Основные составляющие информатики как науки
Формирование автоматизированной генерации, хранения, обработки и использования знаний - признак информационного общества. Анализ особенностей двоичной системы счисления. Сущность магистрально-модульного принципа построения персональных компьютеров.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 27.02.2018 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Начинается разработка на базе библиотек стандартных программ интегрированных систем, обладающих свойством переносимости, т. е. функционирования на ЭВМ разных марок. Наиболее часто используемые программные средства выделяются в ППП для решения задач определенного класса.
Совершенствуется технология выполнения программ на ЭВМ: создаются специальные программные средства - системное ПО.
Цель создания системного ПО - ускорение и упрощение перехода процессором от одной задачи к другой. Появились первые системы пакетной обработки, которые просто автоматизировали запуск одной программы за другой и тем самым увеличивали коэффициент загрузки процессора. Системы пакетной обработки явились прообразом современных операционных систем, они стали первыми системными программами, предназначенными для управления вычислительным процессом. В ходе реализации систем пакетной обработки был разработан формализованный язык управления заданиями, с помощью которого программист сообщал системе и оператору, какую работу он хочет выполнить на вычислительной машине. Совокупность нескольких заданий, как правило, в виде колоды перфокарт, получила название пакета заданий. Этот элемент жив до сих пор: так называемые пакетные (или командные) файлы MS DOS есть не что иное, как пакеты заданий (расширение в их имени bat является сокращением от английского слова batch, что означает пакет).
К отечественным ЭВМ второго поколения относятся «Проминь», «Минск», «Раздан», «Мир».
В 70-х годах возникают и развиваются ЭВМ третьего поколения. В нашей стране это ЕС ЭВМ, АСВТ, СМ ЭВМ. Данный этап - переход к интегральной элементной базе и создание многомашинных систем, поскольку значительного увеличения быстродействия на базе одной ЭВМ достичь уже не удавалось. Поэтому ЭВМ этого поколения создавались на основе принципа унификации, что позволило комплексировать произвольные вычислительные комплексы в различных сферах деятельности.
Расширение функциональных возможностей ЭВМ увеличило сферу их применения, что вызвало рост объема обрабатываемой информации и поставило задачу хранения данных в специальных базах данных и их ведения. Так появились первые системы управления базами данных - СУБД.
Изменились формы использования ЭВМ: введение удаленных терминалов (дисплеев) позволило широко и эффективно внедрить режим разделения времени и за счет этого приблизить ЭВМ к пользователю и расширить круг решаемых задач.
Обеспечить режим разделения времени позволил новый вид операционных систем, поддерживающих мультипрограммирование. Мультипрограммирование - это способ организации вычислительного процесса, при котором на одном процессоре попеременно выполняются несколько программ. Пока одна программа выполняет операцию ввода-вывода, процессор не простаивает, как это происходило при последовательном выполнении программ (однопрограммный режим), а выполняет другую программу (многопрограммный режим). При этом каждая программа загружается в свой участок внутренней памяти, называемый разделом. Мультипрограммирование нацелено на создание для каждого отдельного пользователя иллюзии единоличного использования вычислительной машины, поэтому такие операционные системы носили интерактивный характер, когда в процессе диалога с ЭВМ пользователь решал свои задачи.
С 1980 года начался современный, четвертый этап, для которого характерны переход к большим интегральным схемам, создание серий недорогих микро ЭВМ, разработка суперЭВМ для высокопроизводительных вычислений.
Наиболее значительным стало появление персональных ЭВМ, что позволило приблизить ЭВМ к своему конечному пользователю. Компьютеры стали широко использоваться неспециалистами, что потребовало разработки «дружественного» программного обеспечения. Возникают операционные системы, поддерживающие графический интерфейс, интеллектуальные пакеты прикладных программ, операционные оболочки. В связи с возросшим спросом на программное обеспечение совершенствуются технологии его разработки - появляются развитые системы программирования, инструментальные среды пользователя.
В середине 80-х стали бурно развиваться сети персональных компьютеров, работающие под управлением сетевых или распределенных операционных систем. В сетевых операционных системах хорошо развиты средства защиты информации от несанкционированного доступа. Распределенные операционные системы обладают схожими с сетевыми системами функциями работы с файлами и другими ресурсами удаленных компьютеров, но там слабее выражены средства защиты.
3.2 Магистрально-модульный принцип построения ПК
двоичный компьютер информационный
Компьютер - это многофункциональное электронное автоматическое устройство для накопления, обработки и передачи информации.
В 1946-1948 годах в Принстонском университете (США) коллектив исследователей под руководством Джона фон Неймана разработал проект ЭВМ, который никогда не был реализован, но идеи данного используются и по сей день. Этот проект получил название машины фон Неймана, или Принстонской машины.
В его состав входили схема (рассматривается ниже) и принципы функционирования вычислительной машины:
1) Принцип программного управления: работа ЭВМ регламентируется программой, что позволяет, вводя разные программы, решать разные задачи. Команды, из которых состоит программа, интерпретируются специально введенным в схему устройством - устройством управления. Структура отдельной команды имеет вид:
<код операции> <операнды>, где <код операции> определяет, какая операция должна выполняться,
<операнды> - список (возможно, одноэлементный) тех констант, адресов или имен переменных, над которыми выполняется данная операция.
В зависимости от числа операндов различают одно-, двух- и трехадресные машинные команды. Каждая команда имеет определенный объем, измеряемый байтами.
Этот принцип был самым прогрессивным среди включенных в проект, поскольку обеспечивал универсальность ЭВМ. В соответствии с принципом программного управления любая ЭВМ - это совокупность аппаратной (технической) и программной частей;
2) Принцип условного перехода: команды из программы не всегда выполняются одна за другой. Возможно присутствие в программе команд условного перехода, которые меняют последовательное выполнение команд в зависимости от значений данных;
3) Принцип размещения программы в памяти: программа, требуемая для работы ЭВМ, предварительно размещается в памяти компьютера, а не вводится команда за командой;
4) Принцип иерархии памяти: память ЭВМ неоднородна. Для часто используемых данных выделяется память меньшего объема, но большего быстродействия; для редко используемых данных выделяется память большего объема, но меньшего быстродействия;
5) принцип двоичной системы счисления: для внутреннего представления данных и программ в памяти ЭВМ применяется двоичная система счисления, которую можно проще реализовать технически.
Рисунок 3.1. Схема Принстонской машины
Рассмотрим назначение отдельных элементов этой схемы и их взаимосвязь в процессе функционирования ЭВМ.
Через устройство ввода (УВв) в память (П) вводится программа - набор команд, предписывающих ЭВМ выполнять требуемые действия (на схеме связь 1). При вводе программы (а позже и данных) выполняется отображение вводимой информации во внутреннее представление, принятое в ЭВМ.
После размещения программы в памяти устройство управления (УУ) выбирает последовательно команду за командой из памяти (связь 2) и интерпретирует ее по следующим правилам:
* если выбранная команда является командой ввода данных, УУ посылает управляющий сигнал (связь 3) в УВв для начала ввода данных. Данные также вводятся по связи 1 и размещаются в памяти П;
* если выбранная команда связана с выполнением арифметических или логических операций, то в память П из УУ посылается сигнал (связь 4) на выборку указанных в команде данных с последующей их пересылкой в арифметико-логическое устройство (АЛУ) (связь 5), а в само АЛУ передается сигнал с кодом нужной операции (связь 7). АЛУ выполняет арифметические и логические действия над переданными операндами. После выполнения требуемых действий, АЛУ возвращает результат в память П (связь 6);
* если выбранная команда является командой вывода, УУ генерирует управляющий сигнал устройству вывода (УВыв) (связь 8) на начало операции по выводу данных. Сами данные выбираются из памяти П по связи 9.
УВыв выводит информацию из ЭВМ и преобразует ее из внутреннего представления во внешнее.
В соответствии с принципом иерархии памяти блок Память на рис. 3.1 делится на два блока - внешняя и внутренняя память. Внешняя память традиционно отводится для долговременного хранения данных и программ, а сама оперативная обработка данных в соответствии с программой, как это было рассмотрено выше, выполняется во внутренней памяти.
В современных компьютерах блоки УУ и АЛУ объединены в блок, называемый процессором. В состав процессора, кроме указанных блоков, входят также несколько регистров - специальных небольших областей памяти, куда процессор помещает промежуточные результаты и некоторую другую информацию, необходимую ему в ближайшие такты работы.
Под архитектурой компьютера понимаются его логическая организация, структура, ресурсы, то есть средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный интервал времени. В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип (рис. 3.2).
Рисунок 3.2. Магистрально-модульный принцип строения ЭВМ
Магистраль (системная шина) - это набор электронных линий, связывающих центральный процессор, основную память и периферийные устройства воедино относительно передачи данных, служебных сигналов и адресации памяти. Благодаря модульному принципу построения потребитель сам может комплектовать компьютер нужной ему конфигурации и производить при необходимости ее модернизацию.
Модульная организация системы опирается на магистральный (шинный) принцип обмена информацией. Процессор выполняет арифметические и логические операции, взаимодействует с памятью, управляет и согласует работу периферийных устройств.
Обмен информацией между отдельными устройствами компьютера производится по образующим магистраль трем многоразрядным шинам (многопроводным линиям связи), соединяющим все модули, - шине данных, шине адресов, шине управления. Разрядность шины определяется количеством бит информации, передаваемых по шине параллельно.
Магистраль включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления.
Шина данных. По этой шине данные передаются между различными устройствами. Разрядность шины данных определяется разрядностью процессора, т. е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. За 25 лет, прошедших со времени создания первого персонального компьютера (1975 г.), разрядность шины данных увеличилась с 8 до 64 бит. К основным режимам работы процессора с использованием шины передачи данных можно отнести:
* запись/чтение данных из оперативной памяти (оперативное запоминающее устройство - ОЗУ);
* запись/чтение данных из внешних запоминающих устройств (ВЗУ);
чтение данных с устройств ввода;
* пересылка данных на устройства вывода.
Шина адреса. Каждая ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине. Разрядность шины адреса определяет адресное пространство процессора, т. е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:
N = 2m,
где N - разрядность шины адреса.
В первых персональных компьютерах разрядность шины адреса составляла 16 бит, а количество адресуемых ячеек памяти - N = 216= 65 536.
В современных персональных компьютерах разрядность шины адреса составляет 32 бита, а максимально возможное количество адресуемых ячеек памяти равно: N = 232 = 4 294 967 296. Выбор абонента по обмену данными производит процессор, формируя код адреса данного устройства, а для ОЗУ - код адреса ячейки памяти. Код адреса передается по адресной шине, причем сигналы по ней передаются в одном направлении - от процессора к устройствам (однонаправленная шина).
Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления определяют, какую операцию - считывание или запись информации из памяти - нужно производить, синхронизируют обмен информацией между устройствами и т. д.
Классификации электронно-вычислительных машин
По назначению выделяют следующие виды компьютеров:
а) универсальные - предназначены для решения различных задач, типы которых не оговариваются. Эти ЭВМ характеризуются:
* разнообразием форм обрабатываемых данных (числовых, символьных и т. д.) при большом диапазоне их изменения и высокой точности представления;
* большой емкостью внутренней памяти;
* развитой системой организации ввода-вывода информации, обеспечивающей подключение разнообразных устройств ввода-вывода.
б) проблемно-ориентированные - служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами, регистрацией, накоплением и обработкой небольших объемов данных, выполнением расчетов по несложным правилам. Они обладают ограниченным набором аппаратных и программных средств.
в) специализированные - применяются для решения очень узкого круга задач. Это позволяет специализировать их структуру, снизить стоимость и сложность при сохранении высокой производительности и надежности. К этому классу ЭВМ относятся компьютеры, управляющие работой устройств ввода-вывода и внешней памятью в современных компьютерах. Такие устройства называются адаптерами, или контроллерами.
По размерам и функциональным возможностям различают четыре вида компьютеров: суперЭВМ, большие, малые и микроЭВМ.
СуперЭВМ являются мощными многопроцессорными компьютерами с огромным быстродействием. Многопроцессорность позволяет распараллеливать решение задач и увеличивает объемы памяти, что значительно убыстряет процесс решения. Они часто используются для решения экспериментальных задач, например, для проведения шахматных турниров с человеком.
Большие ЭВМ (их называют мэйнфреймами от англ. mainframe) характеризуются многопользовательским режимом (до 1000 пользователей одновременно могут решать свои задачи). Основное направление - решение научно-технических задач, работа с большими объемами данных, управление компьютерными сетями и их ресурсами.
Малые ЭВМ используются как управляющие компьютеры для контроля над технологическими процессами. Применяются также для вычислений в многопользовательских системах, в системах автоматизации проектирования, в системах моделирования несложных объектов, в системах искусственного интеллекта.
По назначению микроЭВМ могут быть универсальными и специализированными. По числу пользователей, одновременно работающих за компьютером - много- и однопользовательские. Специализированные многопользовательские микроЭВМ (серверы - от англ. server) являются мощными компьютерами, используемыми в компьютерных сетях для обработки запросов всех компьютеров сети. Специализированные однопользовательские (рабочие станции - workstation, англ.) эксплуатируются в компьютерных сетях для выполнения прикладных задач. Универсальные многопользовательские микроЭВМ являются мощными компьютерами, оборудованными несколькими терминалами. Универсальные однопользовательские микроЭВМ общедоступны. К их числу относятся персональные компьютеры - ПК. Наиболее популярным представителем ПК в нашей стране является компьютер класса IBM PC (International Business Machines - Personal Computer).
По конструктивным особенностям ПК делятся на стационарные (настольные - тип DeskTop) и переносные.
Рисунок 3.3. Классификация персональных компьютеров по конструктивным особенностям
Переносные компьютеры обычно нужны руководителям предприятий, менеджерам, ученым, журналистам, которым приходится работать вне офиса - дома, на презентациях или во время командировок.
Notebook (блокнот, записная книжка) по размерам ближе к книге крупного формата. Имеет вес около 3 кг. Помещается в портфель-дипломат. Для связи с офисом его обычно комплектуют модемом. Ноутбуки зачастую снабжают приводами CD-ROM.
Многие современные ноутбуки включают в себя взаимозаменяемые блоки со стандартными разъемами. Такие модули предназначены для очень разных функций. В одно и то же гнездо можно по мере надобности вставлять привод компакт-дисков, накопитель на магнитных дисках, запасную батарею или съемный винчестер. Ноутбук устойчив к сбоям в энергопитании. Даже если он получает энергию от обычной электросети, в случае какого-либо сбоя он мгновенно переходит на питание от аккумуляторов.
Palmtop (наладонник) - самые маленькие современные персональные компьютеры. Умещаются на ладони. Магнитные диски в них заменяет энергонезависимая электронная память. Нет и накопителей на дисках - обмен информацией с обычными компьютерами идет по линиям связи. Если Palmtop дополнить набором деловых программ, записанных в его постоянную память, получится персональный цифровой помощник (Personal Digital Assistant).
3.3 Устройства персонального компьютера
Конструктивно составные части системного блока и магистраль располагаются на системной плате. На ней иногда бывают сосредоточены все необходимые для работы компьютера элементы. Такие платы называются All-In-One. Однако большая часть компьютеров имеет системные платы, которые содержат лишь основные узлы, а элементы связи, например, с приводами накопителей, дисплеем и другими периферийными устройствами на ней отсутствуют. В таком случае эти отсутствующие элементы располагаются на отдельных печатных платах, которые вставляются в специальные разъемы расширения, предусмотренные для этого на системной плате. Эти дополнительные платы называют дочерними (daughterboard), а системную плату - материнской (motherboard).
Функциональные устройства, выполненные на дочерних платах, часто называют контроллерами или адаптерами, а сами дочерние платы - платами расширения. Таким образом, подключение отдельных модулей компьютера к магистрали, находящейся непосредственно на материнской плате, на физическом уровне осуществляется с помощью контроллеров, а на программном обеспечивается драйверами. Контроллер принимает сигнал от процессора и дешифрует его, чтобы соответствующее устройство смогло принять этот сигнал и правильно отреагировать на него. За его выполнение процессор не отвечает - отвечает лишь соответствующий контроллер, поэтому периферийные устройства компьютера заменяемы и набор таких модулей произволен. Большая часть периферийных устройств подсоединяется очень просто - снаружи, через разъемы на корпусе системного блока к выходам соответствующих контроллеров - портам.
Основу современных компьютеров образует аппаратура (HardWare) - совокупность электронных и электромеханических элементов и устройств, а принцип компьютерной обработки информации состоит в выполнении программы (Software) - формализованном описании алгоритма обработки в виде последовательности команд, управляющих процессом обработки.
Команда - двоичный код, который определяет действие вычислительной системы по выполнению какой-либо операции.
Операция - комплекс технологических действий, совершаемых над информацией по одной из команд программы.
Основными операциями при обработке информации на ЭВМ являются арифметические и логические. Арифметические операции включают в себя все виды математических действий, обусловленных программой, над целыми числами, дробями и числами с плавающей запятой. Логические операции обеспечивают действия над логическими величинами с получением логического результата.
В вычислительных системах последовательность действий, составляющих задачу обработки информации, называют процессом. Процесс определяется соответствующей программой, набором данных, которые в ходе реализации процесса могут считываться, записываться и использоваться, а также совокупностью сведений, определяющих состояние ресурсов ЭВМ, предоставленных процессу.
Персональный компьютер характеризуется развитым («дружественным») человеко-машинным интерфейсом, малыми габаритами, массой, относительно невысокой стоимостью и многофункциональностью (универсальностью) применения.
Одним из основных достоинств ПК, обеспечивших им потрясающий успех, явился принцип открытой архитектуры, заключающийся в том, что при проектировании ПК регламентируются и стандартизируются только принцип действия компьютера и его конфигурация (определенная совокупность аппаратных средств и соединений между ними). Построение ПК не единым неразъемным устройством, а на основе принципа открытой архитектуры (модульности построения), обеспечивает возможность их сборки из отдельных узлов и деталей, разработанных и изготовленных независимыми фирмами-изготовителями. Кроме того, такой компьютер легко расширяется и модернизируется за счет наличия внутренних расширительных разъемов, позволяющих пользователю добавлять разнообразные устройства, удовлетворяющие заданному стандарту, и тем самым устанавливать конфигурацию своей ЭВМ в соответствии со своими личными предпочтениями. Специалисты часто называют такие операции upgrade (расширить, обновить).
Упрощенная блок-схема, отражающая основные функциональные компоненты ПЭВМ в их взаимосвязи, изображена на рисунке 3.4.
Рисунок 3.4. Функциональные компоненты персонального компьютера
Конструктивно современный персональный компьютер состоит из четырех основных компонентов, которые образуют его базовую конфигурацию:
* системного блока, в котором размещаются устройства обработки и хранения информации;
* дисплея - устройства отображения информации;
* клавиатуры - основного устройства ввода информации в ПК;
* мышь манипулятора - для упрощения взаимодействия пользователя с ПК.
Корпус системного блока может иметь следующие варианты компоновки:
А. Горизонтальная (DeskTop).
Б. Вертикальная (Tower).
В системном блоке размещаются основные элементы компьютера, необходимые для выполнения программ:
* микропроцессор (МП), или центральный процессор (CPU, от англ. Central Processing Unit) - основной рабочий компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет вычислительным процессом и координирует работу всех устройств компьютера;
* память (внутренняя - системная, включающая ОЗУ и ПЗУ, и внешняя - дисковая):
- ПЗУ, постоянное запоминающее устройство или постоянная память (от англ. ROM, Read Only Memory - память только для чтения), служит для хранения неизменяемой (постоянной) программной и справочной информации.
- ОЗУ, оперативное запоминающее устройство, или оперативная память (от англ. RAM, Random Access Memory - память с произвольным доступом), предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ПК в текущий период времени.
- Дисковая память относится к внешним устройствам ПК и используется для долговременного хранения любой информации, которая может когда-либо потребоваться для решения задач, в ней, в частности, хранится все программное обеспечение компьютера. В качестве устройств внешней памяти, размещаемых в системном блоке, используются накопители на жестких (НЖМД) и гибких (НГМД) магнитных дисках, накопители на оптических дисках (НОД) и др.
* контроллеры (адаптеры) служат для подключения периферийных (внешних по отношению к процессору) устройств к шинам микропроцессора, обеспечивая совместимость их интерфейсов. Они осуществляют непосредственное управление периферийными устройствами по запросам микропроцессора. Контроллеры реализуются, как правило, на отдельных печатных платах, часто называемых адаптерами устройств (от лат. adapto - преобразовываю);
* системная плата - основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой.
Системная (материнская) плата.
Системная плата обеспечивает три направления передачи информации: между микропроцессором и внутренней (основной) памятью, между микропроцессором и портами ввода-вывода внешних устройств, между внутренней (основной) памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти). Устройства, непосредственно осуществляющие процесс обработки информации (вычисления), в том числе микропроцессор, оперативная память и шина, размещаются на ней, кроме того, на ней же располагается и контроллер клавиатуры и мыши. Схемы, управляющие другими внешними устройствами компьютера, как правило, находятся на отдельных платах, вставляемых в унифицированные разъемы (слоты) на материнской плате. Через эти разъемы контроллеры устройств подключаются непосредственно к системной магистрали передачи данных в компьютере - шине. Иногда эти контроллеры могут располагаться на системной плате.
В системном блоке располагается также блок питания, преобразующий переменное напряжение электросети в постоянное напряжение различной полярности и величины, необходимое для питания системной платы и других устройств компьютера, размещенных в системном блоке. Блок питания Содержит вентилятор, создающий циркулирующие потоки воздуха для охлаждения системного блока, сетевого энергопитания ПК. Кроме сетевого, в компьютере имеется также автономный источник питания - аккумулятор. К аккумулятору подключается таймер - внутримашинные электронные часы, обеспечивающие при необходимости автоматический съем текущего момента времени (год, месяц, часы, минуты, секунды и доли секунд). Таймер продолжает работать и при отключении компьютера от электросети.
Основными ведущими производителями системных плат являются компании Asustek, Intel, Giga-Byte, Abit и др.
Интерфейсы.
Компьютер состоит из множества отдельных устройств. Для взаимодействия между компонентами их необходимо связать физическими линиями (проводниками), которые обычно называют шинами. Сочетание шины и правил передачи сигналов по ней образует интерфейс. Это совокупность средств сопряжения и связи устройств компьютера, обеспечивающая их эффективное взаимодействие.
По функциональному назначению интерфейсы компьютера принято разделять на внешние (ввода-вывода) и внутренние. Очевидно, что внешние интерфейсы предназначены для подключения периферийных устройств (принтеров, сканеров и тому подобного), а также пользовательских компонентов управления (клавиатура, мышь). С внутренними интерфейсами ситуация выглядит несколько сложнее. Часть из них можно назвать системными интерфейсами, поскольку они фигурируют исключительно внутри платформы (системная шина, шина чипсета, шина памяти), а часть - локальными. К широко распространенным локальным интерфейсам относятся ISA, PCI, AGP, IDE (ATA), COM, LPT, USB, IEEE 1394 (Fire Wire), SCSI, Serial ATA, PS/2, Game-port, MIDI, Ethernet, IrDA, Bluetooth и другие.
Поддерживаемые системой интерфейсы во многом определяют производительность компьютера в целом и возможность его развития. Как и везде, важным фактором является сбалансированный состав интерфейсов в компьютере: оптимальное соотношение передовых современных и морально устаревших стандартов, а также их соответствие решаемым задачам. Основное внимание уделим локальным и внешним интерфейсам.
Микропроцессоры.
Первый микропроцессор был выпущен в 1971 г. фирмой Intel (США) - 4-разрядный Intel 4004. В настоящее время выпускается несколько сотен различных микропроцессоров, но среди микропроцессоров, используемых в ПЭВМ, наиболее популярными являются микропроцессоры семейства х86. Среди фирм-производителей можно выделить такие, как Intel (процессоры - Pentium, Pentium MMX, Pentium Pro, Pentium II, Pentium III, Pentium IV, Xeon, Celeron) и AMD Corp. (процессоры - Duron, Athlon, Sempron) и Apple Macintosh.
Конструктивно современный микропроцессор представляет собой сверхбольшую интегральную схему, реализованную на одном полупроводниковом кристалле - тонкой пластинке кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров. На ней размещены схемы, реализующие все функции процессора. Кристалл-пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми выводами с металлическими штырьками, чтобы его можно было присоединить к системной плате компьютера.
С внешними устройствами, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников - шинами (шина данных, адресная шина и командная шина).
Основными параметрами процессоров являются: рабочее напряжение, разрядность, рабочая тактовая частота, коэффициент внутреннего умножения тактовой частоты и размер кэш-памяти.
Рабочее напряжение процессора обеспечивает материнская плата, поэтому разным маркам процессоров соответствуют разные материнские платы (их надо выбирать совместно). По мере развития процессорной техники происходит постепенное понижение рабочего напряжения. Ранние модели процессоров х86 имели рабочее напряжение 5 В. С переходом к процессорам Intel Pentium оно было понижено до 3,3 В, а в настоящее время оно составляет менее 3 В. Понижение рабочего напряжения позволяет уменьшить расстояния между структурными элементами в кристалле процессора до десятитысячных долей миллиметра, не опасаясь электрического пробоя. Пропорционально квадрату напряжения уменьшается и тепловыделение в процессоре, а это позволяет увеличивать его производительность без угрозы перегрева. Однако, несмотря на это, всегда сверху микропроцессора устанавливают вентилятор (куллер) для его охлаждения во время работы.
Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один раз (за один такт). Первые процессоры х86 были 16-разрядными. Начиная с процессора 80386 они имеют 32-разрядную архитектуру. Современные процессоры семейства Intel Pentium остаются 32-разрядными, хотя и работают с 64-разрядной шиной данных (разрядность процессора определяется разрядностью внутренних регистров).
Рабочая тактовая частота и коэффициент ее внутреннего умножения. В процессоре исполнение каждой команды занимает определенное количество тактов. Тактовые импульсы задает одна из микросхем, входящая в микропроцессорный комплект (чипсет), расположенный на материнской плате. Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в единицу времени, тем выше его производительность. Первые процессоры х86 могли работать с частотой не выше 4,77 МГц, а сегодня рабочие частоты процессоров уже превосходят три миллиарда тактов в секунду (3 ГГц).
Тактовые сигналы процессор получает от материнской платы, которая по чисто физическим причинам не может работать со столь высокими частотами, как процессор. Сегодня ее предел составляет сотни МГц. Для получения более высоких частот в процессоре происходит внутреннее умножение частоты на коэффициент 3; 3,5; 4; 4,5; 5 и более. Например, частота МП 2,4 ГГц - это частота системной шины в 400 МГц, умноженная на коэффициент 6.
Обмен данными внутри процессора происходит в несколько раз быстрее, чем обмен с другими устройствами, например, с оперативной памятью. Для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают буферную область - так называемую кэш-память. Это как бы «сверхоперативная память». Когда процессору нужны данные, он сначала обращается в кэш-память, и только если там нужных данных нет, происходит его обращение в оперативную память. Принимая блок данных из оперативной памяти, процессор заносит его одновременно и в кэш-память. Высокопроизводительные процессоры всегда имеют повышенный объем кэш-памяти.
Процессор расположен на материнской плате и подключается к процессорному разъему (Socket). В связи с этим обстоятельством процессор можно подключить только к той системной плате, на которой есть строго соответствующий Socket. Можно встретить процессоры подключаемые к следующим процессорным разъемам: Socket 478, Socket 775, Socket А, Socket 754, Socket 939/940 и др.
Комплект системной логики (чипсет).
Потенциальные возможности и эффективность компьютера во многом определяются установленным на материнской плате набором микросхем системной логики, называемым чипсетом (ChipSet). Он обеспечивает работу процессора, системной шины (соединяет процессор и контроллер оперативной памяти), интерфейсов взаимодействия с оперативной памятью и другими компонентами компьютера. Его основная задача - поддержка множества несовместимых на прямую интерфейсов.
Современные аппаратные интерфейсы и системная шина работают асинхронно, т. е. могут одновременно передавать и получать сигналы. Они не согласованы ни по характеру сигналов, ни по тактовой частоте, ни по пропускной способности. Для увязки данных и приведения их к удобной для обмена форме требуются операции преобразования и кэширования.
Многие современные чипсеты включают две «базовые» микросхемы, которые принято называть соответственно «North Bridge» (северный мост) и «South Bridge» (южный мост). Северный мост обычно обеспечивает управление шиной AGP, шиной системной памяти, шиной PCI. Южный мост управляет интерфейсами IDE, USB, ACPI, IEEE1294, имеет мост ISA-PCI, контроллеры клавиатуры, мыши, FDD. Оба моста соединены шиной PCI или другим интерфейсом. Известны чипсеты, в которых встроены видео- и звуковые контроллеры. Необходимо отметить, что чипсет не является отдельным устройством, подключаемым к системной плате. Комплект системной логики всегда интегрирован с нее, а следовательно, разработкой и производством чипсетов будут заниматься фирмы, непосредственно производящие системные платы.
Наиболее распространены следующие чипсеты: Nvidian Force 2 (3, 4), VIA K8T800 PRO, VIA K8T890, Intel865PE, AMD-8000 и др.
Запоминающие устройства ПК.
В компьютерах хранения информации выделяют следующие основные типы памяти: внутренняя память, кэш-память и внешняя память. Кроме того, в ЭВМ могут присутствовать различные специализированные виды памяти, характерные для тех или иных устройств вычислительной системы, например, видеопамять.
Внутренняя память предназначена для оперативного хранения и обмена данными, непосредственно участвующими в процессе обработки. Конструктивно она исполняется в виде интегральных схем (ИС) и подразделяется на два вида:
* постоянное запоминающее устройство (ПЗУ);
* оперативное запоминающее устройство (ОЗУ).
Кэш-память служит для хранения копий информации, используемой в текущих операциях обмена. Это очень быстрое ЗУ небольшого объема, являющееся буфером между устройствами с различным быстродействием. Обычно используется при обмене данными между микропроцессором и оперативной памятью для компенсации разницы в скорости обработки информации процессором и несколько менее быстродействующей оперативной памятью. Кэш-памятью управляет специальное устройство - контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды, вероятнее всего, понадобятся в ближайшее время процессору, и подкачивает их в кэш-память. При этом возможны как «попадания», так и «промахи». В случае попадания, т. е. если в кэш подкачаны нужные данные, извлечение их из памяти происходит без задержки. Если же требуемая информация в кэше отсутствует, то процессор считывает ее непосредственно из оперативной памяти. Соотношение числа попаданий и промахов определяет эффективность кэширования.
Внешняя память используется для долговременного хранения больших объемов информации. В современных компьютерных системах в качестве устройств внешней памяти наиболее часто применяются:
* накопители на жестких магнитных дисках (НЖМД),
* накопители на гибких магнитных дисках (НГМД),
* накопители на оптических дисках,
* магнитооптические носители информации,
* ленточные накопители (стримеры).
Оперативное запоминающее устройство (ОЗУ).
Оперативное запоминающее устройство, или оперативная память, - это массив кристаллических ячеек, способных хранить данные. Ее основная особенность заключена в том, что хранение информации в ней осуществляется только до тех пор, пока компьютер включен. При выключении компьютера, вся хранимая информация сразу же удаляется без возможности восстановления. По способу хранения информации оперативная память делится на статическую (SRAM - Static RAM) и динамическую (DRAM - Dynamic RAM).
Микросхемы динамической памяти используют в качестве основной оперативной памяти компьютера. Микросхемы статической памяти используют в качестве вспомогательной памяти (кэш-памяти), предназначенной для оптимизации работы процессора.
Оперативная память в компьютере размещается на стандартных панельках, называемых модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате. Если к разъемам есть удобный доступ, то операцию можно выполнять своими руками. Если удобного доступа нет, может потребоваться неполная разборка узлов системного блока, и в таких случаях операцию поручают специалистам.
Постоянное запоминающее устройство (ПЗУ).
В момент включения компьютера в его оперативной памяти нет ничего - ни данных, ни программ, поскольку оперативная память не может ничего хранить без подзарядки ячеек более сотых долей секунды, но процессору нужны команды, в том числе и в первый момент после включения.
Поэтому сразу после включения на адресной шине процессора выставляется стартовый адрес. Это происходит аппаратно, без участия программ (всегда одинаково). Процессор обращается по выставленному адресу за своей первой командой и далее начинает работать по программам.
Этот исходный адрес не может указывать на оперативную память, в которой пока ничего нет. Он указывает на другой тип памяти - постоянное запоминающее устройство (ПЗУ). Микросхема ПЗУ способна длительное время хранить информацию, даже когда компьютер выключен. Программы, находящиеся в ПЗУ, называют «зашитыми» - их записывают туда на этапе изготовления микросхемы.
Комплект программ, находящихся в ПЗУ, образует базовую систему ввода-вывода (BIOS - Basic Input Output System). Основное назначение программ этого пакета состоит в том, чтобы проверить состав и работоспособность компьютера и обеспечить взаимодействие с клавиатурой, монитором, жестким диском и дисководом гибких дисков. Программы, входящие в BIOS, позволяют нам наблюдать на экране диагностические сообщения, сопровождающие запуск компьютера, а также вмешиваться в ход запуска с помощью клавиатуры.
Работа таких стандартных устройств, как клавиатура, может обслуживаться программами, входящими в BIOS, но такими средствами нельзя обеспечить работу со всеми возможными устройствами. Так, например, изготовители BIOS абсолютно ничего не знают о параметрах наших жестких и гибких дисков, им не известны ни состав, ни свойства произвольной вычислительной системы. Для того чтобы начать работу с другим оборудованием, программы, входящие в состав BIOS, должны знать, где можно найти нужные параметры. По очевидным причинам их нельзя хранить ни в оперативной памяти, ни в постоянном запоминающем устройстве.
Специально для этого на материнской плате есть микросхема «энергонезависимой памяти», по технологии изготовления называемая CMOS (complementary metaloxide semiconductor). От оперативной памяти она отличается тем, что ее содержимое не стирается во время выключения компьютера, а от ПЗУ тем, что данные в нее можно заносить и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав Системы. Эта микросхема постоянно подпитывается от небольшой батарейки, расположенной на материнской плате. Заряда этой батарейки хватает на то, Чтобы микросхема не теряла данные, даже если компьютер не будут включать несколько лет.
В микросхеме CMOS хранятся данные о гибких и жестких дисках, о процессоре, о некоторых других устройствах материнской платы. Тот факт, что компьютер четко отслеживает время и календарь (даже и в выключенном состоянии), тоже связан с тем, что показания системных часов постоянно хранятся (и изменяются) в CMOS.
Таким образом, программы, записанные в BIOS, считывают данные о составе оборудования компьютера из микросхемы CMOS, после чего они могут выполнить обращение к жесткому диску, а в случае необходимости и к гибкому, и передать управление тем программам, которые там записаны.
Внешние устройства хранения информации.
В качестве внешних запоминающих устройств при работе на ПК в основном используются накопители на гибких магнитных дисках (НГМД) или дискеты, накопитель на жестком магнитном диске (НЖМД) или винчестер и накопители на лазерных компакт-дисках или CD-диски. Кроме того, в последнее время все большую популярность стали приобретать различные сменные карты памяти. Основными характеристиками всех внешних устройств хранения информации являются:
1. Информационная емкость - максимально возможный объем хранимой информации. Выражается в мегабайтах (для дискет и CD-дисков) и гигабайтах (для винчестеров).
2. Время доступа к информации - временной интервал между моментом, когда процессор запрашивает с диска данные, и моментом их выдачи. Измеряется в миллисекундах (мс). Наибольшее время доступа к информации у накопителей на гибких магнитных дисках (дискетах), а наименьшее - у винчестеров.
3. Скорость чтения и записи информации - определяется количеством байт, прочитанных/записанных в секунду. Выражается в Мбайт/с.
Накопители на гибких магнитных дисках или дискеты.
Дискеты служат для долговременного хранения программ и данных небольшого объема и удобны для перенесения информации с одного компьютера на другой. Дискеты различаются размером и объемом информации, который можно на них разместить. Различают 3,5 - дюймовые и 5,25 - дюймовые дискеты (сейчас не используются). Их информационный объем составляет 1,44 Мб и 1,2 Мб соответственно. Для считывания информации с дискеты необходимо специальное устройство - дисковод.
Накопитель на жестких магнитных дисках.
Накопитель на жестких магнитных дисках (от англ. HDD - Hard Disk Drive), или винчестер - это запоминающее устройство большой емкости, в котором носителями информации являются круглые жесткие пластины (иногда называемые также дисками), обе поверхности которых покрыты слоем магнитного материала. Винчестер используется для постоянного (длительного) хранения информации - программ и данных.
В принципе жесткие диски подобны дискетам. В них информация также записывается на магнитный слой диска. Однако этот диск, в отличие от дискет, сделан из жесткого материала, чаще всего алюминия (отсюда и название Hard Disk). В корпусе объединены такие элементы винчестера, как управляющий двигатель, носитель информации (диски), головки записи/считывания, позиционирующее устройство (позиционер) и микросхемы, обеспечивающие обработку данных, коррекцию возможных ошибок, управление механической частью, а также микросхемы кэш-памяти.
Если дискета физически состоит из одного диска, то винчестер состоит из нескольких одинаковых дисков, расположенных друг под другом.
НЖМД помещен в почти полностью герметизированный корпус. В отличие от НГМД, внутреннее устройство которого хорошо видно, НЖМД изолирован от внешней среды, что предотвращает попадание пыли и других частиц, которые могут повредить магнитный носитель или чувствительные головки чтения/записи, располагаемые над поверхностью быстро вращающегося диска на расстоянии нескольких десятимиллионных долей дюйма.
Магнитные диски являются элементами устройств чтения-записи информации - дисководов. Сам магнитный диск - это пластиковый (для гибких дисков) и алюминиевый либо керамический (для жестких дисков) круг с магниточувствительным покрытием. В случае жесткого диска таких кругов Может быть несколько, и все они в центре посажены на один стержень. Для гибкого диска такой круг один, при помещении в дисковод он фиксируется в центре. Во время работы диск раскручивается. Схема дисковода показана на рисунке 3.5.
Рисунок 3.5. Схема дисковода магнитного диска
Головки чтения-записи могут синхронно перемещаться в горизонтальном и вертикальном направлении (это показано стрелками), что позволяет им приблизиться к любой точке поверхности диска. Каждая точка поверхности рассматривается как отдельный бит внешней памяти.
Так же, как и основная память, поверхность диска (или дисков) имеет структуру. Элементы физической структуры следующие:
1) дорожка - концентрическая окружность, по которой движутся головки чтения-записи при размещении или поиске данных. Дорожки нумеруются, начиная с нуля. Нулевой номер имеет самая внешняя дорожка на диске;
2) секторы - блоки, в которых размещаются данные на дорожке при записи. Нумеруются начиная с единицы. Помимо пользовательской информации (самих данных), сектора содержат служебную информацию, например, собственный номер. Сектора являются Минимальными адресуемыми элементами данных для диска;
3) стороны диска. Нумеруются начиная с нуля. Для винчестера, расположенного вертикально, нулевой номер имеет самая верхняя сторона, для гибкого диска нулевой номер - у «лицевой» стороны дискеты;
4) цилиндр - совокупность дорожек с одинаковыми номерами на разных сторонах диска. Номера цилиндров совпадают с номерами дорожек;
5) кластер - совокупность секторов, имеющих смежные номера. Может состоять из одного сектора (для дискет) или нескольких (для винчестера). Является минимальным адресуемым элементом данных для операционной системы. Кластеры используются операционной системой для добавления данных к файлу: добавление очередной «порции» данных к файлу выполняется в объеме кластера независимо от того, что реальный объем добавляемых меньше объема кластера. Это приводит к нерациональному расходованию внешней памяти. Поэтому не рекомендуется хранить на диске большое количество маленьких файлов: они имеют много пустых «хвостов».
Разбивка непрерывного пространства поверхности диска на указанные элементы (можно эту процедуру назвать дискретизацией) выполняется при его форматировании. При этом также формируются маркер начала и конца дорожки, места расположения секторов, в сектора записывается служебная информация.
Дискретное пространство диска имеет, в свою очередь, следующую структуру (она описана в порядке возрастания номеров сторон, дорожек и секторов):
1) таблица разделов PT (Partition Table). Состоит из четырех элементов, описывающих разделы диска, причем операционные системы используют только первые два элемента. Описание раздела диска содержит данные о первых и последних головках чтения-записи, дорожках, секторах раздела, общем количестве секторов в разделе, типе файловой системы и признак того, что раздел является загрузочным;
2) главная загрузочная запись MBR (Master Boot Record). Содержит код процессора, необходимый для дальнейшей загрузки операционной системы;
3) загрузочная запись операционной системы BR (Boot Record). Содержит следующую информацию: программу загрузки операционной системы, размер кластера, количество копий FAT, количество файлов в корневом каталоге Root, размер FAT и некоторую другую информацию;
4) таблица размещения файлов FAT (File Allocation Table) и ее копии. Содержит полную карту принадлежности кластеров файлам и используется операционными системами для хранения сведений о размещении файлов на диске и о «плохих» (bad) кластерах. В силу важности FAT она дублируется несколько раз;
5) корневой каталог Root. Это таблица, в которой каждая запись соответствует файлу или подкаталогу, подчиненному корневому каталогу диска, и имеет структуру:
* имя файла или подкаталога;
* тип файла,
* атрибуты, в которых определяются следующие параметры файла или подкаталога: предназначенность только для чтения, скрытость, системность, маркер принадлежности данной записи метке тома, признак принадлежности данной записи подкаталогу, а не файлу, архивность;
время создания;
* дата создания;
* номер начального кластера файла или подкаталога;
* размер файла.
Следует подчеркнуть, что записи для файлов и подкаталогов идентичны, за исключением двух характеристик: в поле атрибутов выставлен признак подкаталога, а в поле размеров выставлен ноль;
6) область размещения файлов FA (File Area). Содержит файлы и подкаталоги, которые описаны в Root.
К основным характеристиками винчестеров относят:
информационный объем - до 300 Гбайт;
число пластин (дисков) - от 1 до 3 шт.;
количество головок - 2, 4, 6 шт.;
скорость вращения дисков - скорость, с которой пластины диска вращаются относительно магнитных головок (измеряется в оборотах в минуту). У современных моделей этот показатель обычно составляет 7200 об./мин;
Время доступа - 7-9 мс;
Скорость чтения и записи информации - 75 Мбайт/с и более;
Размер кэш-памяти - в среднем 4-8 Мбайт.
Винчестерский накопитель связан с процессором через контроллер жесткого диска.
Реальная производительность жестких дисков всегда определяется интерфейсом. На сегодняшний день в компьютерах могут быть интерфейсы параллельного (IDE и SCSI) и последовательного типов (USB и Fire Wire), используемые в основном при подключении внешних дисков. Винчестеры, подключаемые при помощи интерфейсов SCSI, USB и Fire Wire имеют гораздо более высокие характеристики, чем IDE.
Винчестер (как один физический диск) может быть разделен на несколько логических дисков (разделов). Каждый из них обозначается одной буквой латинского алфавита начиная с C: и может иметь свою метку (название). Кроме того, каждый логический диск имеет файловые системы (их разновидности были рассмотрены ранее), которые могут различаться (например, диск C: имеет файловую систему NTFS, а D: - FAT 32). Процесс полной очистки диска от хранимой на нем информации и его переразметки называется форматированием диска (логического или физического).
Ведущими производителями жестких дисков являются Seagate, Maxtor, Hitachi, Samsung, Western Digital и др.
Накопители на оптических дисках.
Запись и считывание информации в оптических накопителях производится бесконтактно с помощью лазерного луча. К таким устройствам относятся, прежде всего, накопители CD-ROM, CD-R, CD-RW и DVD (ROM, R и RW).
Устройства CD-ROM. В устройствах CD-ROM (Compact Disk Read-Only Memory - компакт-диск только для чтения) носителем информации является оптический диск (компакт-диск), изготавливаемый на поточном производстве с помощью штамповочных машин и предназначенный только для чтения.
Компакт-диск представляет собой прозрачный полимерный диск диаметром 12 см и толщиной 1,2 мм, на одну сторону которого напылен светоотражающий слой алюминия, защищенный от повреждений слоем прозрачного лака. Толщина напыления составляет несколько десятитысячных долей миллиметра.
Информация на диске представляется в виде последовательности впадин и выступов (их уровень соответствует поверхности диска), расположенных на спиральной дорожке, выходящей из области вблизи оси диска (на поверхности жесткого диска на дюйме по радиусу помещается лишь несколько сотен дорожек). Емкость такого CD достигает 780 Мбайт, что позволяет создавать на его основе справочные системы и учебные комплексы с большой иллюстративной базой. Один CD по информационной емкости равен почти 500 дискетам. Считывание информации с CD-ROM происходит с достаточно высокой скоростью, хотя и заметно меньшей, чем скорость работы накопителей на жестком диске.
...Подобные документы
Изучение особенности архитектуры современных персональных компьютеров, основанной на магистрально-модульном принципе. Характеристика режимов использования шины передачи данных. Подключение к магистрали: контроллер, драйвер. Быстродействие системы ПК.
презентация [4,1 M], добавлен 18.04.2012Факты появления двоичной системы счисления - позиционной системы счисления с основанием 2. Достоинства системы: простота вычислений и организации чисел, возможность сведения всех арифметических действий к одному - сложению. Применение двоичной системы.
презентация [1,5 M], добавлен 10.12.2014Этапы развития информатики и вычислительной техники. Аппаратная часть персональных компьютеров. Внешние запоминающие устройства персонального компьютера. Прикладное программное обеспечение персональных компьютеров. Текстовые и графические редакторы.
контрольная работа [32,8 K], добавлен 28.09.2012Перечень предлагаемых для проверки знаний вопросов и ответов по курсу информатики: развитие информатики как науки, представления о значении различных терминов этой дисциплины, основные сведения об устройстве компьютеров, о программах и теории кодирования.
тест [33,1 K], добавлен 24.12.2010Примеры правила перевода чисел с одной системы в другую, правила и особенности выполнения арифметических операций в двоичной системе счисления. Перевод числа с десятичной системы в двоичную систему счисления. Умножение целых чисел в двоичной системе.
контрольная работа [37,3 K], добавлен 13.02.2009Краткая история появления и развития информатики как науки. Понятие и основные свойства информации, формы ее адекватности. Структурная организация персональных компьютеров. Основные понятия электронных таблиц Microsoft Excel. Операционная система Windows.
лекция [820,6 K], добавлен 22.09.2013Логические элементы как устройства, предназначенные для обработки информации в цифровой форме. Определение основных отличительных особенностей и преимуществ двоичной и троичной систем счисления по сравнению с десятичной системой счисления, их типы.
реферат [30,5 K], добавлен 20.11.2011Виды и свойства информации. Основные понятия систем счисления. Форматы данных. Принципы построения компьютеров. Аппаратные средства мультимедиа. Базовые алгоритмические структуры. Языки программирования низкого уровня. Операционные системы Windows.
шпаргалка [2,2 M], добавлен 19.06.2010Характеристика методов представления заданных чисел в двоичной, шестнадцатеричной, восьмеричной системе счисления. Представление указанного числа в четырехбайтовом IEEE формате. Разработка алгоритма обработки одномерных и двумерных числовых массивов.
контрольная работа [138,9 K], добавлен 05.06.2010Современный взгляд на предмет информатики и ее образовательной области. Формирование системно-информационного подход к анализу окружающего мира. Информационные процессы и средства получения, преобразования, передачи, хранения и использования информации.
реферат [10,1 K], добавлен 03.09.2009Вычислительные системы и программное обеспечение как важнейшие разделы информатики, условия перехода общества в информационную стадию развития. Развитие вычислительных систем и персональных компьютеров. Операционные системы и системы программирования.
реферат [906,9 K], добавлен 18.01.2011Исторические предшественники компьютеров. Появление первых персональных компьютеров. Концепция открытой архитектуры ПК. Развитие элементной базы компьютеров. Преимущества многопроцессорных и многомашинных вычислительных систем перед однопроцессорными.
курсовая работа [1,7 M], добавлен 27.04.2013Магистрально-модульный принцип построения архитектуры современных персональных компьютеров. Рассмотрение основных микросхем чипсета: контроллер-концентратор памяти и ввода-вывода. Рассмотрение пропускной способности и разрядности системной шины памяти.
презентация [2,3 M], добавлен 13.10.2015Составные части информатики и направления ее применения. Классы компьютеров, примеры команд. Принтер, сканер и плоттер. Виды топологий сетей. Системы счисления. Способы соединения с Интернетом. Категории программного обеспечения. Значение базы данных.
шпаргалка [184,0 K], добавлен 16.01.2012Исследование истории развития систем счисления. Изучение математического аспекта теории информатики. Характеристика информационных систем счисления. Основные операции над двоичными числами. Разработка программного обеспечения для проведения тестирования.
курсовая работа [995,4 K], добавлен 24.05.2015Порождение целых чисел в позиционных системах счисления. Почему мы пользуемся десятичной системой, а компьютеры - двоичной (восьмеричной и шестнадцатеричной)? Перевод чисел из одной системы в другую. Математические действия в различных системах счисления.
конспект произведения [971,1 K], добавлен 31.05.2009Целые числа в позиционных системах счисления. Недостатки двоичной системы. Разработка алгоритмов, структур данных. Программная реализация алгоритмов перевода в различные системы счисления на языке программирования С. Тестирование программного обеспечения.
курсовая работа [593,3 K], добавлен 03.01.2015Роль и практическое значение автоматизации вычислений и обработки данных. Представление информации в компьютере, сущность системы счисления. Перевод числа из одной системы счисления в другую. Арифметические операции в позиционных системах счисления.
контрольная работа [1,2 M], добавлен 23.10.2009Общее представление о системах счисления. Перевод чисел в двоичную, восьмеричную и шестнадцатеричную системы счисления. Разбивка чисел на тройки и четверки цифр. Разряды символов числа. Перевод из шестнадцатеричной системы счисления в десятичную.
практическая работа [15,5 K], добавлен 19.04.2011Появление и развитие информатики. Ее структура и технические средства. Предмет и основные задачи информатики как науки. Определение информации и ее важнейшие свойства. Понятие информационной технологии. Основные этапы работы информационной системы.
реферат [127,4 K], добавлен 27.03.2010