Кибернетика, самоорганизация и интеллект

Определение понятия кибернетики и сложных самоорганизующихся систем. Изучение сущности процесса самоорганизации биологических систем на основе кибернетического подхода. Анализ основных принципов самоорганизации и природы искусственного интеллекта.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 28.04.2018
Размер файла 53,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Кибернетика и сложные самоорганизующиеся системы

Пушкин В.Г.,

Урсул А.Д.

Философские вопросы, поставленные кибернетикой, интенсивно обсуждаются в отечественной и мировой литературе. При этом результаты кибернетики и ее философских идей интерпретируются с разных позиций, нередко сторонниками противоположных философских направлений. Идеи и принципы новой науки используются буржуазной философией (неотомизм, позитивизм, операционализм), представители которой пытаются противопоставить положения кибернетики диалектическому материализму. Однако реальное развитие кибернетики в нашей стране и значительная работа, направленная на установление научного и философского статуса кибернетики, которую ведут философы совместно со специалистами в области естественных наук, выявляют действительные взаимосвязи философских идей кибернетики и материалистической диалектики, показывают методологическую плодотворность диалектико-материалистической трактовки основных принципов кибернетики.

Философско-методологические вопросы кибернетики имеют важное мировоззренческое значение. Принципы, понятия и методы кибернетики, конкретизируя некоторые философские принципы и категории, обладают глубоким диалектико-материалистическим содержанием. Так, принципы самоорганизации, будучи областью, где сосредоточены существенные задачи кибернетического исследования, являются формой конкретизации принципов самодвижения и саморазвития материи через ее внутренние противоречия, взаимосвязи и взаимообусловленности. Вместе с тем принципы и понятия кибернетики, приобретая в силу синтетического характера этой науки общенаучное содержание, уточняют и углубляют принципы материалистической диалектики, облегчая их проникновение в новые области научного исследования. Через сферу философского осознания кибернетика вносит новые элементы диалектико-материалистического мышления в технические, биологические и социальные науки, ибо самоорганизация, говоря философским языком, - это самодвижение и саморазвитие [1]. Кибернетические принципы сложных систем выступают носителями диалектико-материалистического мировоззрения в технических науках. Идеи информации и самоорганизации и соответствующие им методы исследования нашли применение в биологических науках, способствуя становлению и развитию биофизики, молекулярной биологии, а также целостной теории эволюции. Механизмы саморегуляции и самоорганизации общества, как и информационные процессы, становятся предметом социальной и экономической кибернетики и информатики.

Широкий спектр применения идей и методов кибернетики выражает определенные синтетические тенденции НТР. В этом плане непреходящее значение для разработки философских проблем современной науки имеет анализ революции в естествознании на рубеже XIX-XX вв., осуществленный В. И. Лениным в работе "Материализм и эмпириокритицизм". В указанном труде дано глубокое истолкование новых для того времени научных данных в период крутой "ломки принципов" в ведущих отраслях естествознания. Ленинский анализ революции в физике служит образцом философского рассмотрения современных достижений НТР. Ленинские методологические принципы необходимы в философском обосновании идей и методов кибернетики, процесса информатизации общества и других новейших тенденций, связанных с перестройкой социальной действительности и мышления в стране и в глобальном масштабе. Не случайно именно об этом шла речь на научно-теоретической конференции, посвященной актуальным проблемам перестройки [2].

Основополагающим в рассмотрении методологической роли категорий и принципов современного естествознания служит выдвинутый Ф. Энгельсом тезис об объективной и субъективной диалектике. "Так называемая объективная диалектика царит во всей природе, а так называемая субъективная диалектика, диалектическое мышление, есть только отражение господствующего во всей природе движения путем противоположностей, которые и обусловливают жизнь природы своей постоянной борьбой и своим конечным переходом друг в друга, resp. (соответственно. - Ред.) в более высокие формы" [3]. Положение об объективной и субъективной диалектике получило развитие в ленинском принципе единства диалектики, логики и теории познания. Выражая мысль об объективном значении категорий и соответствующих им принципов мышления, В. И. Ленин писал: "...Если все развивается, то относится ли сие к самым общим понятиям и категориям мышления? Если нет, значит, мышление не связано с бытием. Если да, значит, есть диалектика понятий и диалектика познания, имеющая объективное значение" [4].

В философии диалектического материализма в отличие от прежних философских систем онтология и гносеология не существуют обособленно, вне связи друг с другом. В диалектическом материализме речь идет не о бытии вообще, не о сущем как таковом. Философия начинается именно с постановки вопроса об отношении мышления к бытию. Вместе с тем оправданно и необходимо разграничивать онтологию и гносеологию, имеются в виду два аспекта, два типа методологии. Гносеологическая проблематика как выражение субъективной диалектики ориентирована в целом на исследование всеобщих логико-познавательных форм в их, так сказать, чистом виде. В объективной диалектике рассматривается реальная действительность с использованием логики исследования специфики объекта, которую К. Маркс называл специфической логикой специфического предмета [5]. кибернетика самоорганизация искусственный интеллект

Диалектическая обработка кибернетической проблематики, формирование диалектико-материалистической концепции кибернетики необходимо включают в себя выявление объективной и субъективной диалектики в ее предмете и методе.

Возникновение кибернетики ознаменовало становление новых методов познания и вызвало переосмысление некоторых принципов и понятий, сложившихся в классической науке. Кибернетика представляет собой научный синтез целого ряда относительно далеких друг от друга специальных дисциплин, чем и объясняется широта приложения ее основных принципов. Причем кибернетические исследования приобретают значение для традиционных (физических, биологических, химических, а также математических) фундаментальных наук.

Кибернетика, по существу, продолжает линию развития экспериментально-математического естествознания. Аналогично тому как в XVII в. новая наука Галилея - Ньютона вызвала необходимость переосмысления научной проблематики, современная наука (и прежде всего кибернетика) ставит ряд таких методологических вопросов, рассмотрение которых вносит новые моменты в философское мышление. Освоение этого научного направления предполагает развитие методологических принципов и, стало быть, применение диалектического метода в дайной области требует научного творчества. Будучи наукой, сочетающей широкий синтез с детальным анализом, содержательные интерпретации с логико-математической формализацией, кибернетика позволяет на новом уровне решать определенные проб темы философии и науки. Успехи в разработке философских проблем кибернетики как науки об управлении сложными динамическими системами различной природы отражены в исследованиях советских и зарубежных ученых-марксистов. За последнее десятилетие в нашей стране вышел ряд книг отдельных авторов [6] и коллективных монографий [7], посвященных методологическим вопросам кибернетики и ее значению в развитии современного общества. Наряду с общими вопросами, затрагивающими предмет кибернетики, се философский и научный статус, важной является задача обоснования некоторых центральных идей и принципов кибернетики, ориентированных на решение кардинальных естественнонаучных, технических и социологических проблем, связанных с информацией, коммуникацией, управлением и регулированием.

Кибернетика впервые в истории науки вступила на путь объективного естественнонаучного и математически точного изучения процессов управления и переработки информации в природе, технике и обществе. Однако до сих пор область исследований кибернетики не установлена достаточно четко. Кроме того, имеющиеся в литературе определения кибернетики исходят из различных представлений о системе, информации, регулировании, управлении, алгоритме и так далее, связь между которыми не всегда ясна. Сферой, для которой существенны кибернетические понятия и закономерности, называют обычно и технику, и жизнь, и общество, и различные сочетания этих областей, и их все вместе.

Общий недостаток отдельных дефиниций кибернетики заключается в том, что они охватывают лишь ее частные области. На самом деле кибернетика изучает процессы управления и регулирования в динамических системах. Как пишут Г. Клаус и Г. Либшер, "тщательное исследование современного состояния кибернетики, включая философский и логический анализ различных дефиниций ее предмета, показывает, что основополагающим ее понятием является кибернетическое понятие о системе. Все другие основные понятия кибернетики, такие как информация, регулирование, алгоритм и др., которые неотделимы от кибернетического способа мышления, связаны с этим понятием о системе - раскрывают свойства и отношения, проявляющиеся в функционировании кибернетических систем. Поэтому соответствующее понятие системы естественно рассматривать в качестве центрального пункта дефиниции предмета кибернетики" [8]. Кибернетика в этом плане определяется как наука о кибернетических системах.

Такая дефиниция предмета кибернетики не предполагает объяснения того, что собой представляет кибернетическая система. Уяснение понятия кибернетической системы составляет задачу кибернетической теории систем. Подход к определению науки, при котором выделяется круг исследуемых в ней систем, выступает ныне общепринятым способом раскрытия предмета той или иной науки. Например, современная алгебра, составная дисциплина математики, обычно трактуется как теория алгебраических структур. Аналогично обстоит дело с понятиями современной логики.

Кибернетические системы обладают такими общими свойствами, как регулирование, переработка и передача информации, адаптация, самоорганизация, стратегическое поведение и др. Кибернетика стремится при этом структуру и функцию динамических систем описывать математически и рассматривать с помощью моделей. Она черпает свои знания прежде всего изучая конкретные кибернетические системы, принадлежащие к различным формам движения материи, и экспериментируя с моделирующими системами. Она создает идеализированные теоретические системы, в которых абстрагируется от всех особенностей определенных форм движения материи. Следует различать общую теоретическую (математическую) кибернетику и частные (региональные) кибернетики, исследующие отдельные (локальные) области действительности. Г. Франк отмечает, что предмет формальной кибернетики - абстрактные общие структуры, в то время как региональные ("материальные") кибернетики анализируют конкретные системы и процессы [9]. На основе этого кибернетика открывает системные закономерности, имеющие силу для нескольких форм движения материи. Это в особенности закономерности организации, управления и информационных процессов, которые включаются во все известные нам формы движения материи, начиная с перехода от неживого к живому.

За свою историю (с 1948 г.) кибернетика претерпела существенную эволюцию, сохранив однако ядро - учение о единстве процессов управления, информации и организации в биологических, технических и социальных структурах. Наиболее характерными особенностями кибернетики являются изучение и синтез сложных динамических систем, различающихся по своей физической природе. Кибернетика в общем и целом абстрагируется от вещественного содержания систем, стремясь сформулировать для них общие законы организации и информационных связей. При этом структура рассматриваемых систем связана со сходством и различием законов их организации. Объективной основой такого подхода служит материальное единство качественно разнородных феноменов, проявляющееся в аналогии и изоморфизме (гомоморфизме, модельном отношении и т. п.) их структуры и функционирования, в сходстве (или прямом совпадении) описывающего их математического аппарата. Кибернетика выступает как наука о сложных системах управления и связи. Последние наблюдаются на разных уровнях движения, в том числе и на уровне общественных отношений. Поэтому многие науки, а не только кибернетика, так или иначе имеют отношение к процессам управления, но лишь кибернетика рассматривает эти процессы с точки зрения единства поведения (функционирования) живого организма и машины. Кибернетика изучает законы управления и связи, причем, в отличие от других наук, преимущественно в том плане, в каком они обусловливают единство динамики, функционирования и развития машины, живого организмам социальной структуры. Иными словами, кибернетика оперирует законами управления и информационного взаимодействия одновременно на нескольких (а не на одном, как это свойственно многим другим конкретным наукам) уровнях структурной организации материи. Примечательно, что кибернетика подходит к объектам не как к системам "вообще", а как к системам, обладающим определенной совокупностью общих структурных и функциональных свойств (существующих живых систем, социальных структур).

Вместе с тем предмет кибернетики не остается неизменным, он эволюционирует. И это вполне закономерно: центр интереса в кибернетике с годами неизбежно перемещается. Современные аспекты кибернетики свидетельствуют о том, что ее предмет шире проблем управления; последние к тому же отступают перед задачами системной организации и самоорганизации. Понятия конечного автомата, алгоритма, логической сети, машины Тьюринга, самоорганизующейся системы, искусственного интеллекта и другие непосредственно не отражают задачи управления. Проблематика абстракции, идеализации, формализации "работает" на проблемы кибернетических структур и проблемы организации (куда, конечно, с необходимостью включаются структуры управления). Кибернетика - это теория сложных, самоорганизующихся систем. Ее теоретические (математические) структуры, исходные свойства которых задаются аксиоматически, невозможно втиснуть в рамки структур только одного какого-то типа. "Нам представляется совершенно неправильным, - справедливо пишет И. А. Акчурин, - на все времена связывать наиболее фундаментальные понятия теоретической кибернетики, такие, как информация, программа (алгоритм), автомат, игра, обратная связь и т.д., обязательно и только с проблемой управления" [10]. В условиях возросшего значения организационного и "гуманитарного" факторов в системах управления кибернетика становится, по существу, теорией системной организации. Материальная база кибернетики (кибернетическая техника, ЭВМ, бионические и биокибернетические системы) также, не сводится к системам управления. Таким образом, спецификация предмета кибернетики только в понятиях управления (и информации) не выражает всего ее методологического значения.

При сравнении предмета кибернетики с современным (расширительным) подходом к информатике [11] важно по достоинству оценить (и мы это стремились обосновать) системный характер кибернетического направления в науке и технике. В любом случае кибернетика изначально понимается как теория определенного класса систем; более того, можно утверждать, что она представляет собой конкретный и фундаментальный вариант общей теории систем.

Современное состояние кибернетики еще не привело к единому представлению об общей системе этой науки. Поэтому ее развитие идет внутри ряда дисциплин, которые, в свою очередь, также сложны. Сюда относятся теории, показывающие многообразие кибернетического способа мышления [12]: теории регулирования и управления, автоматов, нервных сетей, надежности, больших систем, информации, алгоритмов, игр и т.д. Подобно тому, как система понятий кибернетики развивается во взаимосвязи с понятийными системами традиционных наук, кибернетические методы соотносятся (или находятся в отношении дополнительности) с методами других научных дисциплин [13]. Это, например, методы моделирования и аналогий, черного ящика, проб и ошибок, которые, однако, модифицированы соответственно общему предмету кибернетики и приобрели математическую ориентацию.

Основные понятия и принципы кибернетики (как любой другой фундаментальной науки) тесно взаимосвязаны с категориями диалектики. Данная взаимосвязь выявляется при непосредственном рассмотрении проблем, ориентированных на диалектическое овладение сложностью [14]. И в специфически кибернетическом плане и на уровне философской методологии становится очевидной необходимость синтеза содержательных (качественных) и формально-математических (количественных) методов научного исследования сложных самоорганизующихся систем [15]. Кибернетика с ее математическим моделированием и общими эвристическими принципами и законами управления сложными саморазвивающимися системами являет собой пример синтеза, в рамках которого качественные суждения используются наряду с количественными методами и поддерживается непрерывная обратная связь между анализом проблемы и ее формализацией. Широкий структурный подход в современной науке означает непрерывную связь между формальным и конкретным.

В кибернетике все внимание концентрируется на вопросах системной динамики, организации, структуры, языка, информации и управления. Отметим также, что абстрагирование, идеализация, формализация - отличительные особенности кибернетики как науки. Правда, это лишь одно, наиболее "наглядное" ее измерение. Существует также точка зрения, акцентирующая качественную, принципиальную сторону. В соответствии с ней научная задача кибернетики состоит скорее в поисках объяснений, чем описаний, последние сами по себе не приведут к объяснениям без специальных умозрительных усилий [10].

Рассмотрение этих сторон кибернетики в диалектическом единстве позволяет составить представление о формально-содержательной природе кибернетики, имеющее важный философский смысл. Нередко отношение философии и кибернетики выражается в понятиях общего и особенного, что, конечно, недостаточно для характеристики связи между философией и системной наукой. К примеру, кибернетика рассматривает человека как элемент системы управления, не претендуя на то, чтобы на основе этого стать теорией человека. Здесь отношение системы и элемента есть общее философского положения о том, что человек является совокупностью конкретно-исторических общественных отношений. Такой подход редуцирует особенное, внутреннее психическое качество индивидуума, генетическую индивидуальность до общего, причем кибернетика исследует еще более общие отношения между элементом и системой управления. Г. Герц пишет, что "математика и кибернетика абстрагируются от специфических свойств элементов, от системных законов, которые регулируют существенные способы поведения определенных систем и исследуют всеобщие отношения систем, структур, возможных идеальных объектов и т.д. Философия, напротив, обобщает научные знания, чтобы научно обосновать свои ответы на основные вопросы мировоззрения" [17]. Иначе говоря, кибернетика и философия существенно различаются не столько степенью общности своих высказываний, сколько целью обобщений.

Неотделимый от моделирования функциональный подход, представляющий важную особенность кибернетики, выступает как основной путь изучения сложных систем. Сложность кибернетических систем нередко оказывается связанной с человеческим фактором, который все более проявляет себя в мире науки, техники и социального управления. Гуманитарный аспект входит в самую "сердцевину" кибернетической проблематики, например, в работы в области искусственного интеллекта. А для современных социальных структур характерен рост весомости не только человеческого, но и организационного фактора.

Изложенное подчеркивает актуальность кибернетической проблематики, ориентированной на изучение законов функционирования и развития сложных самоорганизующихся систем. Диалектическое осмысление предмета кибернетики и особенностей ее метода приводит к постановке вопроса о взаимосвязи кибернетических аспектов самоорганизации с диалектическим принципом самодвижения и саморазвития материи.

Атрибутивный характер движения материи позволяет говорить о ее самодвижении, "спонтанейном" развитии. При этом возникает вопрос о внутреннем содержании движения, саморазвития природы, о ее внутренней активности. Конкретизация этой проблемы предполагает объяснение "самодвижения" различных материальных систем, ибо абсолютность самодвижения материи в целом реализуется в относительно самодвижущихся конкретных системах. Относительность самодвижений различных материальных систем заключается во взаимоотношениях между внутренними и внешними факторами; всякая материальная система находится во взаимодействии с другими материальными системами, которые выступают по отношению к ней как условия ее самодвижения. Причем внутренние связи и противоречия в материальных системах представляют собой источник самодвижения, а внешние - условие реализации определенной тенденции.

Гносеологический анализ данной проблемы предполагает вычленение диалектического содержания категории самодвижения, установление ее связи с другими, философскими и общенаучными, понятиями. Методологическая основа такого исследования - положение В. И. Ленина о диалектическом объединении принципа единства мира и принципа самодвижения, саморазвития. Не случайно самодвижение материи служит объективным базисом для процесса познания. "Условие познания всех процессов мира в их "самодвижении", в их спонтанейном развитии, в их живой жизни, есть познание их как единства противоположностей" [18]. В этом плане в нашей литературе освещались различные аспекты проблемы самодвижения [19].

При дальнейшем анализе необходимо учитывать то обстоятельство, что с каждым этапом в развитии естествознания проблема самодвижения материи наполняется новым содержанием; в рамках самого естествознания вырабатываются принципы и понятия, эвристический смысл которых позволяет уточнять существующие взгляды на природу движения материи. В современном естествознании не подлежит сомнению ведущая роль функционально-структурных методов [20], что является следствием проникновения науки в сложный, организованный мир. В связи с этим возникает необходимость в конкретизации и дальнейшем развитии идеи самодвижения применительно к высшим уровням организации материи, которые находятся в поле зрения теоретической биологии, экологии и некоторых других наук. При анализе проблемы самодвижения под таким углом зрения неизбежно привлечение идей кибернетики и общей теории систем. Действительно, кибернетический и общесистемный принципы позволяют вычленить из общей идеи самодвижения организационные аспекты и прежде всего аспект самоорганизации.

Философская трактовка самоорганизации включает в себя определение основных понятий кибернетической теории самоорганизующихся систем, соотнесение их философского содержания с диалектическими принципами материального единства мира, саморазвития, причинности, внутреннего и внешнего и др. Вопрос о философском статусе принципов самоорганизации тесно связан с методологическими проблемами теории самодвижения и саморазвития материи. Поэтому значимость обретает осмысление естественнонаучных (в частности, биокибернетических) принципов самоорганизации в соотношении с диалектическим принципом саморазвития. Уже при постановке вопроса о том, каковы естественнонаучные механизмы перехода от одного уровня организации материи к другому (в особенности от неживой материи к живой) необходимо привлечение современных диалектико-материалистических представлений. Вместе с тем следует акцентировать внимание на естественнонаучном выражении принципа саморазвития применительно к высшим уровням организации материи, то есть на выяснении специфических механизмов самоорганизации. В этом отношении "самоорганизация" может рассматриваться как общенаучная конкретизация философского принципа саморазвития.

Понятие самоорганизации используется в различных смыслах. Например, о самоорганизации говорят тогда, когда повышение организации в большей или меньшей мере происходит само по себе, спонтанно; ее также связывают с автономным развитием, которое управляется изнутри, а не извне; под самоорганизующейся системой понимают кроме того систему, способную изменять внутреннюю структуру и способы поведения. В последнем случае понятие самоорганизации оказывается связанным с понятием обучения. Однако такие (однофакторные) характеристики самоорганизации показывают, что для раскрытия содержания этого интегрального принципа одного признака недостаточно.

В обосновании философского статуса самоорганизующейся системы это понятие предложено рассматривать на основе четырех системных принципов: активности, целенаправленности, надежности функционирования и вероятностно-стохастической детерминации [21]. Данная концептуальная "модель" самоорганизации, выражающая ее системный характер, получает интерпретацию и развитие в различных областях естественнонаучного, технического и социального познания. При этом концепция самоорганизации реализует исследовательскую установку на выявление внутренних факторов развития, которые позволяют показать доминирующую роль внутренних противоречий, находящихся в соответствии с системой внешних закономерностей. Иначе говоря, подобное понимание самоорганизации раскрывает внутренние механизмы и внутренние причины самодвижения тех форм материи, к которым принадлежат самоорганизующиеся системы. Как бы качественно ни различались такого рода системные объекты, они обладают общими характеристиками самодвижения, которые выражены в принципах самоорганизации. В этом отношении самоорганизация представляет собой высшую форму развития динамических систем и может рассматриваться как одно из специфических проявлений самодвижения материи [22].

Понятие самоорганизации в отличие от понятия организации выражает диалектический аспект последней, включая в себя в основном те организации, которые воплощены в сложных саморазвивающихся (относительно автономных) системах. В общем случае под самоорганизацией понимается способность системы к стабилизации некоторых параметров посредством направленного упорядочения ее структурных и функциональных отношений с тем, чтобы противостоять энтропийным факторам среды. Процессы самоорганизации характеризуются при этом возрастанием упорядоченности системы, энергоинформационным взаимодействием со средой и процессами самоуправления. Исходя из необходимости взаимодействия системы с окружающей средой и приняв тезис о том, что наличие подходящего окружения есть необходимое условие самоорганизации, важно раскрыть определяющую роль внутренних факторов системы в организации своего поведения. Именно такой, диалектический подход к пониманию самоорганизации представляет наибольший интерес.

Кибернетика, по-новому поставив проблему самоорганизации, внесла важный вклад в решение вопроса о том, "каким образом связывается материя, якобы не ощущающая вовсе, с материей, из тех же атомов (или электронов) составленной и в то же время обладающей ясно выраженной способностью ощущения" [23]. Результаты кибернетики подтверждают выдвинутую В. И. Лениным гипотезу о генезисе психического в процессе эволюции материи. Плодотворность ленинской идеи об отражении как общем свойстве материи проявляется в том, что она дает ключ к теоретическому осмыслению моделирования особенностей высших форм самоорганизующейся материи на качественно ином субстрате.

Идеи современной кибернетики позволяют детально анализировать и облекать в конкретную форму философские принципы активности. Концепция активности кибернетических систем основывается на диалектических принципах решения проблемы источника развития. Признание активности свойством развивающейся материи помогает глубже понять законы материального мира и, в частности, переход от неживой материи к живой. Анализ самоорганизующей активности кибернетических систем открывает новый аспект общей концепции активности. Благодаря обратным связям возможности реализации активности резко возрастают; обеспечивается избирательность взаимодействия, обусловливающая устойчивость систем и приводящая их к упорядоченному состоянию.

Самоорганизующую активность кибернетических систем не следует отождествлять со способностью к гомеостатическим формам стабилизации в ответ на воздействия внешней среды. Самоорганизующая активность, будучи одним из факторов прогрессивного развития (саморазвития), базируется на оптимальном сочетании стабилизирующих форм самоорганизации (с преобладанием отрицательных обратных связей) с целенаправленной трансформацией систем (на основе положительной обратной связи). Поэтому такая активность выступает как необходимое и существенное внутреннее свойство самоуправляемой и саморегулируемой системы, проявляющееся не только в ее относительной самостоятельности, независимо от изменения внешних условий, но и в преодолении возмущающих воздействий среды и в подчинении последней своим внутренним целям.

Проблема активности переплетается с проблемой внутренней целесообразности (целенаправленности) больших систем. Ее решение предполагает знание внутренних механизмов технической и биологической целесообразности, а также не в меньшей мере целесообразности, присущей общественным системам. Природа активности и целенаправленности кибернетических систем - в их внутренней организованности. Важнейшим фактором целенаправленного поведения таких систем является надежность структурно-информационных отношений, позволяющая системе в целом функционировать безотказно, соблюдать правило достоверности информации в процессах приема, переработки и накопления, что, в свою очередь, служит необходимым условием эффективного решения стоящих перед системой задач.

В теории самоорганизующихся систем важное значение имеет понятие сложности. Для того, чтобы система приобрела способность к самоорганизации, самообучению, самовоспроизведению, необходим некоторый критический уровень сложности. Отсюда следует, что понятие сложности способно выражать не только количественные, но и качественные особенности систем.

При исследовании самоорганизации необходимы вероятностные представления, которые являются исходными, базисными в кибернетике. Основные идеи в теории автоматов были выдвинуты и обоснованы исходя из принципов вероятностной логики. Необходимость статистического подхода в теории автоматов вытекает, например, из того факта, что практически не может быть абсолютно надежного автомата [24]. В системах высокоорганизованных (биологических, социальных) оптимальное соотношение однозначно детерминированных и вероятностных процессов находит воплощение в сочетании (единстве) централизованного управления и самоуправления частей, единстве иерархичности и автономности. Важно отметить недостаточность схемного принципа при объяснении функциональных структур мозга. Для мозга характерно сочетание упорядоченности (на уровне поведения) с определенным (функциональным) беспорядком при общей инвариантности структуры. Статистическая организация - существенный элемент самоорганизации функциональных структур мозга. Более того, это характерное свойство любой самоорганизующейся системы.

Широкое использование понятия самоорганизации в современной науке и философской методологии предполагает ответ на вопрос, какой категорией оно является - общенаучной или философской. В более общем плане возникает проблема общенаучных понятий, критериев их принадлежности к разным уровням научной методологии [25]. Понятие самоорганизации вследствие формализации в логико-математических теориях получает применение, например, как в молекулярной, так и в эволюционной биологии. С ним в биологию входят те методы, которые были развиты в формализованных теориях самоорганизации. Правда, последние обычно претерпевают необходимую модификацию. Кроме того, принцип самоорганизации, приобретя глубокое общенаучное содержание в частных теориях и конкретных науках, оказывается родственным философскому принципу самодвижения, саморазвития применительно к высшим уровням организации материи.

Итак, принцип (понятие) самоорганизации конкретизирует, уточняет на определенных уровнях методологии - логико-математическом, техническом, теоретико-биологическом и социологическом - принцип самодвижения и саморазвития материи в его диалектико-материалистической концепции. Отсюда следует не только научно-методологическое значение понятия самоорганизации в различных областях естествознания и техники, но и его философский смысл. Последний содержится, в частности, в понятии "самоорганизующаяся система", которое характеризует вполне определенный класс объектов, представляющих интерес на разных уровнях познания и практики. Философский смысл общенаучного понятия "самоорганизующаяся система" определяется его связью с диалектическим принципом саморазвития и системно-кибернетическим подходом, оказывающим значительное влияние на формирование научной картины мира. Кибернетика сближает сложившиеся области научного познания и делает возможной связь между учеными различных специальностей.

Диалектический подход к кибернетической проблематике самоорганизующихся систем необходим в философском рассмотрении проблемы искусственного интеллекта, которая является одной из центральных в кибернетике.

Самоорганизация биологических систем (кибернетический подход)

Выдвинутая диалектическим материализмом идея соединения, совмещения принципа развития с принципом единства мира получает воплощение в интегративных концепциях современной науки. Возникновение таких необычных с классической точки зрения новых научных дисциплин, как молекулярная биология, экология, генетика, биофизика, синергетика, кибернетика, выражающих стиль мышления науки XX в., ставит целый ряд философско-методологических проблем. В общем виде эти проблемы связаны с обоснованием методологического единства структуры науки, осознание которого облегчает ее развитие. Процессы математизации, кибернетизации и физикализации научного знания побуждают к исследованию природы научных теорий, к анализу путей и способов, с помощью которых наука преодолевает силу традиций как естественнонаучных, так и философских. Представляется, например, конструктивным распространение методов и идей более развитых наук о "низшем" на область менее развитых наук о "высшем". В этом процессе междисциплинарного обмена информацией "науки более развитые, описывающие относительно простые объекты, могут существенно влиять на науки, исследующие явления более сложной природы. Эта всеобщая закономерность познания проявляется в современную эпоху в процессе воздействия математики, кибернетики, физики и химии на биологию" [26].

Развитие биофизики и кибернетики детерминируется насущными задачами познания все более тонких и глубоких физических, кибернетических и биологических структур. Жизнь как совокупность веществ и функций определяет постановку биологических и физико-кибернетических задач. Необходимым становится физическое и кибернетическое исследование таких биологических процессов, как отбор и эволюция. Физика и кибернетика выступают в единстве при изучении структур и законов эволюции живого. Кибернетика и теория информации дают возможность строгого физико-математического анализа явлений жизни. Однако кибернетическим подходом, рассматривающим биологические организации на уровне кибернетических структур, проблема познания живого, конечно, не исчерпывается. Для изучения сущности жизни наряду с кибернетикой и молекулярной биологией необходимы молекулярная биофизика, биофизика клетки и биофизика сложных систем. "Задачи биофизики состоят в познании явлений жизни, основанном на общих принципах физики, в изучении атомно-молекулярной структуры вещества" [27]. Проблема молекулярной биофизики в отличие от кибернетики - в нахождении конкретных молекулярных механизмов накопления, кодирования, передачи, перекодирования биологической информации, природы шумов, разрушающих эту информацию, регуляторных механизмов, обратной связи. Роль кибернетики является ведущей в изучении природы регуляторных процессов, организации и информации в аспекте молекуляторной физики и физической химии. Иначе говоря, молекулярная биофизика не противостоит таким наукам, как биокибернетика и термодинамика, а объединяется с ними.

Взаимодействие и взаимопроникновение наук физико-биолого-кибернетического направления важно в концептуальном отношении: оно позволяет вырабатывать научные стратегии большого методологического значения. Объединение концепции эволюции с концепцией структуры, выражая диалектическую природу научного познания, формирует вместе с тем понятийный аппарат, адекватный новым проблемам познания сущности жизни. Одной из таких проблем, выдвинутых на передний план бурно развивающейся биологической наукой, становится проблема самоорганизации живого как в смысле возникновения жизни, так и на уровне формирования структурных элементов современных живых систем [28].

Проблема самоорганизации была поставлена основоположниками кибернетики; идеи самоорганизации в различных вариантах впервые получили обоснование в работах Н. Винера, Дж. Неймана, Г. Паска, Р. Эшби, Ст. Бира. Н. Винер придавал большое значение разработке этой проблемы [29], понимая под самоорганизацией процесс втягивания в синхронизм, образования единого ритма работы многочисленных и разрозненных до этого элементов системы. Такой подход к самоорганизации как к достаточно специфическому принципу функционирования различных по природе систем открывает возможности его биофизического истолкования.

В современных теориях происхождения жизни концепция самоорганизации занимает важное место. Как пишут С. Фокс и К. Дозе, снабдив свою работу историческим обзором развития идей самоорганизации, "приблизительно с 1960 г. наступила новая эра в исследовании проблемы возникновения жизни. Исключительно возрос интерес к процессам самоорганизации, или самосборки, макромолекул, образующих микросистемы" [30]. Понятие самосборки рассматривается как понятие, служащее краеугольным камнем происхождения жизни. Показано, что эволюция шла и продолжает идти по пути самоупорядочения при образовании макромолекул, самосборки этих молекул и самовоспроизведения собранной микросистемы. Все эти процессы теоретически не укладываются в рамки случайных явлений.

Самоорганизация, таким образом, представляет собой проблему для биофизики, кибернетики и молекулярной биологии. Ее концептуальное оформление позволяет соотнести принципы и понятия данных наук с их предметом и методом. По замечанию М. Бунге, "подобная контекстуальность, или относительность статуса основных идей, несомненно, желательна, поскольку открывает новые возможности для поиска все более плодотворных и глубоких идей, все более содержательных понятий и постулатов, из которых в свою очередь могут быть выведены понятия, бывшие первичными ранее" [31].

Современное естествознание в основном базируется на теории абиогенного происхождения жизни, впервые развитой А.И.Опариным (1924 г.). Согласно этой теории, информационные макромолекулы типа нуклеиновых кислот и белков могли возникать из сравнительно простых органических соединений, образовавшихся на Земле в условиях ее первичной восстановительной атмосферы. Успешный синтез важных для жизни биохимических соединений в условиях, имитирующих существовавшие ранее на Земле, подтверждает эту теорию. Характерным является следующее положение А. И. Опарина: "...Сейчас все более и более становится очевидным, что нельзя (как это было еще недавно) рассматривать возникновение жизни как какое-то внезапное, изолированное явление, как какую-то счастливую случайность. Оно представляет собой неотъемлемую составную часть общего закономерно протекающего процесса развития Вселенной" [32].

В прошлом при рассмотрении этой проблемы обычно предполагалось, что возникновение жизни - редкое и странное явление. Оно связывалось со специфическим переходом от углеродистых соединений к аминокислоте, от нее - к белку, а затем путем естественного отбора и эволюции - к разумным существам.

Принципы кибернетики позволяют подойти к этой проблеме иначе. Теоретическое доказательство того факта, что самостоятельное развитие вероятно для машин, что кибернетика развития - жизнеспособная область, дает возможность отвлечься от строгой специфичности явлений возникновения жизни. Наиболее решительно эту точку зрения выразил У. Р. Эшби. "Я утверждаю, - писал он, - что... поиски специфических условий совершенно ошибочны. Справедливо как раз обратное - каждая динамическая система дает начало своей собственной форме разумной жизни и является в этом смысле самоорганизующейся..." [33]. До недавнего времени не было опыта обращения с системами средней сложности. Современные вычислительные машины, будучи сложными системами, способствуют пониманию процессов возникновения жизни, так как в них складываются несколько более простые варианты тех же явлений.

Такой подход позволяет, по крайней мере, ввести кибернетические принципы самоорганизации в изучение пограничных между физикой и биологией вопросов. Поскольку кибернетика занимается системами на уровне их организации, то здесь, говоря методологически, она выступает как физика биологии. В аспекте кибернетики биологические процессы с их целесообразностью могут быть объяснены исходя из физических законов. Именно Н. Винер впервые определил информацию как новую физическую переменную [34].

В рамках молекулярной биофизики стало возможным акцентировать внимание на проблеме моделирования добиологической эволюции макромолекул. Несомненный интерес представляет теория М. Эйгена, в которой предложена концепция самоорганизации и феноменологически рассмотрены биологические процессы отбора и эволюции на основе неравновесной термодинамики и теории информации. М. Эйген показал, что для решения проблемы взаимоотношений между причиной и следствием в биологии "необходима теория самоорганизации, которую можно было бы применить к молекулярным системам, или, точнее, к некоторым особым молекулярным системам, находящимся в среде с определенными свойствами" [35]. Принципиальным в теории М. Эйгена является вывод, согласно которому для биологии важна ценность информации, а не ее количество. Информация, накопленная в процессе эволюции, - это "оцененная" информация, и число битов мало что говорит о ее функциональном значении. Поэтому нужна новая переменная, которая характеризовала бы уровень эволюции, - "ценность".

Комплементарность информации и энтропии ясно показывает ограниченную применимость классической теории информации к проблемам эволюции [36]. Для понимания процессов эволюции нужно знать не количество информации, а программу биологического развития, заложенную в генах, и способ ее реализации. Значит, встает вопрос о содержании информации, о ее ценности для развития. Информация возникает или приобретает ценность посредством отбора.

Самоорганизация зависит от определенных химических предпосылок, а также от специальных условий среды; то есть самоорганизация - это не "просто" свойство материи. По словам Ф. Энгельса, "...жизнь должна была возникнуть химическим путем" [37]. Предбиологическая фаза - это химия. В работе М. Эйгена показано, что наличие каталитических функций в сочетании с различными механизмами обратной связи, придающее системе способность к автокаталитическому росту, выступает одним из решающих предпосылок самоорганизации. Однако "автокаталитический рост" не может происходить в системе, которая находится в равновесии или вблизи равновесия. Это приводит к вопросу о том, какие условия среды необходимы для самоорганизации. Отбор и эволюция не могут происходить в равновесных или почти равновесных системах даже при наличии для этого нужных веществ. В системах, находящихся вблизи равновесия, автокатализ не будет приводить к росту, так как каталитическое ускорение в равной степени сказывается и на прямой и на обратной реакциях. Вместе с тем вблизи стационарного состояния могут возникать колебания. Существование таких нестабильностей и служит предпосылкой для селективного роста и эволюции.

Кроме того, самоорганизация и дальнейшая эволюция функционального поведения должны начинаться на уровне самовоспроизводящегося молекулярного кода [38]. Носителями его являются нуклеиновые кислоты и белки. Реальный гиперцикл, построенный из нуклеиновых кислот и синтезируемых с их участием белков-ферментов, обеспечивает отбор макромолекул с объемом информации, достаточным и необходимым для возникновения живой системы. Тем самым раскрывается физический смысл генетического кода. По замечанию Г. Патти, "живое отличается от неживого своей способностью обеспечивать большую надежность процессов хранения и передачи наследственной информации на молекулярном уровне по сравнению с любой термодинамической или классической системой" [39]. Нелинейные системы обладают всеми свойствами, необходимыми для начала самоорганизации, и допускают дальнейшую эволюцию до уровня, когда система может выйти за рамки специальных условий, требуемых для ее возникновения. (Уровень сложности таков, что вероятность получить его путем случайной сборки ничтожно мала). То есть информация приобретает свой смысл только посредством функциональной корреляции. "Вследствие такой нестабильности, - пишет М. Эйген, - нуклеация этой функциональной корреляции (мы можем назвать ее возникновением жизни) оказывается неизбежным событием - если благоприятные условия существования потока свободной энергии поддерживаются в течение достаточно длительного времени. Это первичное событие не уникально. В любом случае код станет универсальным вследствие нелинейной конкуренции" [40].

Данный вывод, полученный в рамках молекулярной биофизической теории, относящейся к фазе самоорганизации как переходу от неживого к живому, по существу, подтверждает приведенный в начале параграфа тезис, построенный на достаточно общих биокибернетических принципах самоорганизации. Оба вывода получены благодаря рассуждениям, основывающимся на признании определяющей роли структурно-динамических (существенно неравновесных) принципов, распространяющихся на замкнутые системы, функционирующие в условиях относительно неизменной среды, где неизбежное следование одного события за другим создает совершенный "детерминистический мир". Проблема выживания в последнем сводится к отысканию ограничений, которые управляют переходами от предыдущего события к последующему. "Ясно, - замечает по этому поводу Г. Ферстер, - что самым простым из всех таких детерминистских миров был бы мир, где вовсе не происходит переходов, т. е. где все находится в неподвижном и равномерном покое. Поэтому-то мировой океан, где колебания температуры, изменения концентрации химических элементов, колебания разрушительных сил и т.д. сохраняются на минимальном уровне, явился колыбелью жизни" [41].

Необходимость неравновесности процессов, приводящих к образованию первичных функциональных структур, обоснована, в частности, П. Гленсдорфом и И. Пригожиным [42], описавшими тип событий, ведущих к переходу от неживых объектов к живым. Показано, что разрушение структур есть ситуация, преобладающая вблизи термодинамического равновесия; наоборот, создание структур может осуществляться по определенным нелинейным кинетическим законам вне области стабильности состояний, отвечающих обычному термодинамическому поведению. Поэтому одной из наиболее интересных в этом отношении проблем статистической физики и термодинамики является распространение концепции порядка на неравновесные ситуации для систем, в которых появление упорядоченных структур при термодинамическом равновесии было бы маловероятным. Вблизи равновесия не реализуемы также периодические процессы, характерные для живых систем. Возникновение новой структуры (в теории И. Пригожина - диссипативной структуры) в открытой системе всегда есть результат нестабильности.

Важно заметить, что упорядоченность открытых систем возрастет или останется постоянной не вопреки второму началу термодинамики, а вследствие ее законов. Упорядоченность поддерживается оттоком энтропии в окружающую среду. Строгая количественная формулировка таких фактов требует построения термодинамики открытых систем, термодинамики неравновесных процессов. Поскольку в описание подобных процессов в явной форме входит время, речь идет уже не о термостатике, но о физической кинетике [43]. И. Пригожин и его сотрудники показали, что в результате химических нестабильностей автокаталитические гомогенные системы вдали от равновесия могут образовывать структурные неоднородности в пространстве и времени, в частности, создавать осциллирующие структуры. По И. Пригожину, отклонение от равновесия и характеризует уровень диссипации. Вдали от равновесия и за пределами неустойчивости флюктуации усиливаются. В этом отношении диссипативная структура является гигантской флюктуацией, стабилизированной потоком энергии и вещества из внешнего мира.

Открытие действующего в диссипативных структурах нового принципа упорядоченности - порядка через флюктуацию - свидетельствует о том, что при определенных условиях структуры могут образовываться спонтанно и сами себя поддерживать. Режим самоподдержания означает некоторую индивидуальность и определенную автономию от среды. В отличие от кристалла (равновесной системы), который растет в неопределенность, если полагается на свое собственное "решение", диссипативная структура находит и поддерживает свою форму и величину независимо от ближайшего окружения. Диссипативная структура "знает на деле", что ей импортировать и экспортировать, чтобы себя содержать и обновлять. Такая автономия, по характеристике Э. Янча [44], является выражением основополагающей комплементарности структуры и функции, одного из важнейших законов самоорганизации: спонтанно возникшая структура соответствует своей функции и наоборот. Задаваемая этим законом пластичность служит основой достижения самоподдерживающегося баланса системы и среды, а также коэволюции системы с ее окружением. Самоподдерживающаяся стабильность представляет разновидность эволюирующих систем, при которой флюктуации поглощаются целостной системой; это создает возможность внутреннего самоусиления, без чего не может быть подлинной самоорганизации.

Л. Тьюринг показал, как в совершенно однородной системе может возникать весьма правильная структура при условии, что эта система неустойчива и в определенное время подвергается случайному воздействию [45]. Тем самым констатировалось возникновение порядка, могущего лежать в основе формирования биологических структур. Интересуясь специальными формами морфогенетических путей в ходе эмбрионального развития, А. Тьюринг полагал, что такого рода новообразования структур весьма специфичны. Однако развитие синергетики продемонстрировало [46], что появление упорядоченных структур вслед за неустойчивыми значительно более общее явление. Становится возможным заключить, что "образующаяся впоследствии диссипативная структура действительно является новым состоянием вещества, которое индуцируется потоком свободной энергии в неравновесных условиях. В этом новом состоянии мы имеем новую физическую химию на супермолекулярном уровне..." [47]. Вполне вероятно, что появление диссипативных структур на предбиологической стадии могло привести систему к условиям, далеким от равновесия, а также к сохранению этих условий, что необходимо для возникновения определенных ключевых реакций, обеспечивающих дальнейшую эволюцию.

...

Подобные документы

  • Сфера исследований эволюционной кибернетики. Математическое моделирование и методы кибернетики в применении к другим системам. Основная задача кибернетики. Отличительная черта кибернетического подхода к познанию и совершенствованию процессов управления.

    презентация [1,3 M], добавлен 08.12.2010

  • Понятие искусственного интеллекта как свойства автоматических систем брать на себя отдельные функции интеллекта человека. Экспертные системы в области медицины. Различные подходы к построению систем искусственного интеллекта. Создание нейронных сетей.

    презентация [3,0 M], добавлен 28.05.2015

  • Общая характеристика дисциплины "Основы искусственного интеллекта". Ее предмет, цели и задачи. Особенности и расшифровка ряда понятийных терминов, характеризующих сущность кибернетики. Методы и алгоритмы анализа данных для получения знаний и обучения.

    презентация [10,9 K], добавлен 03.01.2014

  • Эволюция систем искусственного интеллекта. Направления развития систем искусственного интеллекта. Представление знаний - основная проблема систем искусственного интеллекта. Что такое функция принадлежности и где она используется?

    реферат [49,0 K], добавлен 19.05.2006

  • Характеристика сущности искусственного интеллекта. Проблема создания искусственного интеллекта. Базовые положения, методики и подходы построения систем ИИ (логический, структурный, эволюционный, имитационный). Проблемы создания и реализация систем ИИ.

    реферат [43,1 K], добавлен 19.07.2010

  • Кибернетика как наука. Значение кибернетики. Электронно-вычислительные машины и персональные компьютеры. Моделирование систем. Сферы использования кибернетики. Системный анализ и теория систем. Теория автоматического управления.

    реферат [21,7 K], добавлен 23.03.2004

  • Кибернетика - научная дисциплина, которая основана на работах Винера, Мак-Каллока, У. Эшби, У. Уолтера. Кибернетика - наука об управлении объектом своего изучения. Роль компьютеров как сложных технических преобразователей информации. Значение кибернетики.

    контрольная работа [42,1 K], добавлен 29.11.2010

  • Разработка на основе игры "Точки" подхода к программированию "искусственного интеллекта" в позиционных играх и возможность применения данного подхода для решения задач в области экономики, управления и других областях науки. Модель игровой ситуации.

    дипломная работа [1,5 M], добавлен 21.07.2013

  • Начало современного этапа развития систем искусственного интеллекта. Особенности взаимодействия с компьютером. Цель когнитивного моделирования. Перспективы основных направлений современного развития нейрокомпьютерных технологий, моделирование интеллекта.

    реферат [24,7 K], добавлен 05.01.2010

  • Области человеческой деятельности, в которых может применяться искусственный интеллект. Решение проблем искусственного интеллекта в компьютерных науках с применением проектирования баз знаний и экспертных систем. Автоматическое доказательство теорем.

    курсовая работа [41,3 K], добавлен 29.08.2013

  • Сущность и проблемы определения искусственного интеллекта, его основных задач и функций. Философские проблемы создания искусственного интеллекта и обеспечения безопасности человека при работе с роботом. Выбор пути создания искусственного интеллекта.

    контрольная работа [27,9 K], добавлен 07.12.2009

  • Искусственный интеллект – научное направление, связанное с машинным моделированием человеческих интеллектуальных функций. Черты искусственного интеллекта Развитие искусственного интеллекта, перспективные направления в его исследовании и моделировании.

    реферат [70,7 K], добавлен 18.11.2010

  • Задачи информатики как фундаментальной науки. Системный анализ как одно из направлений теоретической информатики. Основная цель работ в области искусственного интеллекта. Программирование как научное направление. Кибернетика и вычислительная техника.

    реферат [91,8 K], добавлен 30.11.2010

  • Принципы построения и программирования игр. Основы 2-3D графики. Особенности динамического изображения и искусственного интеллекта, их использование для создания игровых программ. Разработка логических игр "Бильярд", "Карточная игра - 50", "Морской бой".

    отчет по практике [2,3 M], добавлен 21.05.2013

  • История развития искусственного интеллекта. Экспертные системы: их типы, назначение и особенности, знания и их представление. Структура идеальной и инструменты построения экспертных систем. Управление системой продукции. Семантические сети и фреймы.

    реферат [85,7 K], добавлен 20.12.2011

  • Может ли искусственный интеллект на данном уровне развития техники и технологий превзойти интеллект человека. Может ли человек при контакте распознать искусственный интеллект. Основные возможности практического применения искусственного интеллекта.

    презентация [511,2 K], добавлен 04.03.2013

  • Определение экспертных систем, их достоинство и назначение. Классификация экспертных систем и их отличие от традиционных программ. Структура, этапы разработки и области применения. Классификация инструментальных средств и технология разработки систем.

    курсовая работа [78,0 K], добавлен 03.06.2009

  • Кибернетика как научное направление, предмет методы ее исследования, история и основные этапы развития. Главные методы кибернетики и практическое значение, особенности применения методов к другим системам. Анализ достижений современной кибернетики.

    презентация [1,2 M], добавлен 02.12.2010

  • Особенность квантовой реальности. Нанотехнологии и молетроника, характеристика данной эпохи. Возможности появления молекулярного компьютера. Построение системы искусственного интеллекта на основе моделирования принципов работы человеческого мозга.

    отчет по практике [43,5 K], добавлен 12.05.2015

  • История развития искусственного интеллекта в странах дальнего зарубежья, в России и в Республике Казахстан. Разработка проекта эффективного внедрения и адаптации искусственного интеллекта в человеческом социуме. Интеграция искусственного в естественное.

    научная работа [255,5 K], добавлен 23.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.