Эволюционные методы в задачах обеспечения безопасности автоматизированных систем
Нейронные сети - база для организации интеллектуальных систем защиты информации автоматизированных систем. Эволюционный подход к машинному обучению интеллектуальных средств. Вычислительные модели естественного отбора. Обзор генетического программирования.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 24.03.2018 |
Размер файла | 104,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Эволюционные методы в задачах обеспечения безопасности автоматизированных систем
Андрианов Владимир Игоревич, кандидат технических наук, доцент Санкт-Петербургского государственного университета,
Андронов Алексей Викторович, аспирант Санкт-Петербургского государственного университета информационных технологий, механики и оптики.
Нейронные сети являются базой для организации интеллектуальных систем защиты информации автоматизированных систем.
В существующих экспертных системах нейронная сеть используется для фильтрации поступающих сообщений с целью снижения числа характерных для экспертных систем ложных срабатываний. Однако если после обучения нейронная сеть стала идентифицировать новые атаки, то базу знаний экспертной системы также следует обновить. Иначе новые атаки будут игнорироваться экспертной системой, прежние правила которой не способны распознавать новую угрозу.
Если система защиты информации организована на базе нейронной сети, то она способна обрабатывать трафик и анализировать, на наличие злоупотреблений, поступающую информацию. Любые случаи, которые идентифицируются как попытки несанкционированного доступа к информации, перенаправляются к администратору безопасности или автоматически обрабатываются системой защиты информации автоматизированной системы. Этот подход более оперативен, по сравнению с предыдущим подходом, так как существует единственный уровень обработки и система защиты информации обладает свойством адаптивности.
Основным недостатком нейронных сетей считают «непрозрачность» формирования результатов анализа [1]. Однако использование гибридных нейро-экспертных или нейро-нечетких систем позволяет явным образом отразить в структуре нейронной сети систему правил If(Условие) - Then (Следствие), которые автоматически корректируются в процессе обучения нейронной сети. Свойство адаптивности нейронных сетей позволяет решать не только задачи идентификации угроз и сопоставления поведения пользователей с имеющимися в системе шаблонами, но и автоматически формировать новые правила при изменении поля угроз, а также реализовать систему защиты информации автоматизированной системы в целом [2].
Эволюционные методы используют для решения оптимизационной задачи [3], как правило, математической задачи многопараметрической оптимизации некоторой целевой функции от n переменных (в терминах эволюционных методик - функции соответствия), у которой необходимо найти глобальный максимум или минимум. Применительно к интеллектуальным системам защиты информации необходимо обеспечить автоматическую и оперативную реакцию системы защиты на изменение характера уязвимостей автоматизированной системы или изменение поля угроз, что сводится к решению задачи адаптации базы знаний системы защиты информации к динамике внешнего окружения.
Эволюционный подход к машинному обучению интеллектуальных средств основан на вычислительных моделях естественного отбора и генетики. Методы эволюционных вычислений включают: генетические алгоритмы, эволюционные стратегии и генетическое программирование. Все эти методы моделируют эволюцию, используя процессы: отбора, мутации и воспроизводства [4].
Для нейросетевых систем защиты информации эволюционные методы и генетические алгоритмы, в частности, используют для минимизации ошибки обучения нейронной сети на заданной обучающей выборке [2, 5].
Генетические алгоритмы, как метод оптимизации сложных систем, основанный на биологической аналогии, были закономерным продолжением теории эволюции Дарвина, теории естественного отбора Вейсмана и генетической концепции Менделя. Однако их широкое применение в искусственных системах [6], в значительной степени, обусловлено возрождением интереса к нейросетевой тематике [7].
Известные методы генных алгоритмов, используемые для обучения нейронной сети путем оптимизации весов ее межнейронных связей, можно подразделить: на методы оптимизации весов связей при неизменной топологии сети и методы оптимизации топологии нейронной сети в соответствии с заданной функцией соответствия.
Типовой генетический алгоритм для оптимизации весов связей нейронной сети (рис. 1) [8] включает этапы: кодирования хромосом; задания функции соответствия, по которой осуществляется отбор отдельных нейронных сетей в процессе ее эволюции; выбора генетических операторов для моделирования эволюции, таких как: пересечение, инверсия и мутация.
Рис. 1. Генетический алгоритм для оптимизации весов связей нейронной сети.
нейронный сеть генетический программирование
Вначале нумеруют узлы нейронной сети, начиная с входного слоя, и представляют ее топологию в виде квадратной матрицы связей, число строк (столбцов) которой равно количеству узлов в нейронной сети. При этом каждый элемент матрицы соответствует отдельной межнейронной связи и равен значению веса связи. Для отсутствующих межнейронных связей значение элемента матрицы равно 0 [9].
В данном случае в качестве генов выбираются значения весов связей, ассоциированные с входами формальных нейронов - группа весов, расположенная в отдельной строке матрицы весов, в качестве функции соответствия - обратная величина евклидова расстояния между расчетным и целевым значениями выходов, а в качестве генетических операторов - пересечение и мутация. Оператор пересечения создает пару дочерних хромосом из генетического материала обоих родителей путем обмена одноименными (случайно выбранными) генами, а оператор мутации в весе случайно выбранного гена хромосомы вызывает незначительное случайное изменение значения в заданном диапазоне. В каждом эволюционном цикле рассчитываются значения выходов нейронной сети и функции соответствия. Отбор хромосом в следующую популяцию производится с учетом функции соответствия. Затем производится следующая эволюционная попытка до тех пор, пока хотя бы одна из хромосом не удовлетворит требованиям по допустимой ошибке обучения нейронной сети.
Аналогичным образом генетические алгоритмы используют для оптимизации топологии нейронной сети, то есть числа нейронов и межнейронных связей в сети [9]. Составляется матрица связей сети, каждый элемент которой отмечается нулем - если связь в нейронной сети отсутствует, либо единицей - в противном случае. Хромосома образуется путем последовательного соединения строк матрицы связей.
Как правило, эволюционный процесс включает в себя следующие этапы [8]:
1) Задание размера популяции хромосом, вероятности выполнения операторов пересечения и мутации, число циклов обучения НС.
2) Выбор функции соответствия для процедуры эволюционного отбора (например, обратной величины евклидова расстояния между расчетным и целевым значениями выходов нейронной сети).
3) Выбор, в качестве начальной популяции, случайным образом сгенерированной совокупности хромосом.
4) Выбор одной из хромосом популяции и вычисление значения функции соответствия.
5) Действия по п. 4 повторяются для всей популяции хромосом.
6) Выбор (случайным образом), в соответствии со значением функции соответствия, пары хромосом и, применяя операторы пересечения и мутации, создание пары дочерних хромосом. Оператор пересечения, случайным образом, выбирает гены в родительских хромосомах и производит взаимный обмен генами, а оператор мутации, с низкой вероятностью (порядка 0,005), инвертирует один или два бита в случайно выбранном гене. 7) Формирование новой популяции путем включения в нее дочерних хромосом.
8) Действия по п.п. 6, 7 повторяются, пока размер новой популяции хромосом не достигнет размера исходной популяции.
9) Действия с п. 4 повторяются до тех пор, пока не сменилось заданное число популяций.
Генетические алгоритмы предоставляют собой эффективные средства оптимизации адаптируемых параметров интеллектуальных средств в составе системы защиты информации, в частности, взвешенных связей нейронной сети.
Литература
1. Fu L. A Neural Network Model for Learning Rule-Based Systems // Proc. of the International Joint Conference on Neural Networks. 1992. I.P. 343-348.
2. Суханов А.В. Разработка теоретических основ и методологии мониторинга безопасности информационных систем для критических схем применениям // Диссертация на соискание ученой степени доктора технических наук, СПб, 2010, С. 368.
3. Negnevitsky M. Artificial intelligence: a guide to intelligent systems. Addison-Wesley, 2002.
4. Mitchell M. An Introduction to Genetic Algorithms. - Cambridge, MA: MIT Press. 1996.
5. Суханов А.В. Автоматизированные средства анализа защищенности информационных систем. // Журнал научных публикаций аспирантов и докторантов, 2008, № 5. С. 137-141.
6. Holland J. Adaptation in Natural and Artificial Systems. - University of Michigan Press, 1975.
7. Goldberg D. Genetic Algorithms in Machine Learning, Optimization, and Search. - Addison-Wesley, 1988.
8. Negnevitsky M. Artificial intelligence: a guide to intelligent systems. Addison-Wesley, 2002.
9. Montana D. J., Davis L. Training feedforward networks using genetic algorithms, Proceedings of the 11th International Joint Conference on Artificial Intelligence, Morgan Kaufmann, San Mateo, CA, 1989. P. 762-767.
Размещено на Allbest.ru
...Подобные документы
Инструментальные средства проектирования интеллектуальных систем. Анализ традиционных языков программирования и представления знаний. Использование интегрированной инструментальной среды G2 для создания интеллектуальных систем реального времени.
контрольная работа [548,3 K], добавлен 18.05.2019Роль интеллектуальных информационных систем в развитии общества. Проблемы концептуального классификационного моделирования для систем, основанных на знаниях. Иерархическая структура универсума. Интенсиональность и параметричность классификации, структура.
реферат [15,4 K], добавлен 19.02.2011Анализ нормативно-правовой базы, обоснование направлений создания обеспечения комплексной защиты информации в автоматизированных системах. Разработка методики оценки, выбор путей повышения эффективности защитных мероприятий в автоматизированных системах.
дипломная работа [368,5 K], добавлен 17.09.2009Эволюция технического обеспечения. Основные требования, применение и характеристики современных технических средств автоматизированных информационных систем. Комплексные технологии обработки и хранения информации. Создание базы данных учета и продажи.
курсовая работа [127,1 K], добавлен 01.12.2010Жизненный цикл автоматизированных информационных систем. Основы методологии проектирования автоматизированных систем на основе CASE-технологий. Фаза анализа и планирования, построения и внедрения автоматизированной системы. Каскадная и спиральная модель.
курсовая работа [1,1 M], добавлен 20.11.2010Развитие информационных систем. Современный рынок финансово-экономического прикладного программного обеспечения. Преимущества и недостатки внедрения автоматизированных информационных систем. Методы проектирования автоматизированных информационных систем.
дипломная работа [1,5 M], добавлен 22.11.2015Методы организации процесса обработки информации; основные направления реализации внутримашинного информационного обеспечения. Принципы построения и эффективного применения технологий баз и банков данных как основных компонентов автоматизированных систем.
дипломная работа [186,8 K], добавлен 30.05.2013Понятие искусственного интеллекта и интеллектуальной системы. Этапы развития интеллектуальных систем. Модели представления знаний, процедурный (алгоритмический) и декларативный способы их формализации. Построение концептуальной модели предметной области.
презентация [80,5 K], добавлен 29.10.2013Ценность и проблемы защиты банковской информации. Способы обеспечения безопасности автоматизированных систем обработки информации банка. Достоинства и методы криптографической защиты электронных платежей. Средства идентификации личности в банковском деле.
реферат [468,4 K], добавлен 08.06.2013Виды обеспечения автоматизированных информационных систем. Составление технического задания, разработка информационной системы, составление руководства пользователя к программе. Средства программирования распределенных систем обработки информации.
отчет по практике [1,1 M], добавлен 16.04.2017Анализ видов обеспечения автоматизированных систем предприятия. Средства программирования распределенных систем обработки информации. Изучение особенностей использования технологии распределенных объектов. Эксплуатация программного обеспечения системы.
отчет по практике [486,0 K], добавлен 23.11.2014Принципы организации системы, состоящей из персонала и комплекса средств автоматизации его деятельности. Проектирование корпоративных автоматизированных информационных систем. Структура, входные и выходные потоки, ограничения автоматизированных систем.
презентация [11,3 K], добавлен 14.10.2013Изучение деятельности фирмы СООО "Гейм Стрим", занимающейся разработкой программного обеспечения интеллектуальных систем. Проведение работы по тестированию информационных систем на степень защищенности и безопасности от разного рода информационных атак.
отчет по практике [933,1 K], добавлен 05.12.2012Основные цели и задачи построения систем распознавания. Построение математической модели системы распознавания образов на примере алгоритма идентификации объектов военной техники в автоматизированных телекоммуникационных комплексах систем управления.
дипломная работа [332,2 K], добавлен 30.11.2012Основная концепция СТР-К в отношении к защите информации, обрабатываемой средствами вычислительной техники. Защита информации при сетевом взаимодействии для автоматизированных рабочих мест на базе автономных персональных электронно-вычислительных машин.
реферат [28,0 K], добавлен 11.10.2016Изучение методов обеспечения безопасности информации. Основные подходы к построению и анализу защищенных систем. Описание комплекса организационно-технологических и программно-технических мер по обеспечению защищенности информации в компьютерной системе.
реферат [1,1 M], добавлен 16.11.2010Особенности основных, вспомогательных и организационных процессов жизненного цикла автоматизированных информационных систем. Основные методологии проектирования АИС на основе CASE-технологий. Определение модели жизненного цикла программного продукта.
курсовая работа [1,8 M], добавлен 20.11.2010Создание и организация автоматизированных информационных систем (АИС). Основные компоненты и технологические процессы АИС. Стадии и этапы создания АИС с позиции руководства организации. Разработка комплексов проектных решений автоматизированной системы.
реферат [286,6 K], добавлен 18.10.2012Анализ предметной области, этапы проектирования автоматизированных информационных систем. Инструментальные системы разработки программного обеспечения. Роль CASE-средств в проектировании информационной модели. Логическая модель проектируемой базы данных.
курсовая работа [410,6 K], добавлен 21.03.2011Методы защиты информации в системах управления производством. Самые уязвимые участки сети. Разработка средств и способов защиты для организации "Стройпроект". Назначение экранирующих систем и требования к ним. Безопасность жизни и деятельности человека.
дипломная работа [2,4 M], добавлен 19.06.2011