Разработка системы тестирования знаний студентов на основе нейронных сетей
Свойства биологического нейрона. Алгоритм обратного распространения ошибки. Обучение с учителем. Виды нейронных сетей и их свойства и преимущество. Разработка системы тестирования. Выбор программных средств для разработки. Структура базы данных и системы.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Программирование |
Вид | дипломная работа |
Язык | русский |
Прислал(а) | М.В. Нуйкин |
Дата добавления | 07.08.2018 |
Размер файла | 2,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа [814,6 K], добавлен 29.09.2014Разработка систем автоматического управления. Свойства нейронных сетей. Сравнительные оценки традиционных ЭВМ и нейрокомпьютеров. Формальная модель искусственного нейрона. Обучение нейроконтроллера при помощи алгоритма обратного распространения ошибки.
реферат [1,4 M], добавлен 05.12.2010Рассмотрение способов применения и основных понятий нейронных сетей. Проектирование функциональной структуры автоматизированной системы построения нейросети обратного распространения ошибки, ее классов и интерфейсов. Описание периода "бета тестирования".
дипломная работа [3,0 M], добавлен 02.03.2010Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа [2,6 M], добавлен 23.09.2013Обучение нейронных сетей как мощного метода моделирования, позволяющего воспроизводить сложные зависимости. Реализация алгоритма обратного распространения ошибки на примере аппроксимации функции. Анализ алгоритма обратного распространения ошибки.
реферат [654,2 K], добавлен 09.06.2014Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.
курсовая работа [249,3 K], добавлен 22.06.2011Программное обеспечение для получения исходных данных для обучения нейронных сетей и классификации товаров с их помощью. Алгоритм метода обратного распространения ошибки. Методика классификации товаров: составление алгоритма, программная реализация.
дипломная работа [2,2 M], добавлен 07.06.2012Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.
дипломная работа [1,8 M], добавлен 08.02.2017Обучение простейшей и многослойной искусственной нейронной сети. Метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Реализация в программном продукте NeuroPro 0.25. Использование алгоритма обратного распространения ошибки.
курсовая работа [1019,5 K], добавлен 05.05.2015Гибкая технологии извлечения знаний из нейронных сетей, настраиваемой с учетом предпочтений пользователя. Тестирование, пробная эксплуатация и разработка новой версии программных средств, реализующих данную технологию. Индивидуальные пространства смыслов.
дипломная работа [336,3 K], добавлен 07.06.2008Понятие и свойства искусственных нейронных сетей, их функциональное сходство с человеческим мозгом, принцип их работы, области использования. Экспертная система и надежность нейронных сетей. Модель искусственного нейрона с активационной функцией.
реферат [158,2 K], добавлен 16.03.2011Рост активности в области теории и технической реализации искусственных нейронных сетей. Основные архитектуры нейронных сетей, их общие и функциональные свойства и наиболее распространенные алгоритмы обучения. Решение проблемы мертвых нейронов.
реферат [347,6 K], добавлен 17.12.2011Программная реализация современной модели системы тестирования знаний студентов с помощью кроссплатформенных средств разработки. Элементы пользовательского интерфейса тестовой системы, поэтапный процесс ее функционирования. Алгоритм оценивания ответов.
курсовая работа [648,7 K], добавлен 14.07.2012Функциональная модель системы. Проектирование схемы базы данных. Проектирование архитектуры системы. Принцип технологии клиент-сервер. Построение схемы ресурсов. Выбор программных средств. Разработка базы данных с использованием Microsoft SQL Server.
дипломная работа [1,1 M], добавлен 30.03.2015Способы применения технологий нейронных сетей в системах обнаружения вторжений. Экспертные системы обнаружения сетевых атак. Искусственные сети, генетические алгоритмы. Преимущества и недостатки систем обнаружения вторжений на основе нейронных сетей.
контрольная работа [135,5 K], добавлен 30.11.2015Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа [1,1 M], добавлен 05.10.2010Проектирование программы в среде Delphi для тестирования знаний студентов по программированию, с выводом оценки по окончанию тестирования. Разработка экранных форм и алгоритма программы. Описание программных модулей. Алгоритм процедуры BitBtn1Click.
курсовая работа [365,0 K], добавлен 18.05.2013Описание технологического процесса напуска бумаги. Конструкция бумагоделательной машины. Обоснование применения нейронных сетей в управлении формованием бумажного полотна. Математическая модель нейрона. Моделирование двух структур нейронных сетей.
курсовая работа [1,5 M], добавлен 15.10.2012Нейронные сети как средство анализа процесса продаж мобильных телефонов. Автоматизированные решения на основе технологии нейронных сетей. Разработка программы прогнозирования оптово-розничных продаж мобильных телефонов на основе нейронных сетей.
дипломная работа [4,6 M], добавлен 22.09.2011Основные функции, требования и характеристики системы тестирования. Создание современной модели WEB-сервиса тестирования знаний студентов с помощью средств WEB-разработки. Описание пользовательского интерфейса сайта, этапы прохождения тестовых заданий.
курсовая работа [6,4 M], добавлен 14.07.2012