Разработка программного обеспечения для стеганоанализа

Основные понятия и определения стеганографии. Применение псевдослучайных последовательностей в стеганографических алгоритмах. Виды стеганоатак и информационная безопасность. Защита от несанкционированного вмешательства. Разработка методов стеганоанализа.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 07.08.2018
Размер файла 969,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

* атака на основании известного пустого контейнера. Если последний известен нарушителю, то путем сравнения его с подозреваемым на присутствие скрытых данных контейнером он всегда может установить факт наличия стеганоканала. Несмотря на тривиальность этого случая, в ряде изданий приводится его информационно-теоретическое обоснование. Намного более интересным представляется сценарий, когда контейнер известен приблизительно, с некоторой погрешностью (например, если к нему добавлен шум). В этом случае существует возможность построения устойчивой стеганосистемы .

* атака на основании выбранного пустого контейнера. В этом случае нарушитель способен заставить воспользоваться предложенным им контейнером. Последний, например, может иметь значительные однородные области (одно тонные изображения), и тогда обеспечить секретность встраивания будет не просто.

* атака на основании известной математической модели контейнера или его части.При этом атакующий пытается определить отличие подозреваемого сообщения от известной ему модели. Например, можно допустить, что биты в се редине определенной части изображения являются коррелированными. Тогда отсутствие такой корреляции может служить сигналом о. наличии скрытого сообщения. Задача того, кто встраивает сообщение, заключается в том, чтобы не нарушить статистики контейнера. Отправитель и тот, кто атакует, могут иметь в своем распоряжении разные модели сигналов, тогда в информационно-скрывающем противоборстве победит тот, кто владеет более эффективной (оптимальной) моделью.

Основная цель атаки на стеганографическую систему аналогична цели атак на криптосистему с той лишь разницей, что резко возрастает значимость активных (злонамеренных) атак. Любой контейнер может быть заменен с целью удаления или разрушения скрытого сообщения, независимо, от того, существует, оно в контейнере или нет. Обнаружение существования скрытых данных ограничивает время на этапе, их удаления, необходимое для обработки только тех контейнеров, которые содержат скрытую информацию.

Даже при оптимальных условиях для атаки задача извлечения скрытого сообщения из контейнера может оказаться очень сложной. Однозначно утверждать о факте существования скрытой информации можно только после ее выделения в явном виде. Иногда целью стеганографического анализа является не алгоритм вообще, а поиск, например, конкретного стеганоключа, используемого для выбора битов контейнера в стеганопреобразовании.[1,12]

Рис.2.1 - зависимость надежности системы от объема встраиваемых данных

2.4 Информационная безопасность

Информационная безопасность это состояние сохранности информационных ресурсов и защищенности законных прав личности и общества в информационной сфере.

Понятие «информационная безопасность» рассматривается в следующих значениях:

1) состояние (качество) определённого объекта (в качестве объекта может выступать информация, данные, ресурсы автоматизированной системы, автоматизированная система, информационная система предприятия, общества, государства и т. п.);

2) деятельность, направленная на обеспечение защищенного состояния объекта (в этом значении чаще используется термин «защита информации»).

Сущность понятия «информационная безопасность», содержание понятия

В то время как информационная безопасность -- это состояние защищённости информационной среды, защита информации представляет собой деятельность по предотвращению утечки защищаемой информации, несанкционированных и непреднамеренных воздействий на защищаемую информацию, то есть процесс, направленный на достижение этого состояния.

Информационная безопасность организации -- состояние защищённости информационной среды организации, обеспечивающее её формирование, использование и развитие.

Информационная безопасность государства -- состояние сохранности информационных ресурсов государства и защищенности законных прав личности и общества в информационной сфере [14].

В современном социуме информационная сфера имеет две составляющие: информационно-техническую (искусственно созданный человеком мир техники, технологий и т. п.) и информационно-психологическую (естественный мир живой природы, включающий и самого человека). Соответственно, в общем случае информационную безопасность общества (государства) можно представить двумя составными частями: информационно-технической безопасностью и информационно-психологической (психофизической) безопасностью.

Стандартизированные определения:

Безопасность информации (данных) -- состояние защищенности информации (данных), при котором обеспечены её (их) конфиденциальность, доступность и целостность.

Информационная безопасность -- защита конфиденциальности, целостности и доступности информации.

Конфиденциальность: свойство информационных ресурсов, в том числе информации, связанное с тем, что они не станут доступными и не будут раскрыты для неуполномоченных лиц.

Целостность: неизменность информации в процессе ее передачи или хранения.

Доступность: свойство информационных ресурсов, в том числе информации, определяющее возможность их получения и использования по требованию уполномоченных лиц.

Информационная безопасность (англ. informationsecurity) -- все аспекты, связанные с определением, достижением и поддержанием конфиденциальности, целостности, доступности, неотказуемости, подотчетности, аутентичности и достоверности информации или средств её обработки.

Безопасность информации (данных) (англ. information (data) security) -- состояние защищенности информации (данных), при котором обеспечиваются её (их) конфиденциальность, доступность и целостность.

Безопасность информации (данных) определяется отсутствием недопустимого риска, связанного с утечкой информации по техническим каналам, несанкционированными и непреднамеренными воздействиями на данные и (или) на другие ресурсы автоматизированной информационной системы, используемые в автоматизированной системе.

Безопасность информации (при применении информационных технологий) (англ. IT security) -- состояние защищенности информации (данных), обеспечивающее безопасность информации, для обработки которой она применяется, и информационную безопасность автоматизированной информационной системы, в которой она реализована.

Безопасность автоматизированной информационной системы -- состояние защищенности автоматизированной системы, при котором обеспечиваются конфиденциальность, доступность, целостность, подотчетность и подлинность её ресурсов.

Информационная безопасность -- защищенность информации и поддерживающей инфраструктуры от случайных или преднамеренных воздействий естественного или искусственного характера, которые могут нанести неприемлемый ущерб субъектам информационных отношений. Поддерживающая инфраструктура -- системы электро-, тепло-, водо-, газоснабжения, системы кондиционирования и т. д., а также обслуживающий персонал. Неприемлемый ущерб -- ущерб, которым нельзя пренебречь.[13]

2.5 Наиболее распространенные угрозы

Знание возможных угроз, а также уязвимых мест защиты, которые эти угрозы обычно эксплуатируют, необходимо для того, чтобы выбирать наиболее экономичные средства обеспечения безопасности.

Основные определения и критерии классификации угроз

Угроза - это потенциальная возможность определенным образом нарушить информационную безопасность.

Попытка реализации угрозы называется атакой, а тот, кто предпринимает такую попытку - злоумышленником. Потенциальные злоумышленники называются источниками угрозы.

Чаще всего угроза является следствием наличия уязвимых мест в защите информационных систем (таких, например, как возможность доступа посторонних лиц к критически важному оборудованию или ошибки в программном обеспечении).

Промежуток времени от момента, когда появляется возможность использовать слабое место, и до момента, когда пробел ликвидируется, называется окном опасности, ассоциированным с данным уязвимым местом. Пока существует окно опасности, возможны успешные атаки на ИС.

Если речь идет об ошибках в ПО, то окно опасности "открывается" с появлением средств использования ошибки и ликвидируется при наложении заплат, ее исправляющих.

Для большинства уязвимых мест окно опасности существует сравнительно долго (несколько дней, иногда - недель), поскольку за это время должны произойти следующие события:

· должно стать известно о средствах использования пробела в защите;

· должны быть выпущены соответствующие заплаты;

· заплаты должны быть установлены в защищаемой ИС.

Уже было указано, что новые уязвимые места и средства их использования появляются постоянно; это значит, во-первых, что почти всегда существуют окна опасности и, во-вторых, что отслеживание таких окон должно производиться постоянно, а выпуск и наложение заплат - как можно более оперативно.

Отметим, что некоторые угрозы нельзя считать следствием каких-то ошибок или просчетов; они существуют в силу самой природы современных ИС. Например, угроза отключения электричества или выхода его параметров за допустимые границы существует в силу зависимости аппаратного обеспечения ИС от качественного электропитания[15]

Рассмотрим наиболее распространенные угрозы, которым подвержены современные информационные системы. Иметь представление о возможных угрозах, а также об уязвимых местах, которые эти угрозы обычно эксплуатируют, необходимо для того, чтобы выбирать наиболее экономичные средства обеспечения безопасности. Слишком много мифов существует в сфере информационных технологий (вспомним все ту же "Проблему 2000"), поэтому незнание в данном случае ведет к перерасходу средств и, что еще хуже, к концентрации ресурсов там, где они не особенно нужны, за счет ослабления действительно уязвимых направлений.

Подчеркнем, что само понятие "угроза" в разных ситуациях зачастую трактуется по-разному. Например, для подчеркнуто открытой организации угроз конфиденциальности может просто не существовать - вся информация считается общедоступной; однако в большинстве случаев нелегальный доступ представляется серьезной опасностью. Иными словами, угрозы, как и все в ИБ, зависят от интересов субъектов информационных отношений (и от того, какой ущерб является для них неприемлемым).

Попытаемся взглянуть на предмет с точки зрения типичной организации.

Угрозы можно классифицировать по нескольким критериям:

· по аспекту информационной безопасности (доступность, целостность, конфиденциальность), против которого угрозы направлены в первую очередь;

· по компонентам информационных систем, на которые угрозы нацелены (данные, программы, аппаратура, поддерживающая инфраструктура);

· по способу осуществления (случайные/преднамеренные действия природного/техногенного характера);

· по расположению источника угроз (внутри/вне рассматриваемой ИС).

2.6 Основные угрозы конфиденциальности

Конфиденциальную информацию можно разделить на предметную и служебную. Служебная информация (например, пароли пользователей) не относится к определенной предметной области, в информационной системе она играет техническую роль, но ее раскрытие особенно опасно, поскольку оно чревато получением несанкционированного доступа ко всей информации, в том числе предметной.

Даже если информация хранится в компьютере или предназначена для компьютерного использования, угрозы ее конфиденциальности могут носить некомпьютерный и вообще нетехнический характер.

Многим людям приходится выступать в качестве пользователей не одной, а целого ряда систем (информационных сервисов). Если для доступа к таким системам используются многоразовые пароли или иная конфиденциальная информация, то наверняка эти данные будут храниться не только в голове, но и в записной книжке или на листках бумаги, которые пользователь часто оставляет на рабочем столе, а то и попросту теряет. И дело здесь не в неорганизованности людей, а в изначальной непригодности парольной схемы. Невозможно помнить много разных паролей; рекомендации по их регулярной (по возможности - частой) смене только усугубляют положение, заставляя применять несложные схемы чередования или вообще стараться свести дело к двум-трем легко запоминаемым (и столь же легко угадываемым) паролям.

Описанный класс уязвимых мест можно назвать размещением конфиденциальных данных в среде, где им не обеспечена (зачастую - и не может быть обеспечена) необходимая защита. Угроза же состоит в том, что кто-то не откажется узнать секреты, которые сами просятся в руки. Помимо паролей, хранящихся в записных книжках пользователей, в этот класс попадает передача конфиденциальных данных в открытом виде (в разговоре, в письме, по сети), которая делает возможным перехват данных. Для атаки могут использоваться разные технические средства (подслушивание или прослушивание разговоров, пассивное прослушивание сети и т.п.), но идея одна - осуществить доступ к данным в тот момент, когда они наименее защищены.

Угрозу перехвата данных следует принимать во внимание не только при начальном конфигурировании ИС, но и, что очень важно, при всех изменениях. Весьма опасной угрозой являются... выставки, на которые многие организации, недолго думая, отправляют оборудование из производственной сети, со всеми хранящимися на них данными. Остаются прежними пароли, при удаленном доступе они продолжают передаваться в открытом виде. Это плохо даже в пределах защищенной сети организации; в объединенной сети выставки - это слишком суровое испытание честности всех участников.

Еще один пример изменения, о котором часто забывают, - хранение данных на резервных носителях. Для защиты данных на основных носителях применяются развитые системы управления доступом; копии же нередко просто лежат в шкафах и получить доступ к ним могут многие.

Перехват данных - очень серьезная угроза, и если конфиденциальность действительно является критичной, а данные передаются по многим каналам, их защита может оказаться весьма сложной и дорогостоящей. Технические средства перехвата хорошо проработаны, доступны, просты в эксплуатации, а установить их, например, на кабельную сеть, может кто угодно, так что эту угрозу нужно принимать во внимание по отношению не только к внешним, но и к внутренним коммуникациям.

Опасной нетехнической угрозой конфиденциальности являются методы морально-психологического воздействия, такие как маскарад -это выполнение действий под видом лица, обладающего полномочиями для доступа к данным.

К неприятным угрозам, от которых трудно защищаться, можно отнести злоупотребление полномочиями. На многих типах систем привилегированный пользователь (например, системный администратор) способен прочитать любой (незашифрованный) файл, получить доступ к почте любого пользователя и т.д. Другой пример - нанесение ущерба при сервисном обслуживании. Обычно сервисный инженер получает неограниченный доступ к оборудованию и имеет возможность действовать в обход программных защитных механизмов.

Таковы основные угрозы, которые наносят наибольший ущерб субъектам информационных отношений[14].

2.7 Исторические аспекты возникновения и развития информационной безопасности

· I этап -- до 1916 года -- характеризуется использованием естественно возникавших средств информационных коммуникаций. В этот период основная задача информационной безопасности заключалась в защите сведений о событиях, фактах, имуществе, местонахождении и других данных, имеющих для человека лично или сообщества, к которому он принадлежал, жизненное значение.

· II этап -- начиная с 1916 года -- связан с началом использования искусственно создаваемых технических средств электро и радиосвязи. Для обеспечения скрытности и помехозащищённости радиосвязи необходимо было использовать опыт первого периода информационной безопасности на более высоком технологическом уровне, а именно применение помехоустойчивого кодирования сообщения (сигнала) с последующим декодированием принятого сообщения (сигнала).

· III этап -- начиная с 1935 года -- связан с появлением радиолокационных и гидроакустических средств. Основным способом обеспечения информационной безопасности в этот период было сочетание организационных и технических мер, направленных на повышение защищённости радиолокационных средств от воздействия на их приёмные устройства активными маскирующими и пассивными имитирующими радиоэлектронными помехами.

· IV этап -- начиная с 1946 года -- связан с изобретением и внедрением в практическую деятельность электронно-вычислительных машин (компьютеров). Задачи информационной безопасности решались, в основном, методами и способами ограничения физического доступа к оборудованию средств добывания, переработки и передачи информации.

· V этап -- начиная с 1965 года -- обусловлен созданием и развитием локальных информационно-коммуникационных сетей. Задачи информационной безопасности также решались, в основном, методами и способами физической защиты средств добывания, переработки и передачи информации, объединённых в локальную сеть путём администрирования и управления доступом к сетевым ресурсам.

· VI этап -- начиная с 1973 года -- связан с использованием сверхмобильных коммуникационных устройств с широким спектром задач. Угрозы информационной безопасности стали гораздо серьёзнее. Для обеспечения информационной безопасности в компьютерных системах с беспроводными сетями передачи данных потребовалась разработка новых критериев безопасности. Образовались сообщества людей -- хакеров, ставящих своей целью нанесение ущерба информационной безопасности отдельных пользователей, организаций и целых стран. Информационный ресурс стал важнейшим ресурсом государства, а обеспечение его безопасности -- важнейшей и обязательной составляющей национальной безопасности. Формируется информационное право -- новая отрасль международной правовой системы.

· VII этап -- начиная с 1985 года -- связан с созданием и развитием глобальных информационно-коммуникационных сетей с использованием космических средств обеспечения. Можно предположить, что очередной этап развития информационной безопасности, очевидно, будет связан с широким использованием сверхмобильных коммуникационных устройств с широким спектром задач и глобальным охватом в пространстве и времени, обеспечиваемым космическими информационно-коммуникационными системами. Для решения задач информационной безопасности на этом этапе необходимо создание макросистемы информационной безопасности человечества под эгидой ведущих международных форумов.

2.8 Защита от несанкционированного вмешательства

Как только в нашу жизнь ворвались информационные технологии, информация стала прекрасным товаром. Если ещё сто лет и не думали о том, что можно продавать информацию в таком объёме, то сегодня это стало возможным.

И сегодня многие готовы отдать много денег, чтобы узнать секреты конкурентов или известных людей. А в бизнесе утечка информации вообще стала глобальной проблемой руководителей.

Внедрение системы информационной безопасности - одна из главных задач, которую следует решать уже на стадии открытия компании.

Что такое информационная безопасность? Это защищённость информации от преднамеренного или случайного вмешательства, которое может нанести вред владельцу информации. Им может быть как человек, так и компания.

К тому же, безопасность информации не сводится лишь к её защите от несанкционированного вмешательства, а может пострадать и от поломки всей системы или части. Кроме этого, утечка информации, возможна, и от электромагнитных излучений, специальных устройств для перехвата передаваемой информации из одного объекта в другой.

Состав системы информационной безопасности

· доступность - информация доступна только в определённом виде, времени и месте конкретному кругу лиц.

· конфиденциальность - доступ к информации очень узкого круга лиц.

· целостность - комплекс мероприятий, которые направлены на обеспечение целостности обрабатываемой информации.

Цель защиты информации - сведение к минимуму потерь, которые могут быть вызваны нарушением недоступности, целостности или конфиденциальности. Таким нарушением может быть некоторые воздействия на компьютерные системы предприятия.

Современная система безопасности на предприятии представляет сегодня несколько компонентов, которые могут выйти из строя.

Программное обеспечение. Любые программы, которые приобретены и загружены в систему: объектные, исходные или загрузочные, утилиты и т.д.

Аппаратные средства. Это компьютеры, ноутбуки, периферийные устройства, любые линии связи.

Хранимые данные. Они могут как постоянные, так и временные на любых носителях.

Пользователи и обслуживающий персонал.

Система информационной безопасности на предприятиях и банках должна всегда совершенствоваться и развиваться. Необходим постоянный контроль функциональной системы, усиление её слабых мест, обновление существующих и дополнение новых механизмов защиты.

Комплексное использование всего арсенала имеющих средств защиты обусловлено возможными действиями злоумышленников.

Условием для обеспечения безопасности информации является законность и соблюдение интересов, профессионализм представителей службы безопасности, соблюдение всех установленных правил, ответственность персонала и руководства.

Если хотя бы одно условие не соблюдается, то никакая самая современная система безопасности не может быть полной.

Воздействия на информационную систему предприятия можно разделить на две части: преднамеренную и случайную.

Случайными могут быть: сбой или отказ аппаратуры, помехи в линии связи, ошибки в программном обеспечении, аварии из-за стихийных бедствий и неожиданных отключений электроэнергии и ошибки персонала.

Преднамеренными воздействиями считаются: конкуренция, недовольство служащих, взятка, любопытство персонала.

Нарушители информационной безопасности:

· как постороннее лицо, так и человек, пользующийся системой законно.

· разработчик системы.

· человек, которому известен принцип работы системы.

· человек, кому известны слабые места в защите.

Самый распространённый вид компьютерных нарушений - несанкционированный доступ. Он возможен при даже самой небольшой ошибке в системе, при некорректной установке или настройки программы.

Каналы, при которых возможен несанкционированный доступ к информации.

· человек. Хищение носителей информации, распечатка или перенос информации на носитель пользователя.

· программа. Возможен перехват паролей, копирование или дешифровка защищённой информации.

· аппаратура. Возможен перехват электромагнитных излучений, линий связи, подключение специальных устройств, которые могут обеспечить доступ к нужной информации.

Так как компьютерные сети распределены в пространстве, связь между ними осуществляется при помощи сетевых линий. Информация и сообщения пересылаются в виде пакетов данных. Против них могут возникнуть удалённые атаки. То есть человек может находиться за тысячи километров от интересующего объекта, и атаковать не только компьютер, но и информацию, которая в этот момент передаётся по каналам связи. [14]

3. Разработка методов стеганоанализа

3.1 Этапы практического стеганоанализа

Фактически, любое стеганографическое преобразование базируется на двух определяющих принципах :

* в качестве носителя скрытой информации (контейнера) избирается объект, структура которого допускает возможность определенного искажения его собственной информации, сохраняя при этом функциональность объекта;

* уровень внесенных в структуру контейнера искажений должен быть ниже уровня чувствительности средств распознания (в том числе и распознавания органами ощущения человека).

В качестве стеганоконтейнеров, как уже отмечалось выше, могут использоваться практически все известные носители информации, применяемые в современных сетях передачи данных. При этом методы скрытия информации ориентируются, в основном, на внутреннюю структуру контейнера, которая может представлять собой символьные или битовые данные, коэффициенты преобразования Фурье, широкополосное кодирование, коэффициенты уплотнения и т.д.

Скрытие данных в медиасреде требует соблюдения определенных условий при внесении изменений, что необходимо для устранения следов применения операцийстеганопреобразования. Например, в случае изображений указанные изменения мо гут при определенных действиях со стороны нарушителя (как преднамеренных, так и случайного характера) становиться видимыми для человеческого глаза, и, таким образом, явно указывать на использование стеганографических средств. Очевидно, что следы, оставленные последними. Могут существенно помочь обнаружить существование скрытого сообщения, таким образом, компрометируя стеганосистему в целом.

Одной из главных задач стеганоанализа является исследование возможных следов применения стеганографических средств и разработка методов, которые позволяли бы обнаруживать факты их использования [3]. Применение конкретного стеганографического преобразования требует от стеганоаналитика индивидуального подхода к его исследованию.

Исследование сообщений, скрытых одним из множества существующих стеганографических методов, или, более точно, подозреваемых в этом отношении, -- процесс довольно трудоемкий.

Для успешного проведения стеганоанализа необходимо (но ни в коем случае не достаточно):

* иметь для анализа стеганосредство, с помощью которого осуществляется скрытие сообщения;

* иметь возможность восстанавливать используемые в системе стеганографический и, возможно, криптографический алгоритмы; выполнять их экспертный анализ и разрабатывать алгоритм определения ключей;

* иметь возможность использовать для проведения стеганоанализа вычислитель ные ресурсы необходимой мощности;

* поддерживать на должном уровне теоретические и практические знания в области компьютерной стеганографии.

Можно выделить следующие несколько направлений практического развитиястеганографического анализа.

* разработка вероятностно-статистических методов распознавания, применение элементов искусственного интеллекта для получения оценок надежности стеганографических преобразований, а также при создании детекторов (фильтров) -- для анализа информационных потоков с целью обнаружения и перекрытия, скрытых каналов связи. В таком случае проверка наличия скрытой информации сводится к определенной оценке с использованием статистических критериев (последовательной корреляции, энтропии изображения, дисперсии младшего бита и т.д.). Разрабатываемые с этой целью средства должны не только обеспечивать низкий уровень погрешности во время распознавания скрытых сообщений (особенно в тех случаях, когда используется предварительное шифрование), но и быть универсальными, то есть должна существовать возможность детектирования сообщений встроенных разными стеганографическими методами.

* анализ конкретных программных стеганографических средств с целью восстановления алгоритмов и разработки оптимальных методов их исследования. Основная сложность в данном случае заключается в большой трудоемкости, обусловленной необходимостью индивидуального подхода к каждому конкретному алгоритму, реализующему тот или иной метод скрытия информации, а также значительным объемом вычислений, необходимых для восстановления стеганоключей.

Разработка технологий активных и злонамеренных атак для внесения невосстанавливаемых искажений в предполагаемую стеганограмму с целью спровоцировать ее повторную передачу в другом контейнере, что подтвердило бы факт использования стеганосредств.

3.2 Разработка программного обеспечения для стеганоанализа

Для разработанных методов стеганоанализабыла написана программа на языке C# в среде разработки VisualStudio 2013. Интерфейс программы представлен на рисунке 3.1.

Рис. 3.1- Интерфейс программы стеганоанализа

Далее необходимо воспользоваться кнопкой “Выбрать файл” (см. рис. 3.2).

Рис. 3.2-Кнопка выбора файла для стеганоанализа

После нажатия на кнопку, будет предложено выбрать путь к файлу с которым предстоит работа (см. рис. 3.3).

Рис 3.3- Окно с выбором файла

После выбора файла необходимо выбрать нужный метод (см. рис. 3.4).

Рис. 3.4- Выбор метода

Затем надо нажать на кнопку "Анализ"(рис. 3.5).

Рис 3.5-Кнопка "Анализ"

Суть сигнатурных методов заключается в синтаксическом анализе предъявленной на вход распознающего устройства последовательности терминальных символов, определяющих контейнер. В случае обнаружения принадлежности предъявленной на вход распознавателя цепочки терминальных символов языку, описывающему ту или иную стеганосистему, принимается решение об ее использовании для скрытия информации. В качестве терминальных символов обычно берут все или часть стандартных символов ASCII - латинские буквы, цифры и специальные символы.

К достоинствам этих методов относится возможность получения результата, который однозначно характеризует примененную для сокрытия данных стеганосистему. Основным недостатком является небольшое (менее 10%) число стеганопрограмм, оставляющих в контейнерах свои сигнатуры

Схемные методы применяются для проверки гипотез о наличии стеганографического вложения с априорно известной стеганосистемой. При этом используются знания о распределении статистики по данным контейнеров, которые характерны именно для результатов работы указанных программ. Достоинством методов данного класса является относительно низкая вероятность возникновения ошибок, а также тот факт, что по положительному результату анализа аналитик идентифицирует стеганосистему, не оставляющую «следов» (сигнатур) в контейнере, что позволяет предпринять попытку извлечения скрытой информации.

Визуальные методы базируются на способности зрительной системы человека анализировать зрительные образы и выявлять существенные различия в сопоставляемых изображениях

Статистические методы базируются на понятии «естественного» контейнера. Суть методов заключается в оценивании вероятности существования стеганографического вложения с неизвестной стеганосистемой на основе критерия оценки близости исследуемого контейнера к «естественному». К достоинствам этой группы методов относится неограниченная область применения, что довольно существенно как при проверке гипотезы о наличии стеганографического вложения с неизвестной стеганосистемой, так и при разработке схемных методов стеганоанализа. Основным недостатком методов этого класса является само предположение о существовании «естественного» контейнера. Рассмотрим ряд статистических методов, применяемых на практике.

После нажатия на кнопку "Анализ" программа выдаст результаты (рис. 3.6).

Рис. 3.6- результаты

Также можно скрыть\показать статистику или график

Рис. 3.7-Выбран график

Рис. 3.8-Выбрана статистика.

При необходимости полученную информацию можно сохранить нажав на кнопку "Сохранить отчет".

Рис. 3.9- Кнопка "Сохранить отчет".

Рис. 3.10-График

Есть несколько способов внедрения информации при помощи добавления непечатаемых символов .

Напримерв двоичной системе в буквах слов вместо единиц записывают пробелы, а вместо нулей -- символы табуляции. Эти символы на странице не видны (электронный аналог симпатических чернил)

· пробел -- интервал между буквами, обозначающий границы слов во многих системах письменности

· табуляция -- управляющий символ таблицы ASCII с кодом 09, используется для выравнивания текста в строках

· переход на новую строку -- продолжение печати текста с новой строки, то есть с левого края на строку ниже, или уже на следующей странице.

· возврат каретки -- управляющий символ или механизм, используемый для возвращения позиции устройства к началу строки

· неразрывный пробел -- элемент компьютерной кодировки текстов, отображающийся внутри строки подобно обычному пробелу, но не позволяющий программам отображения и печати разорвать в этом месте строку

· пустой тег -- элементы могут быть пустыми, то есть не содержащими никакого текста и других данных (например, тег перевода строки <br>)

Рис. 3.11-Таблица

Известны способы замены символов латинского алфавита на символы кириллицы и наоборот.

Предположим, что шифруется текст, написанный с использованием латинских букв. Есть алгоритм замены букв латиницы на буквы кириллицы: латинские буквы A, С, Е, H, K, M, O, P, T, X будем заменять соответственно набуквы кириллицы A, С, Е, H, K, M, O, P, T, X.

Можно проанализировать и графические файлы

Рис. 3.12-Вывод стеганоанализа.

Также доступна справка, для этого нужна нажать на кнопку "О программе"

Рис. 3.13-Кнопка "О программе"

Рис. 3.14-Результат нажатия кнопки "О программе"

Заключение

Стеганографическая наука является актуальной областью для исследования, как с точки зрения обеспечения безопасности информации, так и с точки зрения защиты персональных данных и авторских прав. Проводимые в настоящее время исследования в области цифровой и компьютерной стеганографии весьма разнообразны и направлены как на совершенствование характеристик стеговложений, так и на возможность создания новых методов, с использованием новых или передовых достижений из различных отраслей знаний, открывающих новые возможности и перспективы для потребителей услуг связи. Несмотря на разнообразие вариантов, которые предлагают авторы в своих работах, основной задачей стеганографии по-прежнему остается поиск компромисса между скрытностью передачи и объемом передаваемой информации. К перспективным и целесообразным направлениям исследований стоит отнести идеи, направленные на поиск решений, позволяющих формировать глобальные системы и сети стеганографической связи, отвечающие, наравне с телекоммуникационными сетями, всем предъявляемым к ним требованиям.

В дипломной работе были рассмотрены приемы применения стеганоанализа, реализованные в программе написанной на языке высокого уровня C# в среде разработки VisualStudio.

В данной дипломной работе была разработан и исследован метод стеганоанализа.

Была достигнута цель дипломной работы:

§ Исследован протокол передачи текста потокового формата на применения в нем стеганографических методов сокрытия информации

§ Разработан и исследован метод стеганоанализа

§ Разработано программное обеспечение для стеганоанализа

В результате дипломной работы был получен опыт в том, как применять стеганоанализ.

Было получено представление о том, как эффективно использовать современные средства разработки для стеганоанализа.

Размещено на Allbest.ru

...

Подобные документы

  • Принципы компьютерной стеганографии. Классификация методов сокрытия информации. Популярность метода замены наименьшего значащего бита. Сущность методов расширения палитры и блочного сокрытия. Применение методов в GIF изображениях. Реализация алгоритмов.

    курсовая работа [589,7 K], добавлен 17.02.2013

  • Разработка клиент-серверного приложения на основе TCP\IP соединения. Организация работы удаленного генератора псевдослучайных последовательностей. Описание основных функциональных модулей. Интерфейс пользователя, сетевое взаимодействие и алгоритм.

    курсовая работа [223,6 K], добавлен 18.10.2013

  • Характеристика основных способов защиты от несанкционированного доступа. Разработка политики безопасности системы. Проектирование программного обеспечения применения некоторых средств защиты информации в ОС. Содержание основных разделов реестра.

    лабораторная работа [1,9 M], добавлен 17.03.2017

  • Основные задачи в области обеспечения информационной безопасности Российской Федерации. Базовые угрозы информационным системам. Организация защиты информации от несанкционированного доступа. Вредоносное программное обеспечение. Создание цифровой подписи.

    дипломная работа [64,3 K], добавлен 08.11.2013

  • Сущность понятия "информационная безопасность". Категории модели безопасности: конфиденциальность; целостность; доступность. Информационная безопасность и Интернет. Методы обеспечения информационной безопасности. Основные задачи антивирусных технологий.

    контрольная работа [17,0 K], добавлен 11.06.2010

  • Проблемы информационной безопасности в современных условиях. Особенности развития средств мультимедиа. Применение информационных технологий в процессах коммуникации. Разработка защитного технического, программного обеспечения от компьютерных преступлений.

    курсовая работа [34,6 K], добавлен 27.03.2015

  • Анализ потенциальных уязвимостей материала, размещенного на сайте. Анализ потенциальных уязвимостей материала с использованием методов шифрования и стеганографии. Использование водяного знака для защиты изображений. Разработка php-скрипта для защиты.

    курсовая работа [4,2 M], добавлен 11.05.2014

  • Понятие и принципы обеспечения информационной безопасности. Рассмотрение основных видов опасных воздействий на компьютерную систему. Классификация каналов несанкционированного доступа к ЭВМ. Характеристика аппаратно-программных средств защиты информации.

    презентация [152,9 K], добавлен 15.11.2011

  • Сущность понятия "защита информации". Принципы информационной безопасности. Сбои, которые приводят к потере ценной информации. Некорректная работа программного обеспечения из-за инфицирования компьютерными вирусами. Популярные антивирусные программы.

    презентация [950,0 K], добавлен 29.10.2011

  • Проблема защиты информации от несанкционированного доступа, основные направления ее решения (криптография и стеганография). Методы классической и цифровой стеганографии, стегосистемы. Классификация методов компьютерной стеганографии и их характеристика.

    курсовая работа [332,3 K], добавлен 26.11.2013

  • Актуальность вопросов информационной безопасности. Программное и аппаратное обеспечения сети ООО "Минерал". Построение модели корпоративной безопасности и защиты от несанкционированного доступа. Технические решения по защите информационной системы.

    дипломная работа [2,3 M], добавлен 19.01.2015

  • Изучение основных видов угроз программного обеспечения. Выявление наиболее эффективных средств и методов защиты программного обеспечения. Анализ их достоинств и недостатков. Описания особенностей лицензирования и патентования программного обеспечения.

    курсовая работа [67,9 K], добавлен 29.05.2013

  • Предметная область, цель создания и группы пользователей информационно-программного изделия. Сетевая организация распределения приложения в архитектуре клиент-сервер. Интерфейс пользователя. Реализация транзакций. Защита от несанкционированного доступа.

    курсовая работа [1,8 M], добавлен 15.01.2013

  • Понятие информационной безопасности, понятие и классификация, виды угроз. Характеристика средств и методов защиты информации от случайных угроз, от угроз несанкционированного вмешательства. Криптографические методы защиты информации и межсетевые экраны.

    курсовая работа [2,4 M], добавлен 30.10.2009

  • Информационная система и ее виды. Общие понятия реляционного подхода к организации баз данных. Функциональное описание разрабатываемого программного обеспечения "База ИДПО". Определение стоимости и трудоёмкости разработки данного программного средства.

    дипломная работа [2,1 M], добавлен 15.06.2013

  • Программные средства защиты от вредоносного программного обеспечения, основные требования к ним, оценка возможностей и функциональности. Системы обнаружения вторжения. Анализ средств защиты информации на предприятии. Политика корпоративной безопасности.

    дипломная работа [1,2 M], добавлен 17.10.2015

  • Понятие и основные принципы обеспечения информационной безопасности. Понятие защищенности в автоматизированных системах. Основы законодательства РФ в области информационной безопасности и защиты информации, процессы лицензирования и сертификации.

    курс лекций [52,7 K], добавлен 17.04.2012

  • Базовые понятия систем электронной почты. Протокол обмена электронной почтой. Релеи, маршрутизация почты. Основные угрозы почтовой службы. Безопасность почтового сервера. Защита от вредоносного программного обеспечения. Средства динамического скрининга.

    курсовая работа [2,3 M], добавлен 28.01.2016

  • Влияние вида деятельности предприятия на организацию комплексной системы защиты информации. Состав защищаемой информации. Потенциальные каналы несанкционированного доступа к информации организации. Эффективность системы информационной безопасности.

    отчет по практике [1,3 M], добавлен 31.10.2013

  • Современные методы защиты информации средствами стеганографии. Анализ канала передачи сообщений, подходы к реализации стеганографического приложения. Алгоритмы методов последнего бита и передачи сообщений через стегоканал; ограничения его использования.

    курсовая работа [105,7 K], добавлен 05.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.