Конструкция и поиск неисправности блоков питания жидкокристаллических дисплеев

Принципы работы устройств отображения информации. Особенности построения источников питания мониторов. Техническая диагностика и методы поиска неисправностей. Расчет расходов на электроэнергию. Действия негативных факторов при ремонте плазменной панели.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 16.04.2018
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

из-за подключения компьютера к розетке, установленной в сети, нагружаемой, помимо средств вычислительной техники, сильноточными установками (станками, сварочными аппаратами, сушилками и т.д.).

В результате в сети могут возникать импульсные помехи, амплитудой до 1 кВ, которые приводят, как правило, к "пробою" по участку коллектор-эмиттер мощных ключевых транзисторов.

Третьей причиной КЗ в первичной цепи ИБП является безграмотность ремонтного персонала, проводящего измерения заземленным осциллографом в первичной цепи ИВП! При КЗ в первичной цепи ИБП выгорает (со взрывом) токоограничивающий терморезистор с отрицательным ТКС. Это происходит после замены сгоревшего предохранителя и повторного включения в сеть, если осталась не устраненной основная причина КЗ. Поскольку достать данные резисторы иногда бывает трудно, специалисты, проводящие ремонт ИБП, порой просто устанавливают коротко замыкающую перемычку на то место, где должен стоять терморезистор.

Рисунок-2.4 Цоколевка интегральных трехвыводных стабилизаторов в корпусе типа ТО-220.

Обращаем Ваше внимание также на то, что при замене мощных ключевых транзисторов лучше всего использовать транзисторы того же типа и той же фирмы-изготовителя. В противном случае установка транзисторов другого типа может привести либо к выходу их из строя, либо к несрабатыванию схемы пуска ИБП (в случае использования более мощных, чем стояли в схеме ранее, транзисторов).

Второй характерной неисправностью ИБП является выход из строя управляющей микросхемы типа TL494.

Исправность микросхемы можно установить, оценивая работу отдельных ее функциональных узлов (без выпаивания из схемы ИБП). Для этого может быть рекомендована следующая методика:

Операция 1. Проверка исправности генератора DA6 и опорного источника DA5. Не включая ИБП в сеть, подать на вывод 12 управляющей микросхемы питающее напряжение 10-15В от отдельного источника.

Исправность генератора DA6 оценивается по наличию пилообразного напряжения амплитудой 3,2В на выводе 5 микросхемы (при условии исправности частотозадающих конденсатора и резистора, подключенных к выводам 5 и 6 микросхемы, соответственно).

Исправность опорного источника DA5 оценивается по наличию на выводе 14 микросхемы постоянного напряжения +5В, которое не должно изменяться при изменении питающего напряжения на выводе 12 от +7В до +40В.

Операция 2. Проверка исправности цифрового тракта. Не включая ИБП в сеть, подать на вывод 12 управляющей микросхемы питающее напряжение 10-15В от отдельного источника.

Исправность цифрового тракта оценивается по наличию на выводах 8 и 11 микросхемы (в случае включения выходных транзисторов микросхемы по схеме с ОЭ) или на выводах 9 и 10 (в случае их включения по схеме с ОК) прямоугольных последовательностей импульсов в момент подачи питания.

Проверить наличие фазового сдвига между последовательностями выходных импульсов, который должен составлять половину периода.

Разорвать печатную дорожку (предварительно сняв питание с вывода 12 микросхемы), замыкающую 14 и 13 выводы микросхемы, и соединить 13 вывод с 7 ("корпус"). Убедиться в отсутствие фазового сдвига между последовательностями выходных импульсов на выводах 8 и 11 (либо 9 и 10).

Операция 3. Проверка исправности компаратора "мертвой зоны" DA1.

Не включая ИБП в сеть, подать на вывод 12 управляющей микросхемы питающее напряжение 10-15В от отдельного источника.

Убедиться в исчезновении выходных импульсов на выводах 8 и 11 при замыкании вывода 14 микросхемы с выводом 4.

Операция 4. Проверка исправности компаратора ШИМ DA2.

Не включая ИБЛ в сеть, подать на вывод 12 управляющей микросхемы питающее напряжение 10-15В от отдельного источника. Убедиться в исчезновении выходных импульсов на выводах 8 и 11 при замыкании вывода 14 микросхемы с выводом 3.

Операция 5. Проверка исправности усилителя ошибки DA3.

Не включая ИБП в сеть, подать на вывод 12 управляющей микросхемы питающее напряжение 10-15В от отдельного источника.

Проконтролировать уровень напряжения на выводе 2, которое должно отличаться от нуля. Изменяя напряжение на выводе 1, подаваемое от отдельного источника питания, в пределах от 0,3В до 6В, проконтролировать изменение напряжения на выводе 3 микросхемы.

Операция б. Проверка усилителя ошибки DA4. Не включая ИБП в сеть, подать на вывод 12 управляющей микросхемы питающее напряжение 10-15В от отдельного источника. Проконтролировать уровень напряжения на выводе 3, предварительно выставив усилитель DA3 в состояние "жесткого 0" на выходе. Для этого напряжение на выводе 2 должно превышать напряжение на выводе 1. Проконтролировать появление напряжения на выводе 3 при превышении потенциалом, подаваемым на вывод 16, потенциала, приложенного к выводу 15. Третьей характерной неисправностью является выход из строя выпрямительных диодов во вторичных цепях ИБП (как правило, это пробой или уменьшение обратного сопротивления диода).

Необходимо делать правильный выбор заменяемого диода по току, граничной частоте переключения и обратному напряжению!

Не забывайте, что в канале выработки +5В стоят диоды Шоттки, а в остальных каналах - обычные кремниевые диоды! Напоминаем Вам о необходимости обеспечения хорошего теплоотвода для выпрямительных диодов в каналах выработки +5В и +12В!

При контроле выпрямительных диодов желательно выпаивать их из схемы, т.к., как правило, параллельно им подключены многочисленные элементы, и контроль диодов без выпаивания их из схемы в этом случае становится некорректным. Обращаем Ваше внимание на то, что ИБП может вырабатывать все выходные напряжения, а сигнал PG будет равен 0В, и процессор будет заблокирован. Не забывайте, что в схему выработки сигнала PG входит достаточно много элементов, которые тоже могут выйти из строя.

Перечисленные неисправности являются основными и, как правило, несложными для поиска. Имейте ввиду: иногда сбои, возникающие в схеме ИБП в процессе проведения измерений, приводят к аварийным режимам работы силовых транзисторов. Сбои могут вызываться увеличением значения монтажной емкости элементов схемы ИБП в месте подсоединения измерительных щупов прибора! Сетевой предохранитель (3-5А) всегда расположен на монтажной плате ИБП и практически защищает сеть от коротких замыканий в ИБП, а не ИБП от перегрузок.

Практически всегда перегорание сетевого предохранителя сигнализирует о выходе ИБП из строя. Своеобразным индикатором работающего ИБП может служить вращение вентилятора, который запускается выходным напряжением +12В (либо - 12В). Однако для вывода ИБП в номинальный режим и корректного контроля всех выходных напряжений ИБП необходима внешняя нагрузка либо на системную плату, либо на сопротивления, обеспечивающие получение всего диапазона токовых нагрузок, указанных в таблице 2, Для оценки работоспособности ИБП в первом приближении можно воспользоваться нагрузочным резистором с номиналом порядка 0,5 Ом и рассеиваемой мощностью не менее 50Вт по каналу выработки +5В. Исправный ИБП должен работать бесшумно. Это следует из того, что частота преобразования находится за пределом верхнего порога диапазона слышимости. Единственным источником акустического шума является работающий вентилятор.

Если кроме гудения вентилятора прослушиваются писк, "цыканье" или другие звуки, то это одназначно свидетельствует о неисправности ИБП или о его нахождении в аварийном режиме! В этом случае следует немедленно выключить ИБП из сети и устранить неисправность.

Для более сложных случаев выхода из строя ИБП необходимо хорошо представлять принципы работы ИБП, причинно-следственную взаимосвязь отдельных узлов схемы и, конечно, иметь принципиальную схему данного блока питания.

2.3 Поиск неисправности и алгоритмы диагностирования

Постоянные резисторы, применяемые в схемах ИБП, можно сгруппировать в два основных класса: проволочные и композиционные.

Эквивалентная схема резистора зависит от типа резистора и процесса его изготовления. Однако для большинства случаев пригодна схема, представленная на рис.2.5, в.

В типичном композиционном резисторе изображенная здесь шунтирующая емкость имеет значение порядка 0,1-0,5пф.

Величина индуктивности определяется в основном выводами, за исключением проволочных резисторов, у которых основной вклад в индуктивность вносит сам резистор.

За исключением проволочных резисторов или резисторов других типов с очень малым сопротивлением, при анализе схемы индуктивностью резистора обычно можно пренебречь.

Однако индуктивность резистора делает его чувствительным к наводкам от внешних магнитных полей. Шунтирующая емкость существенна лишь для высокоомных резисторов.

Зарубежные фирмы изготовители обычно используют кодированное обозначение параметров резисторов в виде набора цветных колец на их корпусах.

Рисунок-2.5. Эквивалентные схемы радиоэлементов: а) - конденсатора; б) - катушки индуктивности; в) - резистора.

Неисправности резисторов, встречающиеся на практике можно подразделить на:

- обрыв;

- значительное увеличение номинального сопротивления.

Несмотря на то, что в технической литературе считаются невозможными случаи уменьшения номинального сопротивления резисторов, авторам на практике все же приходилось сталкиваться с такими случаями. По-видимому, такие неисправности связаны с технологическими особенностями изготовления таких резисторов.

Неисправность резистора далеко не всегда можно определить по его внешнему виду (потемнение, обгорание, отколупливание краски) !

На практике часты случаи, когда неисправный резистор по внешнему виду ничем не отличается от исправного. Выявить неисправный резистор в таких случаях можно только омической "прозвонкой" на соответствие номиналу после выпаивания его из схемы.

С другой стороны, потемнение резистора не всегда означает выход его из строя. Кроме того, потемнение резистора затрудняет определение его номинала по цветовому коду, нанесенному на его поверхность, т.к цвета колец становятся трудноотличимы друг от друга. В этих случаях выйти из положения можно либо получив нужную информацию из принципиальной схемы (если она имеется), либо по номиналу аналогичного резистора в аналогичной конструкции.

При определении номиналов маломощных резисторов, имеющих малые габариты, целесообразно использовать лупу, т.к сходные цвета (например, коричневый и фиолетовый; серый и серебристый; красный и оранжевый) трудно различимы невооруженным глазом.

Конденсаторы наиболее часто делятся на категории по материалу диэлектрика, из которого они изготовлены.

Внимание. Конденсаторы различных типов имеют характеристики, делающие их пригодными для одних и непригодными для других применений.

Реальный конденсатор не является чистой емкостью, а обладает также, как показано на эквивалентной схеме рис 2.5, а, сопротивлением и индуктивностью. Индуктивность L создается как выводами, так и структурой самого конденсатора; R2 является сопротивлением параллельной утечки, и его величина зависит от объемного удельного сопротивления материала диэлектрика; R1 - эффективное (действующее) последовательное сопротивление конденсатора, зависящее от тангенса угла потерь диэлектрика конденсатора.

Внимание. Одним из наиболее важных соображений при выборе типа конденсатора является его рабочая частота.

Максимальная частота, на которой конденсатор эффективно работает, ограничивается обычно индуктивностью конденсаторов и его выводов.

На некоторой частоте конденсатор имеет собственный резонанс со своей индуктивностью. На частотах выше частоты собственного резонанса конденсатор имеет индуктивное сопротивление, увеличивающееся с частотой. В таблице 5 указаны приблизительные диапазоны частот, в которых можно использовать конденсаторы различных типов.

Верхний частотный предел определяется собственным резонансом конденсатора или увеличением тангенса угла потерь на высоких частотах. Нижняя граница определяется наибольшим достижимым на практике значением емкости. Бумажные и майларовые конденсаторы - это среднечастотные конденсаторы, имеющие относительно большие последовательное сопротивление и индуктивность.

Они используются обычно для фильтрации, шунтирования и развязки, а также во времязадающих цепях и цепях шумоподавления.

Слюдяные и керамические конденсаторы имеют очень малые последовательное сопротивление и индуктивность.

Это высокочастотные конденсаторы, которые обычно используются для высокочастотной фильтрация, шунтирования, как разделительные, времязадающие элементы и для частотного разделения.

Они обычно очень стабильны во времени, при изменении температуры и напряжения.

Конденсаторы из высокосортной керамики (с высокой диэлектрической постоянной) являются среднечастотными.

Они относительно нестабильны во времени, с изменением температуры и частоты. Их основным преимуществом является высокое по сравнению со стандартными керамическими конденсаторами значения емкости на единицу объема. Применяют их обычно для шунтирования, блокировки и развязки. Один из недостатков этих конденсаторов состоит в том, что переходные напряжения могут вызвать их повреждения.

Поэтому не рекомендуется использовать их в качестве шунтирующих конденсаторов, включенных непосредственно между шинами источника питания. Полистирольные конденсаторы обладают исключительно малым последовательным сопротивлением и имеют очень стабильную характеристику емкость-частота.

Из всех перечисленных типов конденсаторов они наиболее близки к идеальному конденсатору.

Типичные области их применения - фильтрация, шунтирование, развязка, времязадающие цепи и шумоподавление.

Характеристики сухих танталовых электролитических конденсаторов аналогичны характеристикам алюминиевых электролитических конденсаторов. Однако последовательное сопротивление у них меньше, а емкость на единицу объема больше, чем у последних.

Некоторые из твердотельных танталовых конденсаторов имеют достаточно малую индуктивность и могут применяться на несколько более высоких частотах, чем алюминиевые электролитические.

В общем они более стабильны во времени по отношению к изменениям температуры и при ударных нагрузках, чем алюминиевые конденсаторы.

Особое внимание следует уделить алюминиевым электролитическим конденсаторам, как элементам, наиболее часто, по сравнению с другими типами конденсаторов, подверженным выходу из строя.

Основным преимуществом электролитического конденсатора, обусловившего его широкое применение, является большая емкость, которую, можно получить в малом корпусе.

Однако алюминиевый электролитический конденсатор может иметь последовательное сопротивление 1Ом (типичное значение - около 0,1 Ом). Величина последовательного сопротивления увеличивается с ростом частоты (из-за потерь в диэлектрике) и уменьшением температуры.

Из-за больших размеров алюминиевые электролитические конденсаторы имеют также большую индуктивность, поэтому они являются низкочастотными конденсаторами и их не рекомендуется применять на частотах выше З0кГц.

Наиболее часто они используются для фильтрации, шунтирования и развязки на низких частотах.

При использовании на высоких частотах их необходимо шунтировать конденсатором малой емкости с малой собственной индуктивностью. Это необходимо из-за того, что, емкость электролитического конденсатора падает с ростом частоты.

При расчетах может быть использована эмпирическая зависимость, обеспечивающая хорошее приближение в области рабочих частот:

С = 0.77 ? Сном ? 0,001?f

где Сном - номинальная емкость конденсатора.

Например, конденсатор с номинальной емкостью 22мкф на частоте 800Гц будет представлять из себя емкость всего лишь в 5мкф!

Поэтому для обеспечения качественной фильтрации во всем диапазоне частот электролитический конденсатор необходимо шунтировать высокочастотным керамическим конденсатором, т.к. емкость электролитического конденсатора на высоких частотах очень незначительна.

Одним из недостатков электролитических конденсаторов является то, что они поляризованы и на них необходимо поддерживать постоянное напряжение соответствующей полярности, т.е. конденсатор может работать только с пульсирующим и не может работать с переменным током.

На практике часты случаи пробоя выпрямительных диодов.

В этих случаях конденсатор оказывается под воздействием переменного тока, протекающего через него в обоих направлениях.

Это ведет к быстрому разогреву конденсатора с последующим выходом из строя и возможностью взрыва.

Взрыв электролитического конденсатора может привести к травме! Будьте осторожны при включении в сеть ремонтируемых ИБП! Не наклоняйтесь близко к схеме, пытаясь "увидеть" процессы, происходящие в ней - это опасно! Лишь только после того, как Вы убедились, что сразу при включении взрыва не произошло, Вы можете приступить к исследованию схемы к этому времени он как раз нагреется и приготовится рвануть... так что подождите несколько секунд.

Для увеличения срока службы электролитических конденсаторов они должны работать под напряжением, не превышающим 80% максимально допустимого паспортного значения рабочего напряжения.

Соединив два полярных конденсатора одинаковой емкости встречно-последовательно, можно получить неполярный конденсатор, способный работать в цепях переменного тока.

Результирующая емкость такого конденсатора равна половине емкости отдельного конденсатора, а допустимое напряжение - допустимому напряжению отдельного конденсатора.

При использовании электролитических конденсаторов в цепях переменного или пульсирующего постоянного тока напряжение пульсации не должно превышать максимально допустимого значения, которое оговаривается в справочниках.

В противном случае конденсатор будет перегреваться. Температура является основной причиной старения, и поэтому электролитические конденсаторы никогда не следует использовать при температуре, превышающей рекомендованное для них значение.

Именно поэтому на корпусе электролитического конденсатора зарубежного производства наносится не только его номинал и рабочее напряжение, но и предельно допустимое значение рабочей температуры.

Емкость электролитических конденсаторов обозначается на их корпусе в единицах или долях микрофарады, например: 100uF = 100мкф, 2.2uF = 2,2мкф.

Полярность электролитических конденсаторов зарубежного производства обозначается в виде значков (-), которые расположены вдоль всего корпуса конденсатора со стороны вывода его отрицательной обкладки.

Обозначения конденсаторов остальных типов различаются в зависимости от фирмы-изготовителя. При этом некоторые фирмы-изготовители используют кодированные обозначения номиналов конденсаторов.

Код состоит из трех цифр и выражает номинал конденсатора в пикофарадах, Первые две цифры кода являются значащими, а третья цифра представляет собой степень сомножителя 10.

Например, если на конденсаторе имеется надпись 472К, то его номинал 47 х 100 = 4700пф.

Практически встречающиеся неисправности конденсаторов можно разделить на:

обрыв (полная потеря емкости);

пробой (короткое замыкание между выводами);

значительное уменьшение емкости по отношению к номинальной;

повышенная утечка, т.е. возрастание постоянной составляющей тока через конденсатор.

Исправность конденсатора можно проверить путем выпаивания его из схемы и "прозвонки" с помощью омметра (на пробой), а также замера на измерителе емкости (на обрыв и соответствие номиналу).

При этом рекомендуется устанавливать максимальный предел измерения в случае использования стрелочного омметра.

Исправность электролитических конденсаторов, благодаря их большой емкости, может быть в первом приближении оценена по начальному отклонению стрелки омметра. При этом для сравнения полезно иметь под рукой заведомо исправный электролитический конденсатор такой же емкости, как и проверяемый.

В случае исправности проверяемого конденсатора отклонение стрелки должно быть приблизительно таким же, как и для эталонного конденсатора. Полярность подключения щупов омметра должна соответствовать полярности выводов конденсатора ( (+) омметра - к выводу положительной обкладки конденсатора).

При исправном конденсаторе стрелка омметра после отклонения должна медленно вернуться в начало шкалы.

Если этого не произошло и стрелка остановилась, не дойдя на значительное расстояние до начала шкалы, то проверяемый конденсатор имеет повышенное значение утечки и должен быть заменен.

Не забудьте разрядить конденсатор перед его проверкой путем кратковременного замыкания выводов с помощью отвертки или пинцета! Иначе вы рискуете вывести из строя свой измерительный прибор.

Обнаружение таких конденсаторов представляет собой особую сложность при ремонте.

Выпаивание и проверка с помощью омметра в этих случаях результата не дает.

Обнаружить такой конденсатор можно только по нарушению режима работы схемы в месте его установки.

В таких случаях лучше всего заменить подозреваемый конденсатор на заведомо исправный, либо собрать специальную схему для его проверки под напряжением.

Иногда встречаются случаи, когда в результате небрежного обращения с платой керамические конденсаторы, установленные на ней получают механические повреждения.

Такие конденсаторы сразу бросаются в глаза при внимательном осмотре платы.

Они имеют отколотые края, трещины и т.д. Несмотря на то, что они могут быть исправны, такие конденсаторы лучше всего сразу же заменить.

Представляют собой частные случаи катушек индуктивности с магнитным сердечником.

В реальной катушке провод, из которого она навивается, обладает последовательным сопротивлением, а между витками обмотки имеется распределенная емкость.

Две катушки индуктивности, связанные друг с другом через общий магнитный сердечник, образуют трансформатор.

При этом реальные трансформаторы (в отличие от идеальных) имеют между вторичными и первичными обмотками емкость.

Эквивалентная схема катушки индуктивности показана на рис.12,6. Межвитковая емкость представлена здесь в виде шунтирующего конденсатора с сосредоточенными параметрами, так что на некоторой частоте имеется параллельный резонанс.

Эта частота резонанса определяет верхнюю частоту, на которой можно использовать катушку индуктивности.

Другой важной характеристикой катушек индуктивности является их чувствительность к паразитным магнитным полям и способность генерировать эти поля.

Поэтому к силовым импульсным трансформаторам ИБП предъявляют жесткие требования по обеспечению электромагнитной совместимости, по индуктивности рассеяния обмоток при условии обеспечения хорошего потокосцепления между обмотками, а также по конструкции с высокой прочностью изоляции (как правило, пробивное напряжение не менее 2кВ). Эти требования прежде всего обусловлены прямоугольностью формы напряжения с большой частотой (около З0кГц), а также большой амплитудой импульсов в каждом полупериоде напряжения.

Импульсные трансформаторы предназначены для передачи кратковременных электрических импульсов достаточно большой мощности.

Возникающие при этом искажения плоской части импульса определяются конечной величиной индуктивности первичной обмотки L1, а искажения фронта - индуктивностью рассеяния Ls.

Эти искажения фронтов импульсов вызываются паразитными колебаниями, возникающими в контуре, образованном индуктивностью рассеяния Ls и собственной емкостью С0.

Поэтому при выполнении импульсного трансформатора принимаются специальные меры для уменьшения этих паразитных параметров.

Меры эти в основном сводятся к следующему.

Обмотки располагают таким образом, чтобы между их выводами было приложено в процессе работы возможно меньше импульсное напряжение. Рекомендуется обмотку с меньшим числом витков располагать внутри, а с большим числом витков - снаружи катушки.

Для получения малой величины индуктивности рассеяния одну из обмоток наматывают в два слоя, между которыми помещают вторую обмотку.

В некоторых импульсных трансформаторах первичная и вторичная обмотки наматываются одновременно двумя проводами, так что витки одной обмотки располагаются между витками другой.

В качестве межслоевой и межобмоточной изоляции обычно используются пленки неорганических диэлектриков.

Сами трансформаторы пропитывают компаундами или лаками.

В силовых импульсных трансформаторах ИВП персональных компьютеров находят широкое применение Ш-образные ферритовые магнитопроводы, наиболее технологичные для процесса намотки обмоток и характеризующиеся высоким коэффициентом их заполнения.

Исходя из вышесказанного, можно сделать неутешительный вывод о том, что при выходе из строя силового импульсного трансформатора его ремонт или изготовление нового - дело весьма сложное и требует специального оборудования, материалов, оснастки и высокой квалификации.

Кроме того импульсный трансформатор является оригинальной неунифицированной деталью, которая разрабатывается и применяется для данной конкретной схемы ИВП и, как правило, не подходит для других схем.

При нарушении хотя бы одного из вышеперечисленных параметров в результате ремонта импульсного трансформатора, он будет работать неудовлетворительно, что приводит к нарушению оптимального соотношения потерь мощности на элементах ИВП и скорому повторному выходу ИБП из строя.

К счастью, силовые импульсные трансформаторы необратимо выходят из строя довольно редко, что объясняется их высокой надежностью, которая заложена в технологии их изготовления, т.к импульсный трансформатор является одним из самых ответственных элементов схемы ИБП.

Рассмотрим теперь основные особенности построения трансформаторов тока, которые используются во многих схемах ИБП в качестве датчика схемы токовой защиты.

Характерной особенностью трансформатора тока в отличие от трансформатора напряжения является то, что вторичная обмотка его должна быть обязательно замкнута на нагрузку, сопротивление которой не превышает определенного значения.

Разомкнутое состояние вторичной обмотки является аварийным режимом. Поясним это подробнее.

Т.к. ток первичной обмотки не изменяется при разрыве цепи вторичной обмотки, в отличие от трансформатора напряжения, то переменный магнитный поток в сердечнике имеет очень большую амплитуду из-за того, что отсутствует встречный компенсирующий магнитный поток, порождаемый током вторичной обмотки.

Скорость изменения магнитного потока при смене полярности тока, протекающего через первичную обмотку, также очень велика.

Поэтому будет очень велика ЭДС, наводимая этим потоком на разомкнутой вторичной обмотке. Величина этой ЭДС такова, что может привести к пробою изоляции.

Для безопасности работы в случае повреждения изоляции между первичной и вторичной обмотками, вторичная обмотка должна быть обязательно заземлена.

Кроме того, большая амплитуда переменного магнитного потока в сердечнике приводит к значительному возрастанию потерь на его перемагничивание. Поэтому трансформатор начинает сильно перегреваться.

Рис.2.7. Встречающиеся на практике конструкции трансформатора тока на Ш-образном (а) и на кольцевом (б, в) сердечнике.

В схеме ИБП PS-6220C, например, функцию нагрузки вторичной обмотки трансформатора тока Т4 выполняет резистор R42 (470 Ом) Трансформатор тока в рассматриваемом классе ИБП в основном имеет две конструктивные реализации. В одном варианте он представляет собой трансформатор на Ш-образном ферритовом сердечнике, на среднем керне которого расположен каркас с намотанной на него вторичной обмоткой. Первичная обмотка расположена поверх вторичной и представляет из себя один виток монтажного провода в пластмассовой изоляции (рис.14, а, б).

В другом варианте вторичная обмотка наматывается на кольцевой ферритовый сердечник, а первичной обмоткой является вывод конденсатора, который включен последовательно с первичной обмоткой силового трансформатора (рис2.7, в).

Однако встречаются и другие варианты конструктивного исполнения трансформатора тока.

Дроссели выходных фильтров (кроме дросселя групповой стабилизации) представляют собой катушки индуктивности с однорядной намоткой из медного провода большого сечения на незамкнутом ферритовом сердечнике цилиндрической формы (ферритовые стержни).

Большое сечение провода объясняется значительной величиной выходных токов ИБП, а незамкнутая форма сердечника - работой дросселя с большим током подмагничивания.

Замкнутая форма сердечника в этом случае привела бы к вхождению его в магнитное насыщение и потере дросселем фильтрующих свойств.

Неисправности индуктивных элементов можно подразделить на:

обрыв в обмотке;

межвитковое замыкание;

межобмоточное замыкание (только для трансформаторов), замыкание (пробой) обмотки на сердечник;

потеря сердечником магнитных свойств (из-за перегрева, механических повреждений и т.д.).

Выход из строя выходных дросселей фильтров в ИБП явление крайне редкое из-за их высокой надежности.

Выход из строя трансформаторов часто можно определить при внешнем осмотре по потемнению отдельных участков наружной изоляции, появлению пузырьков воздуха под изоляцией, вспениванию и выделению из под изоляции пропиточного компаунда.

Целостность обмоток на "обрыв", а также наличие межобмоточного замыкания и замыкания какой-либо из обмоток на сердечник легко проверяются с помощью омической "прозвонки".

Остальные из перечисленных выше неисправностей поддаются обнаружению крайне сложно, так как омическое сопротивление обмоток трансформатора очень мало (единицы и даже доли Ом!).

Если есть подозрение на межвитковое замыкание или на потерю сердечником магнитных свойств, то трансформатор нуждается в замене на аналогичный.

Диоды, применяемые в рассматриваемом классе ИБП, можно условно подразделить на:

силовые выпрямительные низкочастотные (диоды входного сетевого моста и схемы пуска);

силовые выпрямительные высокочастотные вторичной стороны;

высоковольтные высокочастотные (рекуперационные диоды транзисторного инвертора);

низковольтные высокочастотные (применяемые в согласующем каскаде и сигнальных цепях защиты, а также схеме образования сигнала PG).

Выпрямительные низкочастотные диоды для входного выпрямительного моста выбираются при замене по следующим основным параметрам:

постоянному обратному напряжению Uo6p. (не менее 400В);

среднему прямому току Iпр. (не менее 2-4А в зависимости от мощности блока);

импульсному прямому току Iи. пр. (не менее 70-100А).

Для силовых выпрямительных высокочастотных диодов, кроме того, важным параметром служит время восстановления обратного сопротивления диода teoc, которое определяет длительность режима "сквозных токов" в схеме выпрямления. Это увеличивает коммутационные потери не только в диодах выпрямителя, но и в транзисторах инвертора. При этом элементы источника оказываются в режиме короткого замыкания, что создает условия для коммутационных выбросов на фронтах переключения, ведущих к отказу источника. Время teoc. должно быть в три-четыре раза меньше времени выключения транзистора и соответствовать teoc. = 0,3 - 0,5мкс. Вторым важным параметром этих диодов является прямое падение напряжений Unp., от значения которого зависит КПД выпрямителя. Это напряжение должно быть по возможности меньшим.

Сравнительно меньшее значение Unp. получается у диодов с барьером Шоттки. У данного типа диодов Unp. составляет 0,4-0,6В при токах до 100А, а время восстановления не более 0,1мкс. Недостатком диода является большой обратный ток и малое допустимое обратное напряжение (20 - 40В).

Для остальных диодов определяющим параметром является teoc.

Мощные выпрямительные диоды в каналах выработки +5В и +12В стоят на радиаторах, т.е. для обеспечения температурного режима работы этих диодов надо обеспечить хороший теплоотвод!

Характерной ошибкой ремонтников при замене вышедших из строя зарубежных диодов является незнание одной характерной особенности. Исторически сложилось так, что у диодов, выпускаемых отечественной промышленностью метка, как правило, наносится со стороны анода. Зарубежные диоды, как правило, имеют метку у катода.

Поэтому ремонтник, извлекая неисправный диод из платы, устанавливает на его место диод отечественного производства, стараясь при этом сохранить расположение метки.

В результате диод оказывается запаян "наоборот", что приводит к выводу ИБП из строя.

Однако необходимо отметить, что и для зарубежных, и для отечественных диодов расположение меток может быть и противоположным.

Поэтому необходимо перед установкой диода на плату разобраться в расположении выводов с помощью омметра, не доверяясь справочникам, в которых иногда встречаются досадные ошибки! Иногда ошибки при маркировке диодов бывают допущены на заводе изготовителе.

Практически встречающиеся неисправности диодов можно разделить на:

- обрыв;

- короткое замыкание (пробой);

- уменьшение обратного сопротивления (утечка);

- увеличение прямого сопротивления.

Все эти неисправности легко обнаруживаются при помощи омметра после выпаивания диода из схемы.

Обращаем Ваше внимание на то, что иногда утечка диода проявляется только под напряжением!

Большие сложности возникают при выходе из строя стабилитронов и тиристоров в ИБП, которые обычно являются пороговыми и исполнительными элементами различных защитных схем.

Определение их типов и параметров часто бывает затруднено из-за отсутствия справочной информации и принципиальных схем на ИБП.

Произвольный подбор этих элементов чреват выходом из строя элементов ИБП, которые еще не "сгорели". Поэтому при таких сложных случаях необходимо "снять" принципиальную схему с печатной платы ИБП и тщательно проанализировать принцип ее работы, после чего попробовать подобрать элемент со сходными параметрами, либо попытаться достать аналогичный зарубежный элемент.

Транзисторы, применяемые в рассматриваемом классе ИБП, можно условно подразделить на:

силовые высокочастотные (большой мощности);

сигнальные высокочастотные (малой мощности).

Силовые высокочастотные транзисторы применяются в качестве ключей полумостового инвертора и рассчитаны на работу со значительными токами и напряжениями.

Сигнальные транзисторы используются во всех остальных функциональных узлах схемы ИБП.

Во всех схемах рассматриваемого класса ИБП в качестве силовых ключей используются исключительно биполярные транзисторы обратного типа проводимости (n-p-п).

В качестве сигнальных используются транзисторы как прямого (p-n-р), так и обратного типа проводимости. При замене сигнальных транзисторов следует учитывать не только цифровое обозначение транзисторов, но и буквенные обозначения, которые нанесены на корпус. Транзисторы с разными буквенными обозначениями имеют различные параметры (прежде всего - коэффициент усиления по току)!

Практически встречающиеся неисправности транзисторов можно разделить на:

обрыв одного или обоих переходов;

короткое замыкание (пробой) по одному или обоим переходам;

уменьшение обратного сопротивления (утечка) одного или обоих переходов;

пробой по участку коллектор-эмиттер при целостности переходов коллектор-база и эмиттер-база. Все эти неисправности легко обнаруживаются при помощи омметра после выпаивания транзистора из схемы, т.к. каждый из переходов транзистора аналогичен диоду.

Интегральные стабилизаторы

Рис.2.8. Интегральные линейные регуляторы напряжения LM7805, LM7812.

Эти микросхемы содержат встроенную защиту от перегрузки по току и тепловую защиту от максимально допустимой температуры кристалла (175°С), что существенно повышает надежность микросхем.

Типовая схема включения этих стабилизаторов приведена на рис.17.

Конденсатор С1 - обычный фильтрующий конденсатор, который должен иметь емкость 1000мкф на 1А тока нагрузки.

Конденсатор С4 используется для сглаживания переходных процессов при внезапных повышениях потребляемого тока и должен иметь емкость примерно 100мкф на 1А тока нагрузки.

Рис.2.9. Выход ИМС 7805 на режим стабилизации при подаче входного напряжения.

Рис.2.9. Типовые схемы включения трехвыводных интегральных стабилизаторов положительного (а) и отрицательного (б) напряжений.

В рассматриваемом классе ИБП используются, в основном, для стабилизации отрицательных выходных напряжений трехвыводные интегральные стабилизаторы напряжения типа 7905, 7912 или 7805, 7812.

Структурная схема трехвыводных интегральных стабилизаторов 7805 (К142ЕН5А) и 7812 (К142ЕН8Б) приведена на рис.14.

Основные параметры этих стабилизаторов напряжения приведены в табл.6.

Входной конденсатор С2 устраняет генерацию при скачкообразном включении входного напряжения (Uex), которая возникает в стабилизаторе из-за влияния монтажных емкости и индуктивности соединительных проводов, образующих паразитный колебательный контур (рис.15),

Выходной конденсатор СЗ служит для защиты от переходных помеховых импульсов.

Обычно С2 и СЗ имеют емкость от 0,1 до 1 мкф и должны монтироваться как можно ближе к корпусу стабилизатора. Амплитуда высокочастотных колебаний может превышать максимально допустимое входное напряжение, что приводит к пробою микросхемы, поэтому наличие и исправность С2 является обязательным условием для работы схемы.

Иногда между входом и выходом интегрального стабилизатора включается диод (рис.2.9). В его отсутствии после выключения из сети ИБП конденсатор, стоящий на выходе стабилизатора разрядится через стабилизатор, что может привести к выходу его из строя.

Минимальное входное напряжение интегрального стабилизатора должно превышать выходное на 2,5В, т.е. для стабилизатора с фиксированным выходным напряжением +5В, например, минимальное входное напряжение составляет +7.5В.

3. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ

3.1 Расчет сметной стоимости

Затраты, учитываемые в договорной цене устройства (прибора)

Затраты - затрачиваемые ресурсы, расходы на производство, приобретение товаров и услуг.

Стоимость - ценность товаров и услуг, выраженная в денежной форме.

Расчет стоимости производится в текущих ценах. В состав сметы затрат входит стоимость материальных ресурсов, рассчитываемая исходя из данных о потребности этих ресурсов.

В смету включается тара и упаковка, транспортные расходы, а также необходимые монтажные работы.

Тема дипломного проекта «Конструкция и поиск неисправности блоков питание ЖК-дисплеев»

Таблица № 1 Перечень материалов и деталей

Обоснование

стоимости

Наименование затрат или работ

Единица

измер.

тип

Кол-во

единиц

Стоимость, руб.

Единицы

Общая руб.

Прейскурант

Итого прямые затраты

3.2 Расчёт затрат на оплату труда

Затраты на оплату труда определяются по формуле:

З = (Т\t) · З мин.х(К рай. + К сев.)

З= (1\160) · 16824(70%+80%)= 157,725 рублей

где Т- Нормативная трудоемкость чел.\час, т.е. 1 рабочий день =8 час.

Т= Число рабочих дней х 8 час.

t= среднемесячное количество рабочих часов t= 160 час.

З мин.-минимальный размер оплаты труда, установленный в РС(Я) З мин. = 16 824 руб.

К рай. - районный коэффициент к заработной плате, установленный действующим законодательством.

3.3 Расчет взносов во внебюджетные фонды

Взносы во внебюджетные фонды оплачиваемые работодателем с начисления на заработную плату составляют:

Таблица 3.1 - Расчет взносов во внебюджетные фонды

Внебюджетные фонды

Процент, %

Сумма, руб.

Пенсионный фонд (ПФ)

22

34,6

Фонд социального страхования (ФСС)

2,9

4,5

Федеральный фонд обязательного медицинского страхования (ФФОМС)

5,1

8,04

В Фонд защиты от несчастных случаев на производстве

0,2

0,3

Итого

30,2

47,6

3.4 Расчет амортизационных отчислений

Расчет затрат на электроэнергию и амортизацию оборудования необходимо проводить с учетом цены электроэнергии, цены и срока службы оборудования и трудоёмкости.

Амортизационные отчисления определяются исходя из сметной стоимости основных производственных фондов и срока эксплуатации основных фондов:

На = 1\ Срок эксплуатации (помесячно) · 100 %

где На - Норма амортизационных отчислений (%)

Срок эксплуатации (помесячно) определяется в соответствии кодам по ОКОФ.

Учитываем как основные фонды приборы и оборудование стоимостью более 3,0 тыс. рублей. Менее 3,0 тыс. рублей учитываем, как материалы.

Таблица 3.2 - Расчет амортизационных отчислений

Виды основных

производственных

фондов

Стоимость основных производственных фондов, руб.

Нормы

амортизации %

Амортизационные

отчисления,руб.

1 Омметр

3400

1,2%

40,8

2 Персональный

компьютер

20000

2,8%

560

Итого:

23400

4%

600,8

600,8\12= 50,06\30= 1,66 руб.

3.5 Расчет расходов на электроэнергию

Расходы на электроэнергию со стороны для производственных нужд определяются в зависимости от потребляемой мощности и тарифа за 1 к Вт в час установленного для определенной энергосистемы. Расчет проводится по формуле:

А= W · t

где W-мощность, потребляемая за час работы единицей оборудования

t - время действия, час

Затраты на электроэнергию определяются по формуле:

С = А · Т

С= 0,35 · 9,21

С= 3,2

Где Т - одноставочный тариф за 1 кВт равен 9, 21 рублей.

Таблица 3.3 - Потребление мощности оборудования

Наименование оборудования

Потребляемая мощность к Вт\час

Количество единиц, шт.

Персональный компьютер

0,35

1

Итого

0,35

1

3.6 Расчет себестоимости и цены разработки

На основании полученных расчетов затрат, определяем себестоимость проекта.

Таблица 3.4 - Смета всех затрат

Наименование статьи затрат

Сумма затрат, тыс. руб.

Структура затрат, %

Фонд оплаты труда

157,7

15,8

Взносы во внебюджетные фонды

47,6

4,7

Амортизационные отчисления

1,66

70,7

Затраты на электроэнергию

3,2

0,3

Итого:

806,45

91,5

Общая сумма затрат при выполнении прибора, макета, проекта составила______.

Наибольший удельный вес _____в смете затрат занимают расходы на амортизационные отчисления, затем идут фонды оплаты труда____. Но если учесть, что тема, исследуемая в данной работе практически не изучена, и довольно актуальна сегодня, то сумма затрат по данным статьям не может являться слишком высокой.

3.7 Организационно-экономическое обоснование проекта

В данном подразделе проводится маркетинговый анализ: определяется круг возможных покупателей (потребителей), сравнивается преимущества созданной разработки с имеющимися на рынке.

Разработка любого устройства (программного продукта) требует определенных материальных, временных и трудовых затрат, а, следовательно, должна соответственно окупаться.

Экономическим эффектом (выгодой) является предполагаемая прибыль от реализации созданной разработки (программного продукта):

Предполагаемая прибыль = Доход - Затраты

Необходимо указать, что будет являться источником получения доходов.

Определяем доход

где Д р. - доходы от реализации (предоставления основных услуг), тыс. рублей

Др = N р. · Ц

Др = 20 · 1500 = 30000 рублей

где Nр - количество реализованной продукции (оказанных основных услуг) за месяц (указать период), 20 шт.

Ц - стоимость продукции (оказанной одной услуги), 30000 руб.

Определяем валовую прибыль

П = Д - Э

П = 30000 - 14880 = 870 рублей

где Э - эксплуатационные расходы, 14880 тыс.рублей

Определяем чистую прибыль (без учета налога на прибыль)

П чист. = П вал. · 0,76

Определяем себестоимость единицы продукции (услуги)

С ед. = Э общ. \ Д · 100

С ед. =? \ 15750 · 100 =

Показатель позволяет соизмерить результат (эффект) с эксплуатационными расходами.

Полученные результаты расчетов основных технико-экономических показателей вносим в сводную таблицу.

3.8 Сводная таблица основных технико - экономических показателей

Полученные результаты расчетов основных технико-экономических показателей вносим в сводную таблицу.

Таблица № 8

Наименование показателей

Единица измерения

Условное обозначение

Значение показателя

Капитальные затраты

Тыс.рублей

К

Численность работников

Человек

Р

Доходы

Тыс.рублей

Д валовый

Эксплуатационные расходы

Тыс.рублей

Э

Прибыль чистая

Тыс.рублей

П чистая

Рентабельность

%

R

Абсолютная экономическая эффективность

Рублей

Е

Срок окупаемости

лет

Т

4. ОХРАНА ТРУДА И ОКРУЖАЮЩЕЙ СРЕДЫ

4.1 Анализ негативных факторов

Дипломная работа на тему «Конструкция и поиск неисправности блоков питание ЖК-дисплеев» непосредственно связана с разборкой блоков питание, поиска неисправностей и ремонтом блоков питание. При этих работах по ремонту блоков будут использоватя электрический ток, измерительных приборы, и паяльники и ручные инструменты.

При диагностировании и ремонте блоков питание мы можем подвергаться воздействию следующих негативных факторов:

1) Электрический ток;

2) Повышенная запыленность;

3) Повышенная температура воздуха рабочей зоны;

4) Малоподвижная поза;

5) Острые инструменты и механические травмы;

6) Разлетающиеся осколки;

7) Пожароопасность;

8) Недостаточная освещенность рабочей зоны;

9) Пары, Брызги припоев и флюсов;

10) Повышенные уровни шума и вибрации на рабочем месте;

4.2 Действия негативных факторов при ремонте блоков питание

При диагностирование и ремонта блоков питание прикоснувшись к внутренней части и модулей блоков питание голыми руками без диэлектрических перчатка можно получить электрический удар если питание подключена к сети, что приведет к получению травмы. Электрический удар может вызывать судорожные сокращение мышц которое может повлиять на другие органы и это может привести к нарушению их нормальной работы, в том числе и к абсолютному прекращению их функциональности.

Действие пыли на кожный покров сводится в основном к механическому раздражению. Вследствие такого раздражения возникает небольшой зуд, неприятное ощущение, а при расчесах может появиться покраснение и некоторая припухлость кожного покрова, сухость кожного покрова, иногда появляются трещины, сыпи.

Пыль попавшая в глаза, вызывает воспалительный процесс их слизистых оболочек - конъюнктивит, который выражается в покраснении, слезотечении, иногда припухлости и нагноении.

Высокая температура воздуха приводит к быстрому утомлению, к перегреванию организма и тепловому удару. Ухудшается умственная деятельность, замедляется реакция, физическое утомление. Кроме того, высокая температура воздуха нарушает водносолевой обмен в организме.

Малоподвижная и продолжительная работа вредна человеку. Длительное пребывание в одной и той же позе заставляет мышцы работать непрерывно без отдыха. При этом в них накапливаются продукты распада, вызывающие болезненные ощущения. Возрастает риск многих заболеваний вроде остеохондроза, ожирения, геморроя.

При ремонте плазменной панели существует также вероятность различных механических травм:

При взрыве электролитического конденсатора его корпус разлетается на мелкие осколки. При использовании неисправного инструмента можно поранить руку (например, сорвавшимся при отворачивании самореза шлицом отвертки)

Тяжёлые узлы плазменной панели при их замене могут упасть на ногу различные кожухи, экраны и т.п. при их снятии могут повредить руки, тяжелые радиодетали (силовые трансформаторы питания и т.п) при их замене в панели могут упасть со стола на ногу.

При отрезании выводов радиоэлементов куски проволоки могут попасть в глаза.

Пожароопаснсть - в условиях развития пожара человек может подвергнуться смертельной опасности по причинам: теплового воздействия на организм, образования монооксида углерода и других токсичных газов, недостатка кислорода. Большую опасность представляет тепловое излучение огня, которое может вызвать ожоги тела, глаз и др. Дым делает воздух непрозрачным и вредно действует на глаза и дыхательные пути.

Недостаточное освещение рабочего места затрудняет длительную работу, вызывает повышенное утомление и способствует развитию близорукости. Слишком низкие уровни освещенности вызывают апатию, сонливость, головные боли, а в некоторых случаях способствуют развитию чувства тревоги.

При использование припоев и флюсов путем сплавления из компонентов основными факторами, при попадание на человека вызывают вредное воздействие на организм человека, являются высокая температура расплавленных металлов и флюсов, а также выделение вредных паров, газов и пыли. Пары свинца и олова, которые попадают в организм человека, вызывают общее отравление, поражение кожи, раздражение слизистой оболочки, нарушение функционирования нервной системы, воспаления, раздражения, падению артериального давления.

Если мы работаем длительно в условиях шума, более быстро утомляемся, возникают головные боли. При воздействии шума на организм повышается давление крови, Ослабляется внимание, снижается производительность труда, понижается острота слуха, головные боли и головокружение.

Вибрация, как и шум вредно воздействует на организм При этом страдает в первую очередь нервная система и анализаторы. Симптомы заболевания: головокружения, расстройства координации движения, снижение остроты зрения , изменение обменных процессов, мышечная слабость и быстрая утомляемость.

4.3 Охрана труда при ремонте блоков питание

Требования охраны труда перед началом работы

- Перед началом работы пользуемся следующими средствами индивидуальной защиты:

а) Защитными очками;

б) Спецодеждой;

в) Диэлектрическими перчатками;

г) Инструменты с изолированными ручками;

д) Диэлектрический резиновый ковер;

- Осматриваем рабочее место, приводим его в порядок, освобождаем проходы и не загромождаем их.

- Включаем и проверяем работу электромеханической вентиляции или проветриваем помещение открыв форточку.

- Проверяем наличие напряжения в сети только специальными приборами: вольтметром, указателем напряжения.

- При пользовании паяльником:

а) проверяем внешним осмотром техническое состояние кабеля и штепсельной вилки, целостность защитного кожуха и изоляции рукоятки;

б) проверяем на работоспособность встроенных в его конструкцию отсосов;

в) проверяем на работоспособность, механизированную подачу припоя в случаях ее установки в паяльнике;

-Проверяем наличие и исправность:

а) ограждений и предохранительных приспособлений;

б) токоведущих частей электрической аппаратуры (пускателей, трансформаторов, кнопок и других частей);

в) заземляющих устройств;

г) средств пожаротушения;

- Перед использованием электроизмерительных приборов следует убедиться в отсутствии оголенных токоведущих частей.

- Заземляем измерительные приборы.

- На полу перед устройством раскладываем диэлектрические коврики.

- Убеждаемся, что освещенность на рабочем месте достаточна и соответствует ГОСТу.

Требования безопасности во время работы

- Аппаратуру устанавливаем на неподвижную подставку так, чтобы на экран панели не падали прямые солнечные лучи.

- Не оставляем включенный прибор без присмотра.

- Содержим рабочее место в чистоте, не допуская его загромождения.

- Используем только остро заточенные инструменты. При работе тупыми приходится прилагать гораздо больше усилий и может произойти соскальзывание.

- Работу выполняем только исправными, хорошо налаженными инструментами.

- При выполнении работ соблюдаем принятую технологию пайки изделий.

- Паяльник, находящийся в рабочем состоянии, устанавливаем в зоне действия местной вытяжной вентиляции или около открытой форточки.

- Паяльник на рабочих местах устанавливаем на огнезащитные подставки, исключающие его падение.

- Нагретые в процессе работы изделия и технологическую оснастку размещаем в местах, оборудованных вытяжной вентиляцией.

...

Подобные документы

  • Технические характеристики блока питания CHIEFTEC CTG-550-80P; основные причины его неисправности: пыль, перепады напряжения в сети, перегрев. Рекомендации по ремонту прибора. Расчет необходимой мощности блока питания для нормальной работы системы.

    курсовая работа [3,1 M], добавлен 29.04.2014

  • Блок питания компьютера, его основные задачи и технические характеристики. Состав и основные компоненты устройства, принципы его работы. Характерные неисправности и способы их устранения. Проверка рабочих напряжений. Алгоритм поиска неисправностей.

    курсовая работа [1,4 M], добавлен 28.05.2012

  • Конструкция и технические характеристики источников бесперебойного питания APC SU620 типа Line-Interactive. Особенности построения принципиальной схемы данной модели и принцип ее работы. Описание типовых неисправностей ИБП и методы их устранения.

    курсовая работа [2,6 M], добавлен 23.11.2010

  • Конструктивные элементы LCD-дисплеев. Особенности изготовления и использования LCD(жидкокристаллических) матриц TN-TFT, VA\MVA\PVA, IPS\SFT, PLS. Список и примеры неисправностей LCD-дисплеев по частоте их появления, описание методов их исправления.

    реферат [4,8 M], добавлен 29.06.2015

  • Назначение и составные части блока питания компьютера. Основные неисправности блоков питания, их признаки, причины, способы обнаружения и устранение. Проверка работоспособности блока питания. Инструменты и материалы, применяемые при ремонте блока питания.

    контрольная работа [4,1 M], добавлен 31.01.2016

  • Виды системных блоков. Неисправности питания центрального процессора, их признаки и способы устранения. Особенности электропитания монитора. Причины возникновения неисправностей аппаратной части жесткого диска, их характер проявления, методика устранения.

    дипломная работа [3,1 M], добавлен 09.06.2014

  • История развития дисплеев. Основные принципы работы СRT-мониторов, LCD-мониторов. Различные виды сенсорных экранов и современные типы мониторов. Сравнение характеристик мониторов LCD над CRT. Сенсорные экраны на поверхностно-акустических волнах.

    реферат [1,2 M], добавлен 15.06.2016

  • Исследование характеристик блока питания, влияющих на работу персонального компьютера. Самые распространенные неисправности блоков питания и способы их устранения. Универсальные алгоритмы проведения диагностирования, используемые на современном этапе.

    курсовая работа [600,4 K], добавлен 27.04.2016

  • Диагностика многофункциональных устройств (МФУ), описание их устройства, назначение составных частей и принцип работы. Анализ моделей МФУ. Подключение МФУ и установка драйвера. Основные неисправности сканера, принтера. Алгоритм поиска неисправностей.

    курсовая работа [1,7 M], добавлен 26.03.2012

  • Описание основных характеристик жидкокристаллического монитора на примере Samsung SyncMaster 206BW. Анализ основных причин неполадок жидкокристаллических мониторов, алгоритмы поиска неисправностей и способы их решения. Способы проведения диагностики.

    курсовая работа [797,0 K], добавлен 29.04.2014

  • Устройства и этапы преобразования графической информации в цифровую: СУБД, MapInfo. Сканеры и их типы. Устройства отображения информации, принцип их работы. Преимущества и недостатки жидкокристаллических дисплеев. Системы управления базами данных.

    контрольная работа [25,8 K], добавлен 28.02.2011

  • Выпрямители источников питания. Сглаживающие фильтры, назначение, классификация, принцип работы. Назначение и классификация стабилизаторов. Блоки питания персонального компьютера. Требования безопасности при наладке и ремонте компьютерной техники.

    дипломная работа [3,6 M], добавлен 20.05.2013

  • Характеристика монитора - устройства для вывода на экран текстовой и графической информации, его основные параметры, принцип работы. Схема электронно-лучевой трубки. Мониторы с теневой маской. Особенности и преимущества жидкокристаллических мониторов.

    презентация [705,0 K], добавлен 10.08.2013

  • Примеры эквивалентов нагрузки. Общие сведения и отличия форм-фактора ATX от AT. Принцип работы импульсного источника питания, его неисправности и принципы выбора. Формирование требований к стенду, подбор и параметры схемы. Экономическая эффективность.

    дипломная работа [1,9 M], добавлен 07.07.2012

  • Пятерка лучших производителей многофункциональных устройств, их схема и принцип работы. Техническое обслуживание данных устройств: подключение к компьютеру, инструкция по использованию. Возможные неисправности и пути их устранения, этапы диагностики.

    курсовая работа [139,4 K], добавлен 22.04.2014

  • Понятие дисплея, его назначение и виды. Принципы работы видеокарты и видеоадаптера. Пользовательские характеристики дисплеев. Взаимосвязь размера и разрешения экрана. Монитор как специализированный дисплей, контролирующий процесс отображения информации.

    творческая работа [311,4 K], добавлен 27.06.2009

  • Обзор конструкции и особенностей создания изображения в ЭЛТ мониторах. Состав теневой маски кинескопа. Классификация современных плоских мониторов. Способы антибликовой защиты экрана. Описания жидкокристаллических мониторов: цветопередачи, контрастности.

    презентация [1,0 M], добавлен 10.08.2013

  • Массовые технологии производства электронных дисплеев. Современные методы изготовления дисплеев, принципы их работы, преимущества и недостатки. Сферы применения дисплеев, объемы использования в современных устройствах, тенденции развития отрасли.

    реферат [1,1 M], добавлен 23.05.2010

  • Практическое обоснование выгодности использования web-модуля "Расширенный поиск по сайту". Схема отображения процесса ввода и запроса информации. Описание алгоритма и модель решения задачи. Структура и характеристика базы данных расширенного поиска.

    дипломная работа [2,4 M], добавлен 19.01.2017

  • Классификация неисправностей персонального компьютера. Диагностирование материнской платы, замена конденсаторов. Работа с операционной системой Windows. Основной алгоритм процесса поиска и устранения неисправности. Виды опасных и вредных факторов.

    дипломная работа [3,0 M], добавлен 15.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.