Title context-based personal data protection in smart city

Research Background, Objectives and Significance. Research on Concept and Connotation of Smart City. Characteristics of Smart City. Importance of Personal Data Classification. A Classified Personal Data Protection Architecture. Services in Smart City.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык английский
Дата добавления 23.09.2018
Размер файла 964,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Function adjustment and multiple configuration can be realized due to the flexibility.

Chapter 6. Conclusion

Various concepts, applications and technologies are interacting to encompass every aspect of the citizen's life. Understanding this privacy-challenging environment and determine what to protect are the basic requirements for the development of effective personal data protection strategy. This paper elaborates the privacy concerns emerging in smart city construction and proposes a classified personal data protection architecture, which also contains the classification scheme based on data context. The involving principles and techniques are also introduced hierarchically. However, the fact is, it is very difficult to cover each and every aspect of the smart city, because smart city is extremely dynamic, and each service may require different data types and data operations. The specific protection mechanism in each phase, therefore, may be varied on the basis of the core architecture [16]. Data classification is a new trend of data protection. Especially in smart city context, where personal data are collected massively for the realization of city efficiency and friendly, it is nearly impossible for citizens' not to participate in data sharing activities. In this circumstance, to know what is more important, what deserves higher level of protection, become particularly necessary. Therefore, illustration of protective technologies along with a well-defined privacy architecture can contribute to the integration of the many tailored privacy solutions that suitable for different smart city applications and services.

In summary, the study on personal data protection in smart city is in initial stage, since the construction of smart city is still in development and exploration. More researches and progress will be accomplished in recent years. And the limitation of this paper is, it is quite difficult to gather huge volume of anonymized personal data that can match scale of smart city without the support from organizations or enterprises. Meanwhile, in order to train the classifier, it is also required that these data should cover various categories and amount within each category should be balanced without severe difference in quantity. The proposed context-based personal data classification scheme would be better demonstrated with experiment of real data. All in all, hope the systematic analysis and architecture on classified personal data protection in smart city will support comprehensive and customized privacy solutions for smart cities construction.

Reference

[1] Bhowmick, A., Francellino, E., Glehn, L., Loredo, R., Nesbitt, P., & Yu, S. W. (2012). IBM Intelligent Operations Center for Smarter Cities Administration Guide. IBM International Technical Support Organization.

[2] Bartoli, A., Hernбndez-Serrano, J., Soriano, M., Dohler, M., Kountouris, A., & Barthel, D. (2011). Security and privacy in your smart city. In Proceedings of the Barcelona smart cities congress (Vol. 292).

[3] Cavoukian, A. (2009). Privacy by design. Take the challenge: Information and privacy commissioner of Ontario, Canada.

[4] Calder, A., & Watkins, S. (2012). IT Governance: an international guide to data security and ISO27001/ISO27002. Kogan Page Publishers.

[5] Juels, A. (2006). RFID security and privacy: A research survey. IEEE journal on selected areas in communications, 24(2), 381-394.

[6] Cheng, B., Longo, S., Cirillo, F., Bauer, M., & Kovacs, E. (2015, June). Building a big data platform for smart cities: Experience and lessons from santander. In Big Data (BigData Congress), 2015 IEEE International Congress on (pp. 592-599). IEEE.

[7] Martinez-Balleste, A., Perez-Martinez, P., & Solanas, A. (2013). The pursuit of citizens' privacy: A privacy-aware smart city is possible. IEEE Communications Magazine, 51(6), 136-141.

[8] Cerrudo, Cesar. (2015). Hacking Smart Cities. RSA Conference 2015.

[9] Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., & Williams, P. (2010). Foundations for smarter cities. IBM Journal of Research and Development, 54(4), 1-16.

[10] Pцhls, H. C., Angelakis, V., Suppan, S., Fischer, K., Oikonomou, G., Tragos, E. Z., ... & Mouroutis, T. (2014). RERUM: Building a reliable IoT upon privacy-and security-enabled smart objects. In Wireless Communications and Networking Conference Workshops (WCNCW), 2014 IEEE (pp. 122-127). IEEE.

[11] Wang, C., Wang, Q., Ren, K., & Lou, W. (2010). Privacy-preserving Public Auditing for Data Storage Security in Cloud Computing. In Infocom, proceedings IEEE.

[12] Eckhoff, D., & Wagner, I. (2017). Privacy in the Smart City-Applications, Technologies, Challenges and Solutions. IEEE Communications Surveys & Tutorials.

[13] Menniti, D., Sorrentino, N., Pinnarelli, A., Burgio, A., Brusco, G., & Belli, G. (2014). In the future smart cities: coordination of micro smart grids in a virtual energy district. In Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2014 International Symposium on (pp. 676-682). IEEE.

[14] Wright, D., & De Hert, P. (2012). Introduction to privacy impact assessment. In Privacy Impact Assessment (pp. 3-32). Springer, Dordrecht.

[15] European Union Agency for Network and Information Security. (2014). A tool on Privacy Enhancing Technologies (PETs) Knowledge Management and Maturity Assessment.

[16] Ferraz, F., Sampaio, C., Ferraz, C., Alexandre, G., & Carvalho, A. (2013). Towards a smart city security model exploring smart cities elements based on nowadays solutions. ICSEA 2013, (C), 546-550.

[17] Li, F., Luo, B., & Liu, P. (2010). Secure information aggregation for smart grids using homomorphic encryption. In Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on. IEEE.

[18] R. L. Finn, D. Wright, and M. Friedewald. (2013). Seven Types of Privacy. In European data protection: coming of age (pp. 3-32). Springer, Dordrecht.

[19] Gil-Garcia, J. R., Pardo, T. A., & Nam, T. (2015). What makes a city smart? Identifying core components and proposing an integrative and comprehensive conceptualization. Information Polity, 20(1), 61-87.

[20] Hollands, R.G. (2008). Will the real smart city please stand up? Intelligent, progressive or entrepreneurial? City, 12(3), 303-320.

[21] Piro, G., Cianci, I., Grieco, L.A., Boggia, G., & Camarda, P. (2014). Information centric services in smart cities. The Journal of Systems and Software, 88, pp. 169-188.

[22] V. Goyal, O. Pandey, A. Sahai, and B. Waters. (2006). Attribute-based Encryption for Fine-grained Access Control of Encrypted Data. In 13th ACM Conference on Computer and Communications Security (CCS).

[23] Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J. R., Mellouli, S., Nahon, K., ... & Scholl, H. J. (2012). Understanding smart cities: An integrative framework. In System Science (HICSS), 2012 45th Hawaii International Conference on (pp. 2289-2297). IEEE.

[24] InfoWatch. (2017). Global Data Leakage Report H1 2017.

[25] Jin, J., Gubbi, J., Marusic, S., & Palaniswami, M. (2014). An information framework for creating a smart city through internet of things. IEEE Internet of Things Journal, 1(2), 112-121.

[26] Jin, J., Gubbi, J., Luo, T., & Palaniswami, M. (2012). Network architecture and QoS issues in the internet of things for a smart city. In Communications and Information Technologies (ISCIT), 2012 International Symposium on (pp. 956-961). IEEE.

[27] Schlingensiepen, J., Mehmood, R., & Nemtanu, F. C. (2015). Framework for an autonomic transport system in smart cities. Cybernetics and Information Technologies, 15(5), 50-62.

[28] Shi, J., Zhang, R., Liu, Y., & Zhang, Y. (2010). Prisense: privacy-preserving data aggregation in people-centric urban sensing systems. In INFOCOM, 2010 Proceedings IEEE (pp. 1-9). IEEE.

[29] Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J., & Shen, X. (2017). Security and Privacy in Smart City Applications: Challenges and Solutions. IEEE Communications Magazine, 112-129.

[30] Cilliers, L., & Flowerday, S. (2015). The Relationship between Privacy, Information Security and the Trustworthiness of a Crowdsourcing System in a Smart City. In HAISA (pp. 243-255).

[31] Cilliers, L., & Flowerday, S. (2017). Factors that influence the usability of a participatory IVR crowdsourcing system in a smart city. South African Computer Journal, 29(3).

[32] Eschenauer, L., & Gligor, V. D. (2002). A Key-management Scheme for Distributed Sensor Networks. In Proceedings of the 9th ACM Conference on Computer and Communications Security (pp. 41-47). ACM.

[33] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou. (2013). Scalable and Secure Sharing of Personal Health Records in Cloud Computing Using Attribute-Based Encryption. IEEE Transactions on Parallel and Distributed Systems.

[34] Al-Hader, M., Rodzi, A., Sharif, A. R., & Ahmad, N. (2009). Smart city Components Architicture. In Computational Intelligence, Modelling and Simulation. International Conference on (pp. 93-97). IEEE.

[35] Angelidou M. (2014). Smart city policies: a spatial approach. Cities, 41, S3-S11.

[36] Bohli, J. M., Langendo?rfer, P., & Skarmeta, A. F. (2013). Security and privacy challenge in data aggregation for the IoT in smart cities. Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, 225-244.

[37] E. McCallister, T. Grance, and K. Scarfone. (2010). NIST SP800-122: Guide to protecting the confidentiality of personally identifiable information (PII). Technical report, NIST.

[38] Rebollo Monedero, D., Bartoli, A., Hernбndez Serrano, J., Fornй, J., & Soriano, M. (2014). Reconciling privacy and efficient utility management in smart cities. Transactions on Emerging Telecommunications Technologies, 25(1), 94-108.

[39] Mitton, N., Papavassiliou, S., Puliafito, A., & Trivedi, K. S. (2012). Combining Cloud and sensors in a smart city environment. Springer.

[40] Ponemon Institute. (2015). 2014: A Year of Mega Breaches.

[41] PricewaterhouseCoopers. (2017). Pulse Survey: US Companies Ramping Up General Data Protection Regulation (GDPR) Budgets.

[42] Lombardi P, Giordano S, Farouh H, et al. (2012). Modeling the smart city performance. Innovation-The European Journal of Social Science Research.

[43] Neirotti, P., De Marco, A., Cagliano, A. C., Mangano, G., & Scorrano, F. (2014). Current trends in Smart City initiatives: Some stylised facts. Cities, 38, 25-36.

[44] Wang, P., Ali, A., & Kelly, W. (2015). Data security and threat modeling for smart city infrastructure. In Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC), 2015 International Conference on (pp. 1-6). IEEE.

[45] S. Pearson. (2009). Taking account of privacy when designing cloud computing services. Proc. 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing, IEEE Computer Society.

[46] Wang, Q., Ren, K., Yu, S., & Lou, W. (2011). Dependable and secure sensor data storage with dynamic integrity assurance. ACM Transactions on Sensor Networks (TOSN), 8(1), 9.

[47] Jiang, R., Banchs, R. E., & Li, H. (2016). Evaluating and Combining Name Entity Recognition Systems. In Proceedings of the Sixth Named Entity Workshop.

[48] Khatoun, R., & Zeadally, S. (2016). Smart cities: concepts, architectures, research opportunities. Communications of the ACM, 59(8), 46-57.

[49] Neisse, R., Holling, D., & Pretschner, A. (2011). Implementing trust in cloud infrastructures. In Proceedings of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (pp. 524-533). IEEE Computer Society.

[50] Roman, R., Zhou, J., & Lopez, J. (2013). On the Features and Challenges of Security and Privacy in Distributed Internet of Things. Computer Networks, 57(10), 2266-2279.

[51] Wenge, R., Zhang, X., Dave, C., Chao, L., & Hao, S. (2014). Smart city architecture: A technology guide for implementation and design challenges. China Communications, 11(3), 56-69.

[52] Blackmer, W. S. (2016). GDPR: Getting Ready for the New EU General Data Protection Regulation. Information Law Group, InfoLawGroup LLP, Retrieved, 22(08).

[53] Chakrabarty, S., Engels, D. W. (2016). A secure IoT architecture for Smart Cities. In Consumer Communications & Networking Conference (CCNC), 2016 13th IEEE Annual (pp. 812-813). IEEE.

[54] Dirks, S., Keeling, M. (2009). A vision of smarter cities: How cities can lead the way into a prosperous and sustainable future. IBM.

[55] Elmaghraby, A. S., & Losavio, M. M. (2014). Cyber security challenges in Smart Cities: Safety, security and privacy. Journal of advanced research, 5(4), 491-497.

[56] Ferraz, F. S., & Ferraz, C. A. G. (2014). Smart city security issues: depicting information security issues in the role of an urban environment. In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing (pp. 842-847). IEEE Computer Society.

[57] Ferraz, F. S., & Ferraz, C. A. G. (2014). More than meets the eye in smart city information security: Exploring security issues far beyond privacy concerns. In Ubiquitous Intelligence and Computing, 2014 IEEE 11th Intl Conf on and IEEE 11th Intl Conf on and Autonomic and Trusted Computing, and IEEE 14th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UTC-ATC-ScalCom) (pp. 677-685). IEEE.

[58] Ijaz, S., Shah, M. A., Khan, A., & Ahmed, M. (2016). Smart cities: A survey on security concerns. Int. J. Adv. Comput. Sci. Appl, 7(2), 612-625.

[59] Jha, S., Kruger, L., & Shmatikov, V. (2008). Towards practical privacy for genomic computation. In Security and Privacy, 2008. SP 2008. IEEE Symposium on (pp. 216-230). IEEE.

[60] Paroutis, S., Bennett, M., & Heracleous, L. (2014). A strategic view on smart city technology: The case of IBM Smarter Cities during a recession. Technological Forecasting and Social Change, 89, 262-272.

[61] Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., ... & Chiroma, H. (2016). The role of big data in smart city. International Journal of Information Management, 36(5), 748-758.

[62] Lingyu Wang, Duminda W, Sushil J. (2004). A Logic-Based Framework for Attribute-based Access Control. Proc. of the 2004 ACM workshop on Formal methods in security engineering.

[63] Ziying Wang, Jian Wang. (2016). Hierarchical Ciphertext-policy Attribute-based Encryption Scheme. Journal of Chinese Computer Systems.

[64] Li, Y., Dai, W., Ming, Z., & Qiu, M. (2016). Privacy protection for preventing data over-collection in smart city. IEEE Transactions on Computers, 65(5), 1339-1350.

[65] Yu, Y., Yang, Z. H., & Jia, P. F. (2007). Research on Key Issues of Computer Security Monitor System. Computer Engineering, 24, 051.

[66] Zhu, Y., & Zuo, J. (2015). Research on security construction of smart city. System, 9(8).

[67] Khan, Z., Anjum, A., & Kiani, S. L. (2013). Cloud Based Big Data Analytics for Smart Future Cities. In Proceedings of the 2013 IEEE/ACM 6th international conference on utility and cloud computing (pp. 381-386). IEEE Computer Society.

[68] Kahn, Z., Pervez, Z., & Ghafoor, A. (2014). Towards cloud based smart cities data security and privacy management. Utility and cloud computing (UCC), 2014 IEEE/ACM 7th international conference on (pp. 806-811). IEEE.

Acknowledgement

Upon the completion of the thesis, I would like to take this opportunity to express my sincere gratitude to my supervisor Yevgeni Koucheryary and Professor Michael Komarov, who have given me important guidance on the thesis. Without their help and encouragement, this thesis could not have reached its present stage. Besides, during the study, they have also given me much advice and comments of doing research, which is of great value to my future study and work.

I am deeply obliged to all teachers whose insightful lectures have broadened my scope of vision and help me lay a necessary foundation for writing thesis. In China, there is an old saying that has been spreading for thousands of years: “ОЄС§ДЄЦШУЪЧрК¦”, which tells people the most principle in learning is to respect your teacher. I am so indebted to all instructors who encouraged me in my academy and project which granted me a lot of experience that I will surely benefit from.

My heartful thanks also goes to our coordinator Ekaterina German. It is not easy for me to start a new journey studying and living in Russia with language barrier, but Ekaterina always offers great help with patience whenever needed.

Another pleasure and honor to me in the past two years, is to knowing and getting acquainted with all members in our class. I can always learn a lot from your presentations and projects. And it is very impressive to work and study with you all.

Last but not least, I would like to express my gratitude to all the friends and family members who always support me, willingly discuss with me, and offer valuable advice. I really appreciate it.

My best wishes to you all.

Размещено на Allbest.ru

...

Подобные документы

  • History of development. Building Automation System (BMS) and "smart house" systems. Multiroom: how it works and ways to establish. The price of smart house. Excursion to the most expensive smart house in the world. Smart House - friend of elders.

    контрольная работа [26,8 K], добавлен 18.10.2011

  • Определение программы управления корпоративными данными, ее цели и предпосылки внедрения. Обеспечение качества данных. Использование аналитических инструментов на базе технологий Big Data и Smart Data. Фреймворк управления корпоративными данными.

    курсовая работа [913,0 K], добавлен 24.08.2017

  • Проблемы оценки клиентской базы. Big Data, направления использования. Организация корпоративного хранилища данных. ER-модель для сайта оценки книг на РСУБД DB2. Облачные технологии, поддерживающие рост рынка Big Data в информационных технологиях.

    презентация [3,9 M], добавлен 17.02.2016

  • Data mining, developmental history of data mining and knowledge discovery. Technological elements and methods of data mining. Steps in knowledge discovery. Change and deviation detection. Related disciplines, information retrieval and text extraction.

    доклад [25,3 K], добавлен 16.06.2012

  • Сравнительная характеристика антивирусных программ. Фирма-разработчик и характеристика программы Eset Smart Security, форма продажи лицензий и структура модулей защиты информации. Назначение утилиты Eset SysInspector. Правила корректного обновления.

    контрольная работа [28,8 K], добавлен 10.03.2011

  • Классификация задач DataMining. Создание отчетов и итогов. Возможности Data Miner в Statistica. Задача классификации, кластеризации и регрессии. Средства анализа Statistica Data Miner. Суть задачи поиск ассоциативных правил. Анализ предикторов выживания.

    курсовая работа [3,2 M], добавлен 19.05.2011

  • Проект автоматизации системы энергосбережения на базе концепции Smart Grid. Анализ объекта управления, выбор оборудования. Реализация человеко-машинного интерфейса: центральный сервер, автоматизированные рабочие места, контроллеры активно-адаптивной сети.

    курсовая работа [1,0 M], добавлен 02.10.2013

  • A database is a store where information is kept in an organized way. Data structures consist of pointers, strings, arrays, stacks, static and dynamic data structures. A list is a set of data items stored in some order. Methods of construction of a trees.

    топик [19,0 K], добавлен 29.06.2009

  • Назначение и специфика работы вычислительной сети. Организация локально-вычислительной сети офисов Москва City. Глобальная компьютерная сеть. Топология вычислительной сети. Основные типы кабелей. Повторители и концентраторы. Планирование сети с хабом.

    курсовая работа [228,5 K], добавлен 08.01.2016

  • Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.

    контрольная работа [208,4 K], добавлен 14.06.2013

  • Совершенствование технологий записи и хранения данных. Специфика современных требований к переработке информационных данных. Концепция шаблонов, отражающих фрагменты многоаспектных взаимоотношений в данных в основе современной технологии Data Mining.

    контрольная работа [565,6 K], добавлен 02.09.2010

  • Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.

    курсовая работа [728,4 K], добавлен 10.07.2017

  • Общие сведения о предприятии. Организационная структура, функции и основные задачи Минздрава. Полномочия и ответственность министра здравоохранения. Исследование программной среды Personal Brain для формирования онтологической базы знаний для документов.

    отчет по практике [169,7 K], добавлен 27.12.2013

  • Історія виникнення комерційних додатків для комп'ютеризації повсякденних ділових операцій. Загальні відомості про сховища даних, їх основні характеристики. Класифікація сховищ інформації, компоненти їх архітектури, технології та засоби використання.

    реферат [373,9 K], добавлен 10.09.2014

  • American multinational corporation that designs and markets consumer electronics, computer software, and personal computers. Business Strategy Apple Inc. Markets and Distribution. Research and Development. Emerging products – AppleTV, iPad, Ping.

    курсовая работа [679,3 K], добавлен 03.01.2012

  • Основные виды сетевых атак на VIRTUAL PERSONAL NETWORK, особенности их проведения. Средства обеспечения безопасности VPN. Функциональные возможности технологии ViPNet(c) Custom, разработка и построение виртуальных защищенных сетей (VPN) на ее базе.

    курсовая работа [176,0 K], добавлен 29.06.2011

  • Роль информации в мире. Теоретические основы анализа Big Data. Задачи, решаемые методами Data Mining. Выбор способа кластеризации и деления объектов на группы. Выявление однородных по местоположению точек. Построение магического квадранта провайдеров.

    дипломная работа [2,5 M], добавлен 01.07.2017

  • Non-reference image quality measures. Blur as an important factor in its perception. Determination of the intensity of each segment. Research design, data collecting, image markup. Linear regression with known target variable. Comparing feature weights.

    дипломная работа [934,5 K], добавлен 23.12.2015

  • Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.

    курсовая работа [3,9 M], добавлен 22.10.2012

  • Характеристика предприятия ЗАО "Талисман", анализ технического состояния его информационных систем и программного обеспечения, а также оценка уровня компьютерных технологий. Особенности использования антивируса ESET NOD32 Smart Security Business Edition.

    отчет по практике [18,6 K], добавлен 15.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.