Электромагнитные каналы утечки информации

Рассмотрение общей характеристики технических каналов утечки информации, обрабатываемой средствами вычислительной техники. Оценка побочных электромагнитных излучений элементов ТСПИ. Методы и средства защиты информации, обрабатываемой ТСПИ, от утечки.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 15.04.2018
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Общая характеристика технических каналов утечки информации, обрабатываемой средствами вычислительной техники

2. Электромагнитные каналы утечки информации

2.1 Побочные электромагнитные излучения элементов ТСПИ

2.2 Побочные электромагнитные излучения на частотах работы высокочастотных генераторов ТСП

2.3 Побочные электромагнитные излучения, возникающие вследствие паразитной генерации в элементах ТСПИ

3. Методы и средства защиты информации, обрабатываемой ТСПИ, от утечки по техническим каналам

3.1 Экранирование технических средств

3.1.1 Электростатическое экранирование

3.1.2 Магнитостатическое экранирование

3.1.3 Электромагнитное экранирование

3.2 Заземление технических средств

Заключение

Список используемой литературы

утечка информация электромагнитный излучение

Введение

В работе приведена классификация технических каналов утечки информации, обрабатываемой средствами вычислительной техники, а так же пути их защиты. Рассмотрены технические каналы утечки информации, возникающие за счет побочных электромагнитных излучений и наводок информативных сигналов и создаваемые путем «высокочастотного облучения» средств вычислительной техники и внедрения в них электронных устройств перехвата информации (закладных устройств).

Современный этап развития общества характеризуется возрастающей ролью информационной сферы, представляющей собой совокупность информации, информационной инфраструктуры, субъектов, осуществляющих сбор, формирование, распространение и использование информации.

Так же в работе уделено внимание на значимость защиты от утечки информации в Российской Федерации.

1. Общая характеристика технических каналов утечки информации, обрабатываемой средствами вычислительной техники

Под информацией обычно понимаются сведения о лицах, предметах, фактах, событиях, явлениях и процессах независимо от формы их представления [1]. Информация в зависимости от категории доступа к ней подразделяется на общедоступную информацию, а также на информацию, доступ к которой ограничен федеральными законами (информация ограниченного доступа) [6]. Информация ограниченного доступа - информация, содержащая сведения, отнесенные к государственной тайне, а также сведения конфиденциального характера (персональные данные, сведения, составляющие коммерческую, служебную и иную тайну, и т.д.).

Это, как правило, защищаемая информация - информация, являющаяся предметом собственности и подлежащая защите в соответствии с требованиями правовых документов или требованиями, устанавливаемыми собственником информации [1].

Защита информации осуществляется путём принятия правовых, организационных и технических мер, направленных на предотвращение утечки информации, неправомерного воздействия на информацию (уничтожения, модифицирования (искажения, подмены) информации) и неправомерного блокирования доступа к информации [5].

К одной из основных угроз безопасности информации ограниченного доступа относится утечка информации по техническим каналам, под которой понимается неконтролируемое распространение информативного сигнала от его источника через физическую среду до технического средства, осуществляющего перехват информации [7].

Перехватом информации называется неправомерное получение информации с использованием технического средства, осуществляющего обнаружение, приём и обработку информативных сигналов [7].

В результате перехвата информации возможно неправомерное ознакомление с информацией или неправомерная запись информации на носитель.

Совокупность операций сбора, накопления, ввода, вывода, приема, передачи, записи, хранения, регистрации, уничтожения, преобразования и отображения информации часто называют обобщенным термином обработка информации [1].

К техническим средствам передачи, обработки, хранения и отображения информации ограниченного доступа (ТСПИ) относятся [3, 4]: технические средства автоматизированных систем управления, электронно-вычислительные машины и их отдельные элементы, в дальнейшем именуемые средствами вычислительной техники (СВТ); средства изготовления и размножения документов; аппаратура звукоусиления, звукозаписи, звуковоспроизведения и синхронного перевода; системы внутреннего телевидения; системы видеозаписи и видеовоспроизведения; системы оперативно-командной связи; системы внутренней автоматической телефонной связи, включая и соединительные линии перечисленного выше оборудования и т.д. Данные технические средства и системы в ряде случаев именуются основными техническими средствами и системами (ОТСС) [3].

Совокупность средств и систем обработки информации, а также помещений или объектов (зданий, сооружений, технических средств), в которых они установлены, составляет объект ТСПИ, который в некоторых документах называется объектом информатизации [1].

Защищаемые объекты информатизации должны аттестовываться по требованиям безопасности информации [7].

Помещения, предназначенные для ведения закрытых переговоров, содержащих сведения, отнесённые к государственной тайне, называются выделенными помещениями (ВП), а помещения, предназначенные для ведения конфиденциальных переговоров - защищаемыми помещениями (ЗП).

Выделенные и защищаемые помещения также должны аттестовываться по требованиям безопасности информации [7].

В соответствии с [5, 7] выделенные и защищаемые помещения относятся к защищаемым объектам информатизации. Однако, на мой взгляд, учитывая, что угрозы безопасности информации, способы и средства защиты ВП (ЗП) и ТСПИ существенно отличаются, выделенные (защищаемые) помещения целесообразно исключить из объектов информатизации и выделить в отдельную группу защищаемых объектов.

Наряду с техническими средствами и системами, обрабатывающими информацию ограниченного доступа, на объектах ТСПИ также устанавливаются вспомогательные технические средства и системы (ВТСС), непосредственно не участвующие в ее обработке. К ним относятся [3, 4]: системы и средства городской автоматической телефонной связи; системы и средства передачи данных в системе радиосвязи; системы и средства охранной и пожарной сигнализации; системы и средства оповещения и сигнализации; контрольно-измерительная аппаратура; системы и средства кондиционирования; системы и средства проводной радиотрансляционной сети и приема программ радиовещания и телевидения (абонентские громкоговорители, средства радиовещания; телевизоры и радиоприемники и т.д.); средства электронной оргтехники; системы и средства электрочасофикации и иные технические средства и системы. В некоторых документах ВТСС называются средствами обеспечения объекта информатизации [1] .

Электропитание ТСПИ и ВТСС, как правило, осуществляется от распределительных устройств и силовых щитов, которые специальными кабелями соединяются с трансформаторной подстанцией городской электросети.

Все технические средства и системы, питающиеся от электросети, должны быть заземлены. Типовая система заземления включает общий заземлитель, заземляющий кабель, шины и провода, соединяющие заземлитель с техническими средствами.

Через помещения, в которых установлены технические средства обработки информации ограниченного доступа, как правило, проходят провода и кабели, не относящиеся к ТСПИ и ВТСС, а также металлические трубы систем отопления, водоснабжения и другие токопроводящие металлоконструкции, которые называются посторонними проводниками [3].

Ряд соединительных линий ВТСС, а также посторонних проводников могут выходить за пределы не только объекта ТСПИ, но и контролируемой зоны (КЗ), под которой понимается пространство (территория, здание), в котором исключено неконтролируемое пребывание сотрудников и посетителей организации, а также транспортных средств. Границей контролируемой зоны могут являться периметр охраняемой территории организации, а также ограждающие конструкции охраняемого здания или охраняемой части здания, если оно размещено на неохраняемой территории [3, 4].

Для обработки информации ограниченного доступа широко используются различные информационные системы, основу которых составляют средства вычислительной техники (СВТ). Поэтому объекты информатизации, на которых обработка информации осуществляется с использованием СВТ, часто называются «объектами СВТ».

При рассмотрении объекта СВТ, как объекта защиты от утечки информации по техническим каналам, его необходимо рассматривать как объект, включающий:

технические средства и системы, непосредственно обрабатывающие информацию ограниченного доступа, вместе с их соединительными линиями (под соединительными линиями понимают совокупность проводов и кабелей, прокладываемых между отдельными ТСПИ и их элементами);

вспомогательные технические средства и системы вместе с их соединительными линиями;

посторонние проводники;

систему электропитания;

систему заземления.

Совокупность объекта разведки (в данном случае - объекта СВТ), технического средства разведки, с помощью которого добывается информация, и физической среды, в которой распространяется информационный сигнал, называется техническим каналом утечки информации (рис. 1) [4].

Рис. 1. Схема технического канала утечки информации

Иностранные разведки для перехвата информации используют технические средства разведки (ТСР). Для перехвата информации, обрабатываемой СВТ, используются технические средства разведки побочных электромагнитных излучений и наводок (ТСР ПЭМИН).

Другие заинтересованные субъекты (юридические лица, группы физических лиц, отдельные физические лица) для перехвата информации используют специальные технические средства (СТС), приспособленные или доработанные для негласного получения информации.

В зависимости от природы образования информативного сигнала технические каналы утечки информации можно разделить на естественные и специально создаваемые (рис 2).

Рис. 2. Классификация технических каналов утечки информации, обрабатываемой средствами вычислительной техники (СВТ)

Естественные каналы утечки информации образуются за счёт побочных электромагнитных излучений, возникающих при обработке информации СВТ (электромагнитные каналы утечки информации), а также вследствие наводок информативных сигналов в линиях электропитания СВТ, соединительных линиях ВТСС и посторонних проводниках (электрические каналы утечки информации) [9].

К специально создаваемым каналам утечки информации относятся каналы, создаваемые путём внедрения в СВТ электронных устройств перехвата информации (закладных устройств) и путём «высокочастотного облучения» СВТ [9].

Рис. 3. Комплекс перехвата побочных электромагнитных излучений СВТ: а) специальное приёмное устройство PKI2715 (дальность перехвата ПЭМИ от 10 до 50 м); б) широкополосная направленная антенна R&SНЬ 007 (диапазон частот от 80МГц до 1,3 ГГц, коэффициент усиления 5-7 дБ)

Поэтому, технические каналы утечки информации можно разделить на электромагнитные и электрические.

2. Электромагнитные каналы утечки информации

В электромагнитных каналах утечки информации носителем информации являются электромагнитные излучения (ЭМИ), возникающие при обработке информации техническими средствами. Основными причинами возникновения электромагнитных каналов утечки информации в ТСПИ являются [1, 9]:

побочные электромагнитные излучения, возникающие вследствие протекания по элементам ТСПИ и их соединительным линиям переменного электрического тока;

модуляция информативным сигналом побочных электромагнитных излучений высокочастотных генераторов ТСПИ (на частотах работы высокочастотных генераторов);

модуляция информативным сигналом паразитного электромагнитного излучения ТСПИ (например, возникающего вследствие самовозбуждения усилителей низкой частоты).

2.1 Побочные электромагнитные излучения элементов ТСПИ

В некоторых ТСПИ (например, системах звукоусиления) носителем информации является электрический ток, параметры которого (сила тока, напряжение, частота и фаза) изменяются по закону изменения информационного речевого сигнала. При протекании электрического тока по токоведущим элементам ТСПИ и их соединительным линиям в окружающем их пространстве возникает переменное электрическое и магнитное поле. В силу этого элементы ТСПИ можно рассматривать как излучатели электромагнитного поля, модулированного по закону изменения информационного сигнала.

Побочным электромагнитным излучением (ПЭМИ) ТСПИ называется нежелательное радиоизлучение, возникающее в результате нелинейных процессов в блоках ТСПИ [3].

Побочные электромагнитные излучения возникают при следующих режимах обработки информации средствами вычислительной техники:

вывод информации на экран монитора;

ввод данных с клавиатуры;

запись информации на накопители;

чтение информации с накопителей;

передача данных в каналы связи;

вывод данных на периферийные печатные устройства - принтеры, плоттеры; запись данных от сканера на магнитный носитель и т.д.

При каждом режиме работы СВТ возникают ПЭМИ, имеющие свои характерные особенности. Диапазон возможных частот побочных электромагнитных излучений СВТ может составлять от 10 кГц до 2 ГГц.

2.2 Побочные электромагнитные излучения на частотах работы высокочастотных генераторов ТСПИ

В состав ТСПИ могут входить различного рода высокочастотные генераторы. К таким устройствам можно отнести: задающие генераторы, генераторы тактовой частоты, генераторы стирания и подмагничивания магнитофонов, гетеродины радиоприемных и телевизионных устройств, генераторы измерительных приборов и т.д.

В результате внешних воздействий информационного сигнала (например, электромагнитных колебаний) на элементах высокочастотных генераторов наводятся электрические сигналы. Приемником магнитного поля могут быть катушки индуктивности колебательных контуров, дроссели в цепях электропитания и т.д. Приемником электрического поля являются провода высокочастотных цепей и другие элементы. Наведенные электрические сигналы могут вызвать непреднамеренную модуляцию собственных высокочастотных колебаний генераторов, которые излучаются в окружающее пространство.

2.3 Побочные электромагнитные излучения, возникающие вследствие паразитной генерации в элементах ТСПИ

Паразитным электромагнитным излучением ТСПИ называется побочное радиоизлучение, возникающее в результате самовозбуждения генераторных или усилительных блоков ТСПИ из-за паразитных связей [3]. Паразитная генерация в элементах ТСПИ, в том числе, самовозбуждение усилителей низкой частоты (например, усилителей систем звукоусиления и звукового сопровождения, магнитофонов, систем громкоговорящей связи и т.п.), возможна за счет случайных преобразований отрицательных обратных связей (индуктивных или емкостных) в паразитные положительные, что приводит к переводу усилителя из режима усиления в режим автогенерации сигналов. Частота автогенерации (самовозбуждения) лежит в пределах рабочих частот нелинейных элементов усилителей (например, полупроводниковых приборов, электровакуумных ламп и т.п.). В ряде случаев паразитное электромагнитное излучение модулируется информативным сигналом(модуляцией называется процесс изменения одного или нескольких параметров электромагнитного излучения (например, амплитуды, частоты или фазы) в соответствии с изменениями параметров информативного сигнала, воздействующих на него [7]).

Для перехвата побочных электромагнитных излучений ТСПИ “противником” могут использоваться как обычные средства радио-, радиотехнической разведки, так и специальные средства разведки, которые называются техническими средствами разведки побочных электромагнитных излучений и наводок (ТСР ПЭМИН). Как правило, полагается, что ТСР ПЭМИН располагаются за пределами контролируемой зоны объекта (рис.4).

Рис. 4. Перехват побочных электромагнитных излучений (ПЭМИ) средств вычислительной техники (СВТ).

Типовой комплекс разведки ПЭМИ включает: специальное приёмное устройство, ПЭВМ (или монитор), специальное программное обеспечение и широкодиапазонную направленную антенну. В качестве примера на рис. 3 приведён внешний вид одного из таких комплексов [10].

Средства разведки ПЭМИ могут устанавливаться в близлежащих зданиях или машинах, расположенных за пределами контролируемой зоны объекта (рис. 4).

Пространство вокруг ТСПИ, в пределах которого напряженность электромагнитного поля превышает допустимое (нормированное) значение, называется зоной 2 (R2) [3]. Фактически зона R2 - это зона, в пределах которой возможен перехват средством разведки побочных электромагнитных излучений ТСПИ с требуемым качеством (рис. 5).

Рис.5. Схема технического канала утечки информации, возникающего за счёт побочных электромагнитных излучений СВТ (схема электромагнитного канала утечки информации)

Зона 2 для каждого ТСПИ определяется инструментально-расчетным методом при проведении специальных исследований технических средств на ПЭМИН и указывается в предписании на их эксплуатацию или сертификате соответствия.

Наиболее опасным (с точки зрения утечки информации) режимом работы СВТ является вывод информации на экран монитора. Учитывая широкий спектр ПЭМИ видеосистемы СВТ ( DFc > 100 МГц) и их незначительный уровень, перехват изображений, выводимых на экран монитора ПЭВМ, является довольно трудной задачей.

Дальность перехвата ПЭМИ современных СВТ, как правило, не превышает 30-50 м.

Качество перехваченного изображения значительно хуже качества изображения, выводимого на экран монитора ПЭВМ (рис. 6 [13]).

Особенно трудная задача - перехват текста, выводимого на экран монитора и написанного мелким шрифтом (рис. 7 [13]).

Рис. 6. Тестовое изображение, выведенное на экран монитора (а) и изображение, перехваченное средством разведки ПЭМИ (б)

Рис. 7. Исходный текст, выведенный на экран монитора (режим работы VGA монитора 800*600 @ 75Hz, тактовая частота Fm= 49,5МГц, размер букв 6 x 13 пикселей) (а) и текст, перехваченный средством разведки ПЭМИ (DFпр = 200 МГц) (б)

Таким образом, для возникновения электромагнитного канала утечки информации необходимо выполнение двух условий (рис.5):

первое - расстояние от СВТ до границы контролируемой зоны должно быть менее зоны R2 R < R2);

второе - в пределах зоны R2 возможно размещение стационарных или перевозимых (переносимых) средств разведки ПЭМИН.

Качество обнаружения сигнала средством разведки характеризуется вероятностями правильного обнаружения Pо сигнала и ложной тревоги Pлт. Обычно предполагается, что в средствах разведки используются оптимальные для перехватываемых видов сигналов приемные устройства. Наиболее часто в них реализуется алгоритм обработки сигнала по критерию Неймана - Пирсона, при котором минимизируется вероятность ошибки 2-го рода (пропуск сигнала) при условии, что вероятность ошибки 1-го рода (ложная тревога) не больше некоторой заданной величины. Наиболее распространенным видом помех являются внутренние шумы приемного устройства, которые суммируются с принимаемым сигналом (аддитивные шумы). Зная уровень шума приемного устройства, легко рассчитать уровень сигнала на входе приемного устройства, при котором вероятность его правильного обнаружения будет равна некоторому допустимому (нормированному) значению Ро.доп, которое обычно называют чувствительностью приемного устройства Uрпм.

Для обеспечения требуемого уровня защиты информации допустимое значение вероятности правильного обнаружения сигнала обычно составляет Ро.доп=0.1-0.7 при вероятности ложной тревоги Рлт=10-3.

Используя характеристики приемного устройства и антенной системы средства разведки, можно рассчитать допустимое (нормированное) значение напряженности электромагнитного поля в точке размещения средства разведки, при котором отношение “информационный сигнал/помеха” на входе приемного устройства будет равно некоторому (нормированному) значению, при котором еще возможно или обнаружение средством разведки информационных сигналов с требуемой вероятностью, или измерение их параметров с допустимыми ошибками, а значит - и выделение полезной информации.

Таким образом, по электромагнитным каналам утечки информации перехват информации может осуществляется путем приема и детектирования средством разведки побочных электромагнитных излучений, возникающих при работе ТСПИ.

Наряду с пассивными способами перехвата информации, обрабатываемой ТСПИ, и рассмотренными выше, возможно использование и активных способов, в частности, способа “высокочастотного облучения” (рис. 8), при котором ТСПИ облучается мощным высокочастотным гармоническим сигналом (для этих целей используется высокочастотный генератор с направленной антенной, имеющей узкую диаграмму направленности). При взаимодействии облучающего электромагнитного поля с элементами ТСПИ происходит его переизлучение. На нелинейных элементах ТСПИ происходит модуляция вторичного излучения информационным сигналом. Переизлученный сигнал принимается приемным устройством средства разведки и детектируется.

Рис.8. Перехват информации, обрабатываемой ТСПИ, методом “высокочастотного облучения”

Для перехвата информации, обрабатываемой ТСПИ, также возможно использование электронных устройств перехвата информации (закладных устройств), скрытно внедряемых в технические средства и системы (рис. 9).

Рис. 9. Перехват информации, обрабатываемой ТСПИ, путем установки в них закладных устройств

Они представляют собой миниатюрные передатчики, излучение задающих генераторов которых модулируется информационным сигналом. Перехваченная с помощью закладных устройств информация или непосредственно передается по радиоканалу, или сначала записывается в специальное запоминающее устройство, а уже затем по команде управления передается по радиоканалу.

Наиболее вероятна установка закладных устройств в ТСПИ иностранного производства.

3. Методы и средства защиты информации, обрабатываемой ТСПИ, от утечки по техническим каналам

Защита информации, обрабатываемой техническими средствами, осуществляется с применением пассивных и активных методов и средств.

Пассивные методы защиты информации направлены на:

* ослабление побочных электромагнитных излучений (информационных сигналов) ТСПИ на границе контролируемой зоны до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;

* ослабление наводок побочных электромагнитных излучений (информационных сигналов) ТСПИ в посторонних проводниках и соединительных линиях ВТСС, выходящих за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;

* исключение (ослабление) просачивания информационных сигналов ТСПИ в цепи электропитания, выходящие за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов.

Активные методы защиты информации направлены на:

* создание маскирующих пространственных электромагнитных помех с целью уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала ТСПИ;

* создание маскирующих электромагнитных помех в посторонних проводниках и соединительных линиях ВТСС с целью уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала ТСПИ.

Ослабление побочных электромагнитных излучений ТСПИ и их наводок в посторонних проводниках осуществляется путем экранирования и заземления ТСПИ и их соединительных линий.

Исключение (ослабление) просачивания информационных сигналов ТСПИ в цепи электропитания достигается путем фильтрации информационных сигналов.

Для создания маскирующих электромагнитных помех используются системы пространственного и линейного зашумления.

3.1 Экранирование технических средств

Функционирование любого технического средства информации связано с протеканием по его токоведущим элементам электрических токов различных частот и образованием разности потенциалов между различными точками его электрической схемы, которые порождают магнитные и электрические поля, называемые побочными электромагнитными излучениями.

Узлы и элементы электронной аппаратуры, в которых имеют место большие напряжения и протекают малые токи, создают в ближней зоне электромагнитные поля с преобладанием электрической составляющей. Преимущественное влияние электрических полей на элементы электронной аппаратуры наблюдается и в тех случаях, когда эти элементы малочувствительны к магнитной составляющей электромагнитного поля.

Узлы и элементы электронной аппаратуры, в которых протекают большие токи и имеют место малые перепады напряжения, создают в ближней зоне электромагнитные поля с преобладанием магнитной составляющей. Преимущественное влияние магнитных полей на аппаратуру наблюдается также в случае, если рассматриваемое устройство малочувствительно к электрической составляющей или последняя много меньше магнитной за счет свойств излучателя.

Переменные электрическое и магнитное поля создаются также в пространстве, окружающем соединительные линии (провода, кабели) ТСПИ.

Побочные электромагнитные излучения ТСПИ являются причиной возникновения электромагнитных и параметрических каналов утечки информации, а также могут оказаться причиной возникновения наводки информационных сигналов в посторонних токоведущих линиях и конструкциях. Поэтому снижению уровня побочных электромагнитных излучений уделяется большое внимание.

Эффективным методом снижения уровня ПЭМИ является экранирование их источников.

Различают следующие способы экранирования [14,15]:

* электростатическое;

* магнитостатическое;

* электромагнитное.

Электростатическое и магнитостатическое экранирование основаны на замыкании экраном (обладающим в первом случае высокой электропроводностью, а во втором - магнитопроводностью) соответственно электрического и магнитного полей.

3.1.1 Электростатическое экранирование

Электростатическое экранирование по существу сводится к замыканию электростатического поля на поверхность металлического экрана и отводу электрических зарядов на землю (на корпус прибора) [14]. Заземление электростатического экрана является необходимым элементом при реализации электростатического экранирования. Применение металлических экранов позволяет полностью устранить влияние электростатического поля. При использовании диэлектрических экранов, плотно прилегающих к экранируемому элементу, можно ослабить поле источника наводки в е раз, где е - относительная диэлектрическая проницаемость материала экрана [15].

Основной задачей экранирования электрических полей является снижение емкости связи между экранируемыми элементами конструкции. Следовательно, эффективность экранирования определяется в основном отношением емкостей связи между источником и рецептором наводки до и после установки заземленного экрана. Поэтому любые действия, приводящие к снижению емкости связи, увеличивают эффективность экранирования.

Экранирующее действие металлического листа существенно зависит от качества соединения экрана с корпусом прибора и частей экрана друг с другом. Особенно важно не иметь соединительных проводов между частями экрана и корпусом.

В диапазонах метровых и более коротких длин волн соединительные проводники длиной в несколько сантиметров могут резко ухудшить эффективность экранирования. На еще более коротких волнах дециметрового и сантиметрового диапазонов соединительные проводники и шины между экранами недопустимы. Для получения высокой эффективности экранирования электрического поля здесь необходимо применять непосредственное сплошное соединение отдельных частей экрана друг с другом [15].

С увеличением частоты эффективность экранирования снижается.

Основные требования, которые предъявляются к электрическим экранам, можно сформулировать следующим образом [14,15]:

* конструкция экрана должна выбираться такой, чтобы силовые линии электрического поля замыкались на стенки экрана, не выходя за его пределы;

* в области низких частот (при глубине проникновения (д) больше толщины (d), т.е. при д>d) эффективность электростатического экранирования практически определяется качеством электрического контакта металлического экрана с корпусом устройства и мало зависит от материала экрана и его толщины;

* в области высоких частот (при d<д) эффективность экрана, работающего в электромагнитном режиме, определяется его толщиной, проводимостью и магнитной проницаемостью.

3.1.2 Магнитостатическое экранирование

Магнитостатическое экранирование используется при необходимости подавить наводки на низких частотах от 0 до 3 ... 10 кГц [15].

Основные требования, предъявляемые к магнитостатическим экранам, можно свести к следующим [15]:

* магнитная проницаемость мa материала экрана должна быть возможно более высокой. Для изготовления экранов желательно применять магнитомягкие материалы с высокой магнитной проницаемостью (например, пермаллой);

* увеличение толщины стенок экрана приводит к повышению эффективности экранирования, однако при этом следует принимать во внимание возможные конструктивные ограничения по массе и габаритам экрана;

* стыки, разрезы и швы в экране должны размещаться параллельно линиям магнитной индукции магнитного поля. Их число должно быть минимальным;

* заземление экрана не влияет на эффективность магнитостатического экранирования.

Эффективность магнитостатического экранирования повышается при применении многослойных экранов.

Экранирование высокочастотного магнитного поля основано на использовании магнитной индукции, создающей в экране переменные индукционные вихревые токи (токи Фуко) [16]. Магнитное поле этих токов внутри экрана будет направлено навстречу возбуждающему полю, а за его пределами - в ту же сторону, что и возбуждающее поле. Результирующее поле оказывается ослабленным внутри экрана и усиленным вне его. Вихревые токи в экране распределяются неравномерно по его сечению (толщине). Это вызывается явлением поверхностного эффекта, сущность которого заключается в том, что переменное магнитное поле ослабевает по мере проникновения в глубь металла, так как внутренние слои экранируются вихревыми токами, циркулирующими в поверхностных слоях.

Благодаря поверхностному эффекту плотность вихревых токов и напряженность переменного магнитного поля по мере углубления в металл падает по экспоненциальному закону [16].

Эффективность магнитного экранирования зависит от частоты и электрических свойств материала экрана. Чем ниже частота, тем слабее действует экран, тем большей толщины приходится его делать для достижения одного и того же экранирующего эффекта. Для высоких частот, начиная с диапазона средних волн, экран из любого металла толщиной 0,5 ... 1,5 мм действует весьма эффективно. При выборе толщины и материала экрана следует учитывать механическую прочность, жесткость, стойкость против коррозии, удобство стыковки отдельных деталей и осуществления между ними переходных контактов с малым сопротивлением, удобство пайки, сварки и пр. [16].

Для частот выше 10 МГц медная и тем более серебряная пленка толщиной более 0,1 мм дает значительный экранирующий эффект. Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольгированного гетинакса или другого изоляционного материала с нанесенным на него медным или серебряным покрытием [16].

При экранировании магнитного поля заземление экрана не изменяет величины возбуждаемых в экране токов и, следовательно, на эффективность магнитного экранирования не влияет.

3.1.3 Электромагнитное экранирование

На высоких частотах применяется исключительно электромагнитное экранирование. Действие электромагнитного экрана основано на том, что высокочастотное электромагнитное поле ослабляется им же созданным (благодаря образующимся в толще экрана вихревым токам) полем обратного направления [14, 15, 16].

Теория и практика показывают, что с точки зрения стоимости материала и простоты изготовления преимущества на стороне экранированного помещения из листовой стали. Однако при применении сетчатого экрана могут значительно упроститься вопросы вентиляции и освещения помещения. В связи с этим сетчатые экраны также находят широкое применение [14].

Для изготовления экрана целесообразно использовать следующие материалы [14]:

сталь листовая декапированная ГОСТ 1386-47 толщиной (мм)

0,35; 0,50; 0,60; 0,70; 0,80; 1,00; 1,25; 1,50; 1,75; 2,00;

сталь тонколистовая оцинкованная ГОСТ 7118-54 толщиной (мм)

0,35; 0,50; 0,60; 0,70; 0,80; 1,00; 1,25; 1,50; 1,75; 2,00;

сталь тонколистовая оцинкованная ГОСТ 7118-54 толщиной (мм)

0,51; 0,63; 0,76; 0,82; 1,00; 1,25; 1,50;

сетка стальная тканая ГОСТ 3826-47 номер 0,4; 0,5; 0,7; 1,0; 1,4; 1,6; 1,8; 2,0; 2,5;

сетка стальная плетеная ГОСТ 5336-50 номер 3; 4; 5; 6;

сетка из латунной проволоки марки Л-80 ГОСТ 6613-53 0,25; 0,5; 1,0; 1,6; 2,0; 2,5; 2,6.

Металлические листы или полотнища сетки должны быть между собой электрически соединены по всему периметру. Для сплошных экранов это может быть осуществлено электросваркой или пайкой. Шов электросварки или пайки должен быть непрерывным с тем, чтобы получить цельносварную конструкцию экрана [14,15].

Для сетчатых экранов пригодна любая конструкция шва, обеспечивающая хороший электрический контакт между соседними полотнищами сетки не реже чем через 10 ... 15 мм. Для этой цели может применяться пайка или точечная сварка [14, 15, 16].

Экран, изготовленный из луженой низкоуглеродистой стальной сетки с ячейкой 2,5 ... 3 мм, дает ослабление порядка 55 ... 60 дБ, а из такой же двойной (с расстоянием между наружной и внутренней сетками 100 мм) - около 90 дБ. Экран, изготовленный из одинарной медной сетки с ячейкой 2,5 мм, имеет ослабление порядка 65 ... 70 дБ [14, 16].

Необходимая эффективность экрана в зависимости от его назначения и величины уровня излучения ПЭМИН обычно находится в пределах 60 ... 120 дБ [14].

Наряду с блоками аппаратуры экранированию подлежат и монтажные провода и соединительные линии.

Чтобы уменьшить уровень ПЭМИ, необходимо особенно тщательно выполнять соединение оболочки провода (экрана) с корпусом аппаратуры. Подключение оболочки должно осуществляться путем непосредственного контакта (лучше всего путем пайки или сварки) с корпусом [15].

Вместе с тем соединение оболочки провода с корпусом в одной точке не ослабляет в окружающем пространстве магнитное поле, создаваемое протекающим по проводу током. Для экранирования магнитного поля необходимо создать поле такой же величины и обратного направления. С этой целью необходимо весь обратный ток экранируемой цепи направить через экранирующую оплетку провода. Для полного осуществления этого принципа необходимо, чтобы экранирующая оболочка была единственным путем для протекания обратного тока.

Высокая эффективность экранирования обеспечивается при использовании витой пары, защищенной экранирующей оболочкой [15].

На низких частотах приходится использовать более сложные схемы экранирования - коаксиальные кабели с двойной оплеткой (триаксиальные кабели) [15].

На более высоких частотах, когда толщина экрана значительно превышает глубину проникновения поля, необходимость в двойном экранировании отпадает. В этом случае внешняя поверхность играет роль электрического экрана, а по внутренней поверхности протекают обратные токи.

Применение экранирующей оболочки существенно увеличивает емкость между проводом и корпусом, что в большинстве случаев нежелательно. Экранированные провода более громоздки и неудобны при монтаже, требуют предохранения от случайных соединений с посторонними элементами и конструкциями.

Для уменьшения взаимного влияния монтажных цепей следует выбирать длину монтажных высокочастотных проводов наименьшей, для чего элементы высокочастотных схем, связанные между собой, следует располагать в непосредственной близости, а неэкранированные провода высокочастотных цепей - при пересечении под прямым углом [15]. При параллельном расположении такие провода должны быть максимально удалены друг от друга или разделены экранами, в качестве которых могут быть использованы несущие конструкции электронной аппаратуры (кожух, панель и т.д.).

Экранированные провода и кабели следует применять в основном для соединения отдельных блоков и узлов друг с другом.

Кабельные экраны выполняются в форме цилиндра из сплошных оболочек, в виде спирально намотанной на кабель плоской ленты или в виде оплетки из тонкой проволоки. Экраны при этом могут быть однослойными и многослойными комбинированными, изготовленными из свинца, меди, стали, алюминия и их сочетаний (алюминий-свинец, алюминий-сталь, медь-сталь-медь и т.д.).

Для эффективного экранирования низкочастотных полей применяются экраны, изготовленные из ферромагнитных материалов с большой относительной магнитной проницаемостью. При наличии такого экрана линии магнитной индукции проходят в основном по его стенкам, которые обладают малым сопротивлением по сравнению с воздушным пространством внутри экрана [15].

Качество экранирования таких полей зависит от магнитной проницаемости экрана и сопротивления магнитопровода, которое будет тем меньше, чем толще экран и меньше в нем стыков и швов, идущих поперек направления линий магнитной индукции.

Наиболее экономичным способом экранирования информационных линий связи между устройствами ТСПИ считается групповое размещение их информационных кабелей в экранирующий распределительный короб. Когда такого короба не имеется, то приходится экранировать отдельные линии связи [15].

Для защиты линий связи от наводок необходимо разместить линию в экранирующую оплетку или фольгу, заземленную в одном месте, чтобы избежать протекания по экрану токов, вызванных неэквипотенциальностью точек заземления [15].

Для защиты линии связи от наводок необходимо минимизировать площадь контура, образованного прямым и обратным проводами линии. Если линия представляет собой одиночный провод, а возвратный ток течет по некоторой заземляющей поверхности, то необходимо максимально приблизить провод к поверхности. Если линия образована двумя проводами, то их необходимо скрутить, образовав бифиляр (витую пару). Линии, выполненные из экранированного провода или коаксиального кабеля, в которых по оплетке протекает возвратный ток, также отвечают требованию минимизации площади контура линии.

Наилучшую защиту как от электрического, так и от магнитного полей обеспечивают информационные линии связи типа экранированного бифиляра, трифиляра (трех скрученных вместе проводов, из которых один используется в качестве электрического экрана), триаксильного кабеля (изолированного коаксильального кабеля, помещенного в электрический экран), экранированного плоского кабеля (плоского многопроводного кабеля, покрытого с одной или обеих сторон медной фольгой) [15].

Приведем несколько схем [15], используемых на частотах порядка 100 кГц. Цепь, показанная на рис. 10, а, имеет большую площадь петли, образованной «прямым» проводом и «землей». Эта цепь подвержена прежде всего магнитному влиянию. Экран заземлен на одном конце и не защищает от магнитного влияния. Переходное затухание для этой схемы примем равным 0 дБ для сравнения с затуханием схем на рис. 10, б - и.

рис. 10. Сравнение защищенности различных цепей от влияния внешних магнитных и электрических полей: а) 0 дБ; б) 2 дБ; в) 5 дБ; г) 49 дБ, скрученная пара, 18 витков на метр; д) 57 дБ; е) 64 дБ, схема предпочтительна на высоких частотах; ж) 64 дБ; з) 71 дБ; и) 79 дБ, скрученная пара (54 витка на метр)

Схема на рис. 10, б практически не уменьшает магнитную связь, так как обратный провод заземлен с обоих концов, и этом смысле она аналогична схеме на рис. 10, а. Степень улучшения соизмерима с погрешностью расчета (измерения).

Схема на рис. 10, в. отличается от схемы на рис. 10, а. наличием обратного провода - коаксиального экрана, однако экранирование магнитного поля ухудшено, так как цепь заземлена на обоих концах, в результате чего с «землей» образуется петля большой площади.

Схема на рис. 10, г позволяет существенно повысить защищенность цепи (- 49 дБ) благодаря скрутке проводов. В этом случае (по сравнению со схемой на рис. 10, б) петли нет, поскольку правый конец цепи не заземлен.

Дальнейшее повышение защищенности цепи достигается применением схемы на рис. 10, с, коаксиальная цепь которой обеспечивает лучшее магнитное экранирование, чем скрученная пара на рис. 10, г.

Площадь петли в схеме на рис. 10, д не больше, чем в схеме на рис. 10, г, так как продольная ось экрана коаксиального кабеля совпадает с его центральным проводом.

Схема на рис. 10, е позволяет повысить защищенность цепи благодаря тому, что скрученная пара заземлена лишь на одном конце. Кроме того, в этой схеме используется независимый экран.

Схема на рис. 10, ж имеет ту же защищенность, что и схема на рис. 10, е: эффект тот же, что и при заземлении на обоих концах, поскольку длина цепи и экрана существенно меньше рабочей длины волны.

Причины улучшения защищенности схемы на рис. 10, з по сравнению с рис. 10, ж объяснить трудно. Возможной причиной может быть уменьшение площади эквивалентной петли.

Более плотная скрутка проводов (схема рис. 10, и) позволяет дополнительно уменьшить магнитную связь. Кроме того, при этом уменьшается и электрическая связь (в обоих проводах токи наводятся одинаково).

Для уменьшения магнитной и электрической связи между проводами необходимо уменьшить площадь петли, максимально разнести цепи и максимально уменьшить длину параллельного пробега линий ТСПИ и посторонними проводниками [15].

При нулевых уровнях сигналов (0 dB) в соединительных линиях ТСПИ между ними и посторонними проводниками должно обеспечиваться переходное затухание не менее 114 dB (13 Нп) [14]. Данное переходное затухание обеспечивается, как правило, при прокладке кабелей ТСПИ на расстоянии не менее 0,1 м от посторонних проводников. При этом допускается прокладка кабелей ТСПИ вплотную с посторонними проводниками при суммарной длине их совместного пробега не более 70 м [14].

Экранироваться могут не только отдельные блоки (узлы) аппаратуры и их соединительные линии, но и помещения в целом.

В обычных (неэкранированных) помещениях основной экранирующий эффект обеспечивают железобетонные стены домов. Экранирующие свойства дверей и окон хуже. Для повышения экранирующих свойств стен применяются дополнительные средства, в том числе [16]:

* токопроводящие лакокрасочные покрытия или токопроводящие обои;

* шторы из металлизированной ткани;

* металлизированные стекла (например, из двуокиси олова), устанавливаемые в металлические или металлизированные рамы.

В помещении экранируются стены, двери и окна.

При закрытии двери должен обеспечиваться надежный электрический контакт со стенками помещения (с дверной рамой) по всему периметру не реже чем через 10 ... 15 мм. Для этого может быть применена пружинная гребенка из фосфористой бронзы, которую укрепляют по всему внутреннему периметру дверной рамы [16].

Окна должны быть затянуты одним или двумя слоями медной сетки с ячейкой не более 2х2 мм, причем расстояние между слоями сетки должно быть не менее 50 мм. Оба слоя сетки должны иметь хороший электрический контакт со стенками помещения (с рамой) по всему периметру. Сетки удобнее делать съемными и металлическое обрамление съемной части также должно иметь пружинящие контакты в виде гребенки из фосфористой бронзы [16].

При проведении работ по тщательному экранированию подобных помещений необходимо одновременно обеспечить нормальные условия для работающего в нем человека, прежде всего вентиляцию воздуха и освещение [16].

Конструкция экрана для вентиляционных отверстий зависит от диапазона частот. Для частот менее 1000 МГц применяются сотовые конструкции, закрывающие вентиляционное отверстие, с прямоугольными, круглыми, шестигранными ячейками. Для достижения эффективного экранирования размеры ячеек должны быть менее одной десятой от длины волны. При повышении частоты необходимые размеры ячеек могут быть столь малыми, что ухудшается вентиляция [16].

3.2 Заземление технических средств

Необходимо помнить, что экранирование ТСПИ и соединительных линий эффективно только при правильном их заземлении. Поэтому одним из важнейших условий по защите ТСПИ является правильное заземление этих устройств.

В настоящее время существуют различные типы заземлений. Наиболее часто используются одноточечные, многоточечные и комбинированные (гибридные) схемы [15].

На рис. 11 представлена одноточечная последовательная схема заземления.

рис. 11. Одноточечная последовательная схема заземления.

Эта схема наиболее проста. Однако ей присущ недостаток, связанный с протеканием обратных токов различных цепей по общему участку заземляющей цепи. Вследствие этого возможно появление опасного сигнала в посторонних цепях.

В одноточечной параллельной схеме заземления (рис. 12) этого недостатка нет. Однако такая схема требует большого числа протяженных заземляющих проводников, из-за чего может возникнуть проблема с обеспечением малого сопротивления заземления участков цепи. Кроме того, между заземляющими проводниками могут возникать нежелательные связи, которые создают несколько путей заземления для каждого устройства. В результате в системе заземления могут возникнуть уравнительные токи и появиться разность потенциалов между различными устройствами [15].

рис.12. одноточечная параллельная схема заземления.

Многоточечная схема заземления (рис. 13) свободна от недостатков, присущих одноточечной схеме. В этом случае отдельные устройства и участки корпуса индивидуально заземлены. При проектировании и реализации многоточечной системы заземления необходимо принимать специальные меры для исключения замкнутых контуров [14,15].

рис. 13. Многоточечная схема заземления.

Как правило, одноточечное заземление применяется на низких частотах при небольших размерах заземляемых устройств и расстояниях между ними менее 0,5•л. На высоких частотах при больших размерах заземляемых устройств и значительных расстояниях между ними используется многоточечная система заземления. В промежуточных случаях эффективна комбинированная (гибридная) система заземления, представляющая собой различные сочетания одноточечной, многоточечной и плавающей заземляющих систем [15].

Заземление технических средств систем информатизации и связи должно быть выполнено в соответствии с определенными правилами. Основные требования, предъявляемые к системе заземления, заключаются в следующем [14,15]:

* система заземления должна включать общий заземлитель, заземляющий кабель, шины и провода, соединяющие заземлитель с объектом;

* сопротивления заземляющих проводников, а также земляных шин должны быть минимальными;

* каждый заземляемый элемент должен быть присоединен к заземлителю или к заземляющей магистрали при помощи отдельного ответвления. Последовательное включение в заземляющий проводник нескольких заземляемых элементов запрещается;

* в системе заземления должны отсутствовать замкнутые контуры, образованные соединениями или нежелательными связями между сигнальными цепями и корпусами устройств, между корпусами устройств и землей;

* следует избегать использования общих проводников в системах экранирующих заземлений, защитных заземлений и сигнальных цепей;

* качество электрических соединений в системе заземления должно обеспечивать минимальное сопротивление контакта, надежность и механическую прочность контакта в условиях климатических воздействий и вибрации;

* контактные соединения должны исключать возможность образования оксидных пленок на контактирующих поверхностях и связанных с этими пленками нелинейных явлений;

* контактные соединения должны исключать возможность образования гальванических пар для предотвращения коррозии в цепях заземления;

* запрещается использовать в качестве заземляющего устройства нулевые фазы электросетей, металлоконструкции зданий, имеющие соединение с землей, металлические оболочки подземных кабелей, металлические трубы систем отопления, водоснабжения, канализации и т.д.

Сопротивление заземления определяется главным образом сопротивлением растекания тока в земле. Величину этого сопротивления можно значительно понизить за счет уменьшения переходного сопротивления между заземлителем и почвой путем тщательной очистки перед укладкой поверхности заземлителя и утрамбовкой вокруг него почвы, а также подсыпкой поваренной соли [14,15].

Таким образом, величина сопротивления заземления будет в основном определяться сопротивлением грунта.

Как правило, измерение сопротивления заземления проводится два раза в год (зимой и летом).

Если заземлитель состоит из металлической пластины радиуса r, расположенной непосредственно у поверхности земли, то сопротивление заземления Rз можно рассчитать по формуле [14]

Rз = с/(4?rп), Ом,

где: с - удельное сопротивление грунта, Ом/см3;

rп - радиус пластины, см.

При увеличении глубины закапывания lз пластины сопротивление заземления уменьшается и при lз значительно больше r (lз >> r) величина Rз уменьшается в два раза [14].

Довольно часто применяют заземляющее устройство в виде вертикально вбитой трубы. Сопротивление заземления в этом случае определяется формулой [15]

Rз = [с/(2?р?l)] ? [ln (4?l/rт) - 1], Ом,

где: l - длина трубы, см;

rт - радиус трубы, см.

Из формулы видно, что сопротивление заземления зависит в большей степени не от радиуса трубы, а от ее длины. Поэтому при устройстве заземления целесообразнее применять тонкие и длинные трубы (стержни из арматуры).

Заключение

Укрепление информационной безопасности названо в Концепции национальной безопасности Российской Федерации в числе важнейших долгосрочных задач.

Основными составляющими информационной безопасности являются защита информации (в смысле охраны персональных данных, государственной и служебной тайны и других видов информации ограниченного распространения), предохранение информации от случайных или преднамеренных воздействий естественного или искусственного характера, реализация гарантий конституционных прав и свобод человека и гражданина, касающихся деятельности в информационной сфере, защищенность потребностей граждан, отдельных групп и населения в целом в качественной информации для их жизнедеятельности, образования и развития, г. е. информационно-психологическая удовлетворенность потребностей граждан и общества в целом и их защищенность от негативных (преднамеренных и случайных) информационно-психологических и информационно-технических воздействий.

Национальные интересы России в информационной сфере заключаются в соблюдении конституционных прав и свобод граждан в области получения информации и пользования ею, в развитии современных телекоммуникационных технологий, в защите государственных информационных ресурсов от несанкционированного доступа.

Для достижения этого осуществляется:

обеспечение конституционных прав и свобод человека и гражданина на личную и семейную тайну, тайну переписки, телефонных переговоров, почтовых, телеграфных и иных сообщений, защиты своей чести и своего доброго имени;

...

Подобные документы

  • Информационная безопасность, её цели и задачи. Каналы утечки информации. Программно-технические методы и средства защиты информации от несанкционированного доступа. Модель угроз безопасности информации, обрабатываемой на объекте вычислительной техники.

    дипломная работа [839,2 K], добавлен 19.02.2017

  • Возможные каналы утечки информации. Особенности и организация технических средств защиты от нее. Основные методы обеспечения безопасности: абонентское и пакетное шифрование, криптографическая аутентификация абонентов, электронная цифровая подпись.

    курсовая работа [897,9 K], добавлен 27.04.2013

  • Варианты управления компьютером при автономном режиме. Классификация угроз безопасности, каналов утечки информации. Программно-аппаратные комплексы и криптографические методы защиты информации на ПЭВМ. Программная система "Кобра", утилиты наблюдения.

    контрольная работа [23,8 K], добавлен 20.11.2011

  • Основные принципы работы измерительного комплекса "Навигатор", возможность перехвата побочных электромагнитных излучений и наводок с защищаемого объекта. Определение требуемого радиуса контролируемой зоны для защиты конфиденциальной информации от утечки.

    курсовая работа [1,4 M], добавлен 02.10.2013

  • Классификация каналов утечки информации, виды угроз. Основные принципы и средства обеспечения информационной безопасности. Методы предотвращения утечки, утраты, хищения, искажения, подделки информации и других несанкционированных негативных воздействий.

    реферат [515,2 K], добавлен 03.04.2017

  • Анализ источников опасных сигналов и определение потенциальных технических каналов утечки информации и несанкционированного доступа. Организационные и технические методы защиты информации в выделенном помещении, применяемое инженерное оборудование.

    курсовая работа [519,4 K], добавлен 18.11.2015

  • Физическая целостность информации. Система защиты информации. Установка средств физической преграды защитного контура помещений. Защита информации от утечки по визуально-оптическим, акустическим, материально-вещественным и электромагнитным каналам.

    курсовая работа [783,9 K], добавлен 27.04.2013

  • Возможные каналы утечки информации. Расчет контролируемой зоны объекта. Защита по виброакустическому каналу утечки информации. Выявление несанкционированного доступа к ресурсам. Система постановки виброакустических и акустических помех "Шорох-1М".

    курсовая работа [857,2 K], добавлен 31.05.2013

  • Анализ подходов по защите от утечки конфиденциальной информации. Разработать программный модуль обнаружения текстовых областей в графических файлах для решения задач предотвращения утечки конфиденциальной информации. Иллюстрация штрихового фильтра.

    дипломная работа [12,8 M], добавлен 28.08.2014

  • Характеристика предприятия. Технические каналы утечки, техника их моделирования: оптического, радиоэлектронного, акустического. Порядок проведения измерений и их анализ. Меры предотвращения утечки информации, программно-аппаратные средства ее защиты.

    курсовая работа [36,1 K], добавлен 13.06.2012

  • Необходимость и потребность в защите информации. Виды угроз безопасности информационных технологий и информации. Каналы утечки и несанкционированного доступа к информации. Принципы проектирования системы защиты. Внутренние и внешние нарушители АИТУ.

    контрольная работа [107,3 K], добавлен 09.04.2011

  • Основные причины и предпосылки, а также направления утечки информации в условиях современного предприятия, оценка негативных последствий данного процесса. Описание каналы: электромагнитный, параметрический, акустический, визуальный, информационный.

    презентация [1013,6 K], добавлен 15.12.2015

  • Виды, распространение звуковых волн. Классификация акустических каналов утечки информации. Ее защита в выделенных помещениях. Оценка защищенности ограждающих конструкций помещения деканата факультета ИСиТ от утечки информации по виброакустическому каналу.

    курсовая работа [643,0 K], добавлен 22.04.2011

  • Проблема защиты информации. Особенности защиты информации в компьютерных сетях. Угрозы, атаки и каналы утечки информации. Классификация методов и средств обеспечения безопасности. Архитектура сети и ее защита. Методы обеспечения безопасности сетей.

    дипломная работа [225,1 K], добавлен 16.06.2012

  • Наиболее распространённые пути несанкционированного доступа к информации, каналы ее утечки. Методы защиты информации от угроз природного (аварийного) характера, от случайных угроз. Криптография как средство защиты информации. Промышленный шпионаж.

    реферат [111,7 K], добавлен 04.06.2013

  • Анализ источников сигналов и видов акустических каналов защищаемой информации. Распространение и поглощение звуковых волн. Технические каналы утечки акустических данных. Модель угроз для информации через вибро- и электроакустический, оптический каналы.

    дипломная работа [1,3 M], добавлен 05.07.2012

  • Исследование плана помещения и здания в целом. Технические каналы утечки речевой информации: виброакустический и акустооптический. Перехват наводок информационных сигналов. Оценка рисков информационной безопасности. Технические мероприятия по защите.

    курсовая работа [1,9 M], добавлен 26.11.2014

  • Информация как результат отображения и обработки в человеческом сознании многообразия окружающего мира, сведения об окружающих человека предметах, явлениях природы, деятельности других людей, ее жизненный цикл. Каналы утечки информации и ее защита.

    курсовая работа [215,1 K], добавлен 23.12.2012

  • Предотвращение несанкционированного распространения информации в текстовых файлах. Разработка подсистемы обнаружения утечки информации с фильтром идентификации текстовых областей в передаваемом потоке данных и их сходства с конфиденциальными данными.

    дипломная работа [1,8 M], добавлен 14.03.2013

  • Определение, анализ каналов утечки информации в выделенном помещении и методов ее съема. Изучение характеристик технических средств скрытого съема информации в выделенном помещении. Размещение технических средств защиты информации в выделенном помещении.

    курсовая работа [2,0 M], добавлен 15.03.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.