Основы построения человеко-разумных систем интеллектуальной поддержки принятия решений креативных проблем
Нейрофизиологические и нейрохимические процессы, происходящие в мозге человека. Создание интеллектуальных информационных систем поддержки творческих решений. Системный анализ междисциплинарных моделей. Проектирование информационно-управляющих систем.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 24.05.2018 |
Размер файла | 21,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Основы построения человеко-разумных систем интеллектуальной поддержки принятия решений креативных проблем
Клюшин Александр Юрьевич
ФГБОУ ВПО «Тверской государственный технический университет»
Россия, Тверь1
Доцент
Кандидат технических наук
Кузнецов Владимир Николаевич
ФГБОУ ВПО «Тверской государственный технический университет»
Россия, Тверь
Аннотация
В статье рассмотрены основы построения человеко-разумных систем интеллектуальной поддержки принятия решений креативных проблем.
Разум определяет интеллект человека. Также большое значение имеют нейрофизиологические и нейрохимические процессы, происходящие в мозге человека. Как правило это относится к творческой деятельности человека. И как одно из направлений в этом отношении можно рассматривать принятие решений креативных проблем лицами и группами. Причем принятие решений происходит во многих областях человеческой деятельности. Все это является определяющим элементом процесса управления. В тоже время приходится принимать решения в условиях неполноты информации. Например, в управлении деятельностью различных хозяйствующих субъектов с достаточно сложной структурой. У субъектов управления естественно будут собственные интересы, свои видения решений проблем, что предполагает дополнительную неопределенность и согласование интересов участников процесса принятия решений.
В тоже время сейчас актуальной является задача создания интеллектуальных информационных систем поддержки творческих решений, которые были бы направлены на развитие разума лиц и групп, принимающих решения. В этом случае целесообразно говорить о человеко-разумных интеллектуальных информационных и программных системах поддержки принятия решений креативных проблем.
Ключевые слова: интеллектуальная система; принятие решений; человеко-разумная система; методы системного анализа; нечеткая логика; нечеткий вывод.
нейрофизиологический информационный управляющий
Abstract
The article discusses the basics of building human-intelligent systems intellectual decision support creative problems.
Intelligence defines human intelligence. Also of great importance are the neurophysiological and neurochemical processes in the human brain. Usually it refers to human creativity. And as one of the directions in this regard can be considered decisions of creative challenges individuals and groups. Moreover, decision-making takes place in many areas of human activity. All this is a defining element of the management process. At the same time we have to make decisions under conditions of incomplete information. For example, in the management of various business entities with a fairly complex structure. Subjects will naturally control their own interests, their own visions for solutions to problems, which involves additional uncertainty and coordination of interests of participants of the decision making process.
At the same time is now urgent is the task of creating intellectual information systems to support creative solutions that are aimed at the development of the mind of individuals and groups who make decisions. In this case, it is advisable to talk about human-intelligent intellectual information and software systems support decision-making of creative problems.
Keywords: intellectual system; decision-making; human-intelligent system; methods of system analysis; fuzzy logic; fuzzy conclusion.
Введение
В целом решение проблемы создания и применения методологии разработки информационно-управляющих человеко-разумных систем принятия креативных решений создает реальную предпосылку преодоления таких проблем как проблемы безопасности и качества жизни в настоящем и ближайшем будущем. Поэтому, должна быть решена фундаментальная задача информационной поддержки креативных решений «трудных» проблем ориентированная на развитие разума лиц и групп, принимающих решения с использованием методов искусственного интеллекта, методов и эвристических процедур формирования креативных и интуитивных решений, их статистической нечеткой оценки и согласованной оптимизации в условиях расплывчатой неопределенности [5]. На основе этого далее должна быть разработана проблемно-ориентированная информационно-управляющая «человеко-разумная» система принятия креативных решений по техническому обеспечению в какой-либо отрасли.
Основная часть
Проектирование информационно-управляющих систем обсуждалось еще Расселом Акоффом в 1967 году [1]. Информационно-управляющая система или субъект информационного управления представляет централизованное или распределенное подразделение, выполняющее функции информационной поддержки или информационного управления принятием решений активными субъектами организационной системы управления [3]. При информационной поддержке используется существующая информированность субъекта о ситуации выбора решений. При информационном управлении информированность субъекта целенаправленно формируется в процессе информационного взаимодействия. При этом необходимо не только учитывать, но и повышать активность субъекта, его интеллект, знания и понимание ситуации выбора. За счет этого происходит интеллектуализации организации в целом [7].
Также необходимо отметить, что с психологической точки зрения мозг имеет несколько уровней обработки информации [8]. Поэтому модель поведения целеустремленного субъекта - исследователей операций (ИО) и лиц, принимающих решения (ЛПР) - может иметь, например, следующий вид: 1-й уровень. Окружение и контекст: рынок, предприятие… 2-й уровень. Поведение: действия и результаты (реакции), духовные и материальные... 3-й уровень. Способности и свойства: интеллектуальные, когнитивные, лингвистические, поведенческие… 4-й уровень. Ценности (духовные и материальные) и убеждения: нравственность (консенсус), демократия (основы), коммунизм (идеология) ... 5-й уровень. Идентификация: коммунист, демократ, предприниматель, должностное лицо, семьянин … 6-й уровень. Духовность. Определяется межагентными чувствами, например: любовь и ненависть. Любовь и ненависть враждующих, сотрудничающих, соревнующихся, конкурирующих и «безразличных» сторон. Конфликты. Компромисс.
Одни исследователи считают, что уровень с большем номером (он находится в более глубокой структуре данных нервной системы) определяет уровень с меньшим номером. Другие предполагают, что модель распадается на три уровня. Причем на первом уровне поведение и способности, на втором - окружение и на третьем ценности и убеждения, убеждения относительно идентичности и убеждения относительно духовности [6]. Поэтому необходимо не фиксировать логическую связь между уровнями, а описывать ее с помощью правдоподобных рассуждений, предположений и убеждений (понятия об элементах модели, суждения о их свойствах и отношениях, об отношениях уровней, выводы о эмоциях и чувствах, ценностях и убеждениях, об идентификации и духовности) и нечеткой логики [17].
Применение данного подхода обуславливают следующие направления научных исследований (пример).
Разработка методов системного анализа в расплывчатых условиях проблем согласованного управления в какой-либо отрасли, представлений о духовно - нравственном поведении ИО и ЛПР, согласованной оптимизации управленческих решений по междисциплинарным проектам технического обеспечения в какой-либо отрасли, системного анализа междисциплинарных моделей поведения ЛПР и групп, принимающих решения (ГПР) с учетом духовно - нравственной составляющей;
Разработка методов лингвистической, логической, математической, информационной, междисциплинарной формализации и постановка задач системного анализа в расплывчатых условиях с использованием информации различной физической природы и различных логик исследования;
Разработка междисциплинарных моделей поведения ИО и групп исследователей операций (ГИО), ЛПР и ГПР с учетом духовно - нравственной составляющей. Разработка междисциплинарных моделей описания и оценок эффективности решения задач системного анализа в расплывчатых условиях с использованием информации различной физической природы и различных логик исследования; 4. Разработка междисциплинарных алгоритмических предписаний решения задач системного анализа в расплывчатых условиях с использованием информации различной физической природы и различных логик исследования;
Разработка интеллектуальных информационно - управляющих систем системного анализа в расплывчатых условиях с использованием информации различной физической природы и различных логик исследования.
Применяется системный анализ междисциплинарных моделей поведения ИО и ГИО, ЛПР и ГПР. Используются понятия операции, оперирующей стороны и исследователя операций, который помогает оперирующей стороне.
Таким образом, осуществляется:
Формирование каждым исследователем операций своего восприятия решения проблемы (работа с литературой, общение, сон, транс, вспоминание образов проблемы и ее решения, эмоций, чувств, убеждений и их характеристик);
Формирование группой исследователем операций группового восприятия («модель» обучения и постоянного обновления знаний в интеллектуальных организациях);
Формирование группой исследователем операций творческих решений по построению субъективных реальностей, междисциплинарных моделей поведения и др. («модель» интерактивных креативных процессов Уолта Диснея:
мечтатель, реалист, критик);
Анализ полезности (согласие - условие остановки процесса);
Построение компьютерной модели поведения ИО и ГИО, ЛПР и ГПР и компьютерный эксперимент (интеллектуальные информационные управляющие системы расплывчатого анализа междисциплинарных моделей).
В настоящее время мягкие вычисления объединяют такие области как: нечеткая логика, искусственные нейронные сети, вероятностные рассуждения и эволюционные алгоритмы. Они дополняют друг друга и используются в различных комбинациях для создания гибридных интеллектуальных систем. Сейчас нечеткая логика "вторглась" практически в большинство методов Data Mining, наделив их новой функциональностью [15].
В области проблем принятия решений при нечеткой исходной информации существенное значение имеют работы ученых: Р. Беллман, Н.Г. Ярушкина, В.Б. Тарасов, А.Н. Борисов, Л.С. Берштейн и др. В области теории и практики развития интеллектуальных информационных технологий накоплен также значительный опыт: Р. Шеннон, В.И. Васильев, Г.С. Поспелов, Д.А. Поспелов, Б.Я. Советов и др.
В тоже время необходимо решение задач по созданию информационных технологий поддержки абстрактно - логического мышления исследователей операций и групп исследователей операций, лиц, принимающих решения и групп лиц, принимающих решения; информационных технологий поддержки их чувственного опыта; информационных технологий поддержки «синтеза чувственности и рассудка» в актах предметно - практической деятельности ИО и ЛПР по креативному решению трудно разрешаемых проблем.
Конечная цель - выбрать группе ИО по созданию информационно-управляющей человеко-разумной системе принятия креативных решений, и входящих в нее группе ИО (креативная помощь в решении проблемы) и группе ЛПР, такое креативное решения сложной проблемы, которое обеспечивает максимальное значение удовлетворенности ГИО и ГПР и убежденности в этом всех ИО (по созданию и использованию информационно-управляющей человеко-разумной системе принятия креативных решений), и входящих в нее группе ИО (по креативной помощи в решении проблемы) и ЛПР (решение сложной проблемы), т.е. их согласие. Междисциплинарная модель поведения представляет взаимосвязанную совокупность. Это могут быть паттерны (языковые модели, служащие для вербального создания и преобразования убеждений), слова, контекст, логика, математика, репрезентативные и компьютерные модели для описания выбора и совершения действий агентов (ИО и ЛПР) системы исследования, получаемых результатов, испытываемых агентами, эмоций, чувств, убеждений и ценностей, отношений между ними, применяемых агентами способностей и стратегий, получаемых и отправляемых агентами сообщений, используемых инструментов, решаемых задач и проблем, описание целей. Это так называемые сознательные и бессознательные знания людей разных специальностей и должностей.
Заключение
Многоуровневая модель целеустремленного поведения должна быть описана для прошлого, настоящего, ближайшего и отдаленного будущего с помощью правдоподобных рассуждений и нечеткой логики [9]. При этом должны быть применены: правдоподобные рассуждения и индуктивная логика в расплывчатых условиях; нечеткая и лингвистическая переменная вероятность; измерение значения переменной вероятность в абсолютной шкале с нечувствительностью с помощью интерактивных методов (метод золотого сечения); определение значений переменной вероятность в зоне нечувствительности; измерение функции принадлежности оценки в зоне нечувствительности нечеткой переменной вероятность в шкале порядка (методы экспертных оценок, метод фокус - групп и т.д.); формула Байеса для нечетких условий; логические методы анализа и синтеза схем в расплывчатых условиях; расплывчатый эксперимент; нечеткое множество истинностных значений логических переменных; выборочное пространство нечетких множеств истинностных значений логических переменных; математическое ожидание, дисперсия, уравнения регрессии для статистических функций принадлежности; случайные нечеткие понятия, суждения, умозаключения, выводы и проверка статистических нечетких гипотез.
Все эти предпосылки должны стать основой разработки проблемно-ориентированной информационно-управляющей «человеко-разумной» системы принятия креативных решений по техническому обеспечению организаций в какой-либо отрасли.
Литература
1. 1.Акофф Р., Эмери Ф. О целеустремлённых системах. - М., 1974. 410 с. 2.Беллман Р., Заде Л. Принятие решений в расплывчатых условиях // В кн.: Вопросы анализа и процедуры принятия решений [под ред. И.Ф. Шахнова]. М.: «Мир», 1976. - 230 с., С. 172 - 215. 3.Бурков В.Н., Виноградов Г.П., Кузнецов В.Н., Палюх Б.В., Семенов Н.А. Интеллектуальные активные системы. Труды XII национальной конференции по искусственному интеллекту с международным участием. Т.3. М.: Физматлит,
2. 2010. - С. 35 - 43.
3. Доропей В.Н., Кузнецов В.Н., Чудов С.А. Системный анализ согласованного управления и принятия решений в интеллектуальных активных системах // Системы управления и информационные технологии, 2012, №3.1(48). - С. 141146.
4. Клюшин А.Ю., Кузнецов В.Н., Чудов С.А. Нечеткие модели поведения лиц и групп, принимающих решения. Тверь: Тверской государственный технический университет, 2014. 212 с.
5. Механизмы деятельности мозга человека. Часть первая. Нейрофизиология человека: Монография / под ред. Бехтеревой Н.П. - Л.: Наука, 1988. -- 677 с.
6. Мутовкина Н.Ю., Кузнецов В.Н., Клюшин А.Ю., Палюх Б.В. Нечеткие методы согласованного управления в многоагентных системах // Вестник Тамбовского гос. техн. ун-та, Т. 19, №4. С. 741 - 751.
7. Мутовкина Н.Ю., Кузнецов В.Н., Клюшин А.Ю. Поведенческие модели интеллектуальных агентов в процессе информационного взаимодействия // Системы управления и информационные технологии. - 2013. - №1.1 (51). - С. 178 - 183.
8. Новиков Д.А. Методология управления / Д.А. Новиков М.: Книжный «ЛИБРИКОМ», 2012. 128 с.
9. Новиков Д.А. Теория управления организационными системами.- М.: Московский психолого-социальный институт, 2005. 584 с.
10. Поспелов Д.А. История искусственного интеллекта до середины 80-х годов // Новости искусственного интеллекта, 1994, №4, с. 74-95.
11. Прикладные нечеткие системы: Пер. с япон. / К. Асаи, Д. Ватада, С. Иваи и др.; под ред. Т. Тэрано, К. Асаи, М. Сугэно. ? М.: Мир, 1993. - 368 с.
12. Рубинштейн С.Л. Человек и мир / Проблемы общей психологии. М.:
13. Педагогика, 1976. С. 253-381.
14. Семенов Н.А., Бурдо Г.Б., Исаев А.А. Интеллектуальные процедуры проектирования технологических процессов в интегрированных САПР // Программные продукты и системы: международный журнал. Тверь:
15. «Центрпрограммсистем», №1, 2014. С. 60 - 64.
16. Тарасов В.Б. От многоагентных систем к интеллектуальным организациям. - М.: Эдиториал УРСС, 2002. 278 с.
17. Теоретическое знание / В.С. Степин.- М.: Прогресс_Традиция, 2003. - 744 с.
18. N.Yu. Mutovkina, V.N. Kuznetsov, and A.Yu. Klyushin. Stability of Containment Strategy in Multi-Agent Systems / Automation and Remote Control, Vol. 76, No. 6, 2015, pp. 1088-1093.
Размещено на Allbest.ur
...Подобные документы
Классификация систем поддержки принятия решений. Сравнительный анализ методик для оценки рисков розничного кредитования. Структура системы поддержки принятия решений, формирование начальной базы знаний. Проектирование базы данных информационной системы.
дипломная работа [1,9 M], добавлен 10.07.2017Рассмотрение понятия и истории возникновения систем поддержки принятия решения. Приспособленность информационных систем к задачам повседневной управленческой деятельности. Понятие термина "интеллектуальный анализ данных". Методика извлечения знаний.
реферат [79,8 K], добавлен 14.04.2015Методы решения проблем, возникающих на стадиях и этапах процесса принятия решений, их реализация в информационных системах поддержки принятия решений (СППР). Назначение СППР, история их эволюции и характеристика. Основные типы СППР, области их применения.
реферат [389,3 K], добавлен 22.11.2016Использование библиотеки готовых компонентов как основы процесса построения моделей организационных систем. Характеристика качественных методов принятия решений. Применение порядковой классификации в процессе UFO-моделирования систем телемеханики.
магистерская работа [732,7 K], добавлен 26.04.2011Концепция систем поддержки принятия решений. Диапазон применения Analytica 2.0. Программное обеспечение количественного моделирования. Графический интерфейс для разработки модели. Основные способы моделирования. Диаграмма влияния и дерево решений.
контрольная работа [1,1 M], добавлен 08.09.2011Обслуживание двух встречных потоков информации. Структура информационных систем. Разработка структуры базы данных. Режимы работы с базами данных. Четыре основных компонента системы поддержки принятия решений. Выбор системы управления баз данных.
курсовая работа [772,0 K], добавлен 21.04.2016Типы административных информационных систем: системы генерации отчетов, системы поддержки принятия решений, системы поддержки принятия стратегических решений. Сортировка и фильтрация списков в Microsoft Excel. Работа с базами данных в Microsoft Access.
контрольная работа [6,0 M], добавлен 19.11.2009Классификация задач системы поддержки принятия решений, их типы и принципы реализации при помощи программы "Выбор". Обзор современных систем автоматизированного проектирования "Компас", "AutoCad", "SolidWorks", оценка преимуществ и недостатков программ.
курсовая работа [1,4 M], добавлен 22.07.2014Теоретические аспекты функционирования Business intelligence - систем в сфере логистики. Анализ условий для разработки системы поддержки принятия решений. Характеристика процесса создания программного продукта, применение аналитической платформы QlikView.
курсовая работа [2,5 M], добавлен 09.09.2017Принцип работы и назначение обучаемых информационных систем, их классификация по различным критериям, разновидности и отличия. Характеристика систем поддержки принятия решений. Механизм и основные этапы проектирования информационной обучаемой системы.
реферат [23,9 K], добавлен 22.11.2009Использование информационных технологий управления, поддержки и принятия решений, экспертных систем и обработки данных. Автоматизация бухгалтерии на примере ООО "Уралконфи": универсальная бухгалтерская программа "1С: Бухгалтерия" и ее основные функции.
курсовая работа [1,9 M], добавлен 26.03.2012Составляющие информационных систем: определение, соотношение, изменчивость, выбор подхода к проектированию. Принципы построения корпоративных систем. Обзор технических решений для построения локальных вычислительных систем. Схемы информационных потоков.
курсовая работа [571,6 K], добавлен 16.10.2012Агентно-ориентированная программная архитектура систем обработки потоковых данных. Обеспечение гибкости и живучести программного обеспечения распределенных информационно-управляющих систем. Спецификации программных комплексов распределенной обработки.
реферат [1,1 M], добавлен 28.11.2015Система "человек-машина" для автоматизированного сбора и обработки информации. Два вида информационных систем: информационно-справочные (пассивные) и информационно-советующие (активные). Критерии и подходы к классификации для управляющих сложных систем.
реферат [21,3 K], добавлен 27.02.2009Основное назначение и функции корпоративных информационных систем. Этапы эволюции и виды КИС. Оперативное предоставление актуальной информации для принятия управленческих решений. Создание базы для принятия как можно меньшего числа ошибочных решений.
презентация [407,8 K], добавлен 02.12.2014Разработка алгоритмического и программного обеспечения для решения задачи поддержки принятия решений о выпуске новой продукции. Математическое обеспечение задачи поддержки принятия решений о выпуске новой продукции, основные входные и выходные данные.
дипломная работа [943,0 K], добавлен 08.03.2011Классификация информационных систем управления деятельностью предприятия. Анализ рынка и характеристика систем класса Business Intelligence. Классификация методов принятия решений, применяемых в СППР. Выбор платформы бизнес-интеллекта, критерии сравнения.
дипломная работа [1,7 M], добавлен 27.09.2016Человеко-машинные комплексы, специально предназначенные для принятия решений. Процесс принятия решений и его этапы. Методы поиска новых вариантов решений: дерево решений, морфологические таблицы, конференции идей. Принцип математической оценки тенденций.
курсовая работа [272,1 K], добавлен 30.07.2009Анализ аналогичных разработок в области построения "систем помощи выбора". Суть многокритериального подхода. Технология разработки интерфейса пользователя. Планирование разработки программы с использованием различных методов. Построение сетевого графика.
дипломная работа [5,3 M], добавлен 26.01.2013Жизненный цикл информационных систем, методологии и технологии их проектирования. Уровень целеполагания и задач организации, классификация информационных систем. Стандарты кодирования, ошибки программирования. Уровни тестирования информационных систем.
презентация [490,2 K], добавлен 29.01.2023