рассмотрим структуру агента, реализующего режим потребления ресурсов (П), представленную на рисунке 4 и определяемую совокупностью множеств входных и выходных переменных, множества накопителей, функций потребления и элемента управления в виде выражения (3).
П=<{Sin,Uin,Min,Win,Hin,Vin,Ein},{Sout,Mout,Qout},{Cuni,P},{Func},{A}>, (3)
Рисунок 4. Структура агента в режиме потребления ресурсов.
где Sin - множество входных потоков ресурсов для поддержания собственного функционирования, Uin - множество входных потоков услуг для поддержания собственного функционирования, Min - множество входных потоков универсального обменного ресурса (УОР), Win - множество входных информационных потоков ответов на заявки по потребляемым ресурсам и услугам, Hin - множество входных потоков предложений по потребляемым ресурсам и услугам, Ein - множество информационных потоков влияния на принятие решения, Vin - множествофизических потоков влияния на принятие решения, Sout - множество выходных потоков ресурсов, Mout - множество выходных потоков УОР, Qout - множество выходных информационных потоков заявок на потребляемые ресурсы и услуги, Cuni - накопитель УОР, P - множество накопителей ресурсов, Func - функции потребления, А - элемент управления.
На основе базовых режимов функционирования агентов может быть создана многоуровневая система управления, отражающая структуру и поведение сложных объектов. Другими словами, такая система представляет собой совокупность нескольких агентов, выполняющих определенный режим функционирования. Пример структуры такого агента (М1) и его связь с внешней средой приведены на рисунке 5.
Рисунок 5. Структура многорежимного агента.
Для агента, параллельно реализующего режимы потребления ресурсов, производства продукции, предоставления услуг, инвестирования, воспроизводства, распоряжения УОР, схема движения потоков УОР представлена на рисунке 6.
На основе схемы движения потоков УОР (рисунок 6) определена представленная в таблице 1 номенклатура базовых динамических моделей поведения, определенное сочетание которых задает конкретный режим функционирования агента.
Рисунок 6. Модель потоков УОР агента.
Таблица 1. Базовые модели в рамках режимов функционирования агентов.
№ п/п |
Модель |
Режим функционирования |
||||||||||
П |
Р |
Плановый |
Коммерческий |
|||||||||
ПУ |
ПП |
В |
ПУ |
ПП |
И |
В |
||||||
1 |
Принятие решений |
Распределение УОР из фонда потребления |
- |
+ |
- |
- |
- |
- |
- |
- |
- |
|
2 |
Распределение УОР из фонда удовлетворения собственных потребностей |
+ |
- |
- |
- |
- |
- |
- |
- |
- |
||
3 |
Распределение УОР из фонда производственной деятельности |
- |
- |
- |
- |
- |
+ |
+ |
+ |
+ |
||
4 |
Распределение УОР из фонда инвестирования |
- |
- |
- |
- |
- |
+ |
+ |
+ |
+ |
||
5 |
Распределение прибыли между фондами текущих затрат, расширения деятельности и выплаты дивидендов |
- |
- |
- |
- |
- |
+ |
+ |
+ |
+ |
||
6 |
Реализации решений |
Изменение качества ресурсов во времени и их профилактическое восстановление |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
|
7 |
Спрос и закупка ресурсов |
+ |
- |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
||
8 |
Предложение и продажа ресурсов |
+ |
- |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
||
9 |
Получение и возврат кредита УОР |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
||
10 |
Образование общего фонда УОР |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
||
11 |
Производство продукции |
- |
- |
- |
+ |
+ |
- |
+ |
- |
+ |
||
12 |
Предложение и продажа услуг |
- |
- |
+ |
- |
- |
+ |
- |
- |
- |
||
13 |
Выплата дивидендов УОР |
- |
- |
- |
- |
- |
+ |
+ |
+ |
+ |
||
14 |
Развитие и сокращение средств производства (освоение инвестиций) |
- |
- |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
На основе моделей интеллектуальных агентов, реализующих определенные режимы функционирования, может быть создано объединение агентов (рисунок 7), представляющее собой трехуровневую систему управления. Каждый элемент такой системы имеет свои собственные представления об окружающей его среде, интересы и цели, в соответствии с которыми принимаются решения [7,8]. Вступая в объединения, интеллектуальные агенты образуют общее хранилище УОР, в котором аккумулируется ресурс отдельных интеллектуальных агентов.
Рисунок 7. Структура иерархической системы коалиции интеллектуальных агентов.
Структура системы имитационного моделирования развития МО представляется следующими блоками, изображенными на рисунке 8.
Рисунок 8. Структура системы моделирования.
Система моделирования, пользовательский интерфейс которой представлен на рисунке 9, разработана в среде AnyLogic версии 6.0.7 компании XJ Technologies. Его основными элементами являются переключатели, «рычажки», кнопки, компоненты ввода данных, облегчающие пользователю работу с системой.
Рисунок 9. Интерфейс визуальной компоненты.
Алгоритмы функционирования агентов реализованы посредствам диаграмм состояний (стейтчартов), представляющих собой графы переходов и позволяющих визуально отобразить и легко отслеживать в процессе моделирования поведение агентов. Пример реализации образовательного цикла агента-человека представлен на рисунке 10.
Рисунок 10. Диаграмма состояний, реализующая процесс получения образования агентом-жителем МО.
Таким образом, в ходе данного исследования была разработана система многоагентного имитационного моделирования для прогнозирования эволюции развития, в рамках которой:
- Разработана классификация режимов функционирования агентов, образующих минимальный базис, необходимый для построения имитационной модели МО, с учетом их жизненного цикла.
- Разработана структура агентов в рамках имитационной модели города.
- Определена структура библиотеки динамических моделей для описания базовых режимов функционирования агентов.
- Разработана экспериментальная мультиагентная имитационная модель МО, позволяющая проводить эксперименты типа «что будет, если …».
Литература
1. Андрейчиков А.В., Андрейчикова О.Н. Интеллектуальные информационные системы: Учебник. - М.: Финансы и статистика, 2004. - 424 с.
2. Москалев И.М. Система анализа и оптимизации процессов преобразования ресурсов.: Дис. ... канд. техн. наук: 05.13.01 / Уральский государственный технический университет-УПИ. - Екатеринбург, 2006. - 170 с.
3. Гаскаров Д.В. Интеллектуальные информационные системы. Учеб. для вузов. - М.: Высш. шк., 2003. - 431 с.
4. Программирование искусственного интеллекта в приложениях / М. Тим Джонс; Пер. с англ. Осипов А.И. - М.: ДМК Пресс,
2006. - 312 с.
5. Черноруцкий И.Г. Методы принятия решений. - СПб.: БХВ-Петербург, 2005. - 416 с.
6. Интеллектуальные робототехнические системы: курс лекций: учеб. пособие для студентов вузов, обучающихся по специальностям в обл. информ. Технологий / В.Л. Афонин, В.А. Макушкин. - М.: Интернет-Ун-т Информ. Технологий, 2005. - 208 с.
7. Немтинов А.В. Мониторинг и управление движением ресурсов с использованием метода имитационного моделирования.: Дис. ... канд. техн. наук: 05.13.01 / Уральский государственный технический университет-УПИ. - Екатеринбург, 2006. - 156 с.
8. Современное состояние теории исследования операций. Под ред. Н.Н.Моисеева. - М.: Наука. Главная редакция физико-математической литературы, 1979 - 464 с.
Размещено на Allbest.ru
...Подобные документы
Концепция систем поддержки принятия решений. Диапазон применения Analytica 2.0. Программное обеспечение количественного моделирования. Графический интерфейс для разработки модели. Основные способы моделирования. Диаграмма влияния и дерево решений.
контрольная работа [1,1 M], добавлен 08.09.2011Методы решения проблем, возникающих на стадиях и этапах процесса принятия решений, их реализация в информационных системах поддержки принятия решений (СППР). Назначение СППР, история их эволюции и характеристика. Основные типы СППР, области их применения.
реферат [389,3 K], добавлен 22.11.2016Классификация систем поддержки принятия решений. Сравнительный анализ методик для оценки рисков розничного кредитования. Структура системы поддержки принятия решений, формирование начальной базы знаний. Проектирование базы данных информационной системы.
дипломная работа [1,9 M], добавлен 10.07.2017Человеко-машинные комплексы, специально предназначенные для принятия решений. Процесс принятия решений и его этапы. Методы поиска новых вариантов решений: дерево решений, морфологические таблицы, конференции идей. Принцип математической оценки тенденций.
курсовая работа [272,1 K], добавлен 30.07.2009Изучение назначения и основных задач, которые решает Project Expert - система поддержки принятия решений (СППР), предназначенная для менеджеров, проектирующих финансовую модель нового или действующего предприятия. Программные приложения, этапы работы.
реферат [30,7 K], добавлен 19.05.2010Классификация задач системы поддержки принятия решений, их типы и принципы реализации при помощи программы "Выбор". Обзор современных систем автоматизированного проектирования "Компас", "AutoCad", "SolidWorks", оценка преимуществ и недостатков программ.
курсовая работа [1,4 M], добавлен 22.07.2014Разработка и внедрение программного модуля поддержки принятия управленческих решений для информационной системы медицинского предприятия ООО "Центр эндохирургических технологий". Эффективность применения модуля, полученные с его помощью результаты.
дипломная работа [1,9 M], добавлен 11.04.2013Разработка алгоритмического и программного обеспечения для решения задачи поддержки принятия решений о выпуске новой продукции. Математическое обеспечение задачи поддержки принятия решений о выпуске новой продукции, основные входные и выходные данные.
дипломная работа [943,0 K], добавлен 08.03.2011Анализ существующих решений системы поддержки принятия решений для корпоративной сети. Многоагентная система. Разработка концептуальной модели. Структура базы знаний. Разработка модели многоагентной системы на базе сетей Петри. Методика тестирования.
дипломная работа [5,1 M], добавлен 19.01.2017Анализ аналогичных разработок в области построения "систем помощи выбора". Суть многокритериального подхода. Технология разработки интерфейса пользователя. Планирование разработки программы с использованием различных методов. Построение сетевого графика.
дипломная работа [5,3 M], добавлен 26.01.2013Типы административных информационных систем: системы генерации отчетов, системы поддержки принятия решений, системы поддержки принятия стратегических решений. Сортировка и фильтрация списков в Microsoft Excel. Работа с базами данных в Microsoft Access.
контрольная работа [6,0 M], добавлен 19.11.2009Основные модели представления знаний. Системы поддержки принятия решений. Диаграмма UseCase. Разработка базы данных на основе трех моделей: продукционные правила, семантическая сеть, фреймовая модель. Программная реализация системы принятия решений.
курсовая работа [715,1 K], добавлен 14.05.2014Система поддержки принятия решений "Мыслитель" и метод, заложенный в её основу. Порядок работы в программе: новая задача, составление списка альтернатив, списка критериев их оценки, сравнение критериев по степени важности, попарное сравнение альтернатив.
отчет по практике [719,2 K], добавлен 08.03.2016Классификация методов анализа по группам. Сбор и хранение необходимой для принятия решений информации. Подготовка результатов оперативного и интеллектуального анализа для эффективного их восприятия потребителями и принятия на её основе адекватных решений.
контрольная работа [93,2 K], добавлен 15.02.2010Анализ применения нейронных сетей для прогнозирования ситуации и принятия решений на фондовом рынке с помощью программного пакета моделирования нейронных сетей Trajan 3.0. Преобразование первичных данных, таблиц. Эргономическая оценка программы.
дипломная работа [3,8 M], добавлен 27.06.2011Теоретические аспекты функционирования Business intelligence - систем в сфере логистики. Анализ условий для разработки системы поддержки принятия решений. Характеристика процесса создания программного продукта, применение аналитической платформы QlikView.
курсовая работа [2,5 M], добавлен 09.09.2017Исследование технологического процесса по производству газобетона. Модель "как будет" процесса диагностирования состояния технологического процесса производства газобетона с учетом системы поддержки принятия решений. Прототипирование интерфейса СППР.
дипломная работа [4,8 M], добавлен 17.06.2017Автоматизированная информационная система и её составляющие компоненты. Системы обработки данных и поддержки принятия решений. Информационно-логические и расчетные системы, их назначение и функции. Отраслевые, территориальные и межотраслевые АИС.
курсовая работа [420,3 K], добавлен 05.05.2014Обслуживание двух встречных потоков информации. Структура информационных систем. Разработка структуры базы данных. Режимы работы с базами данных. Четыре основных компонента системы поддержки принятия решений. Выбор системы управления баз данных.
курсовая работа [772,0 K], добавлен 21.04.2016Реализация интерфейса пользователя для инструментального средства, обеспечивающего работу с таблицами принятия решений, встроенными в систему управления базами данных Oracle. Составление таблиц принятия решений и архитектуры инструментального средства.
курсовая работа [1,8 M], добавлен 18.07.2014