Информатика в современном научном знании

Процессы сбора, передачи, обработки и накопления информации. Методы ее защиты. Модели решения вычислительных задач. Понятие и свойства алгоритма. Технологии программирования. Виды компьютерных сетей. Программное и аппаратное обеспечение компьютера.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 21.10.2018
Размер файла 633,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реальные модели системы представлены либо реальным объектом, либо его частью. Эти модели делятся на:

натурные - проведение исследования на реальном объекте и последующая обработка результатов эксперимента с применением теории подобия;

физические - проведение исследования на установках, которые сохраняют природу явления и обладают физическим подобием.

Информационные модели реализуют информационные процессы (возникновение, передачу, обработку и использование информации) на компьютере.

По области применения:

Универсальные модели предназначены для использования многими системами;

Специализированные модели созданные для исследования конкретной системы.

4.4 Интеллектуальные системы

4.4.1 Искусственный интеллект

Идеи моделирования человеческого разума известны с древнейших времен. Впервые об этом упоминается в сочинении философа и теолога Раймунда Луллия (около 1235 - 1315) «Великое искусство», который не только высказал идею логической машины для решения разнообразных задач, но и попытался ее реализовать. Рене Декарт (1596 - 1650) и Готфрид Вильгельм Лейбниц (1646 - 1716) независимо друг от друга развивали учение о прирожденной способности ума к познанию и всеобщих и необходимых истин логики и математики, работали над созданием универсального языка классификации всех знаний. Именно на этих идеях базируются теоретические основы создания искусственного интеллекта. Толчком к дальнейшему развитию модели человеческого мышления стало появление в 40-х гг. ХХ в. ЭВМ. В 1948 г. американский ученый Норберт Винер (1894 - 1964) сформулировал основные положения новой науки - кибернетики. В 1956 г. признано новое научное направление, связанное с машинным моделированием человеческих, интеллектуальных функций, и названное искусственным интеллектом.

Вскоре эта отрасль разделилась на два направления: нейрокибернетику и кибернетику «черного ящика».

Нейрокибернетика обратилась к структуре человеческого мозга, как единственно мыслящему объекту и занялась его аппаратным моделированием. Нейрокибернетика занимается созданием элементов, аналогичных нейронам (связанным друг с другом нервным клеткам, составляющим основу мозга), и их объединением в функционирующие системы, названные нейросетями. В середине 80-х гг. ХХ в. в Японии был создан первый нейрокомьютер, моделирующий структуру человеческого мозга. Его основная область применения - распознавание образов.

Для кибернетики «черного ящика» структура модели не важна, важна ее реакция на заданные входные данные. На выходе модель должна реагировать как человеческий мозг. Ученые этого направления занимаются разработкой алгоритмов решения интеллектуальных задач для имеющихся вычислительных систем. Наиболее значимые результаты:

Модель лабиринтного поиска (конец 50-х гг.), в которой рассматривается граф состояний объекта и в нем происходит поиск оптимального пути от входных данных к результирующим. На практике эта модель не нашла широкого применения.

Эвристическое программирование (начало 60-х гг.) разрабатывало стратегии действий на основе заранее известных заданных правил (эвристик). Эвристика - теоретически не обоснованное правило, позволяющее уменьшить количество переборов в поиске оптимального пути.

Методы математической логики. Метод резолюций, позволяющий на основе определенных аксиом автоматически доказывать теоремы. В 1973 г. создан язык логического программирования Пролог, позволяющий обрабатывать символьную информацию.

С середины 70-х гг. реализуется идея моделирования конкретных знаний специалистов- экспертов. В США появляются первые экспертные системы. Возникает новая технология искусственного интеллекта, основанная на представлении и использовании знаний. С середины 80-х гг. искусственный интеллект коммерциализируется. Растут капиталовложения в эту отрасль, появляются промышленные системы, повышается интерес к самообучающимся системам.

4.4.2 База знаний

База знаний - основа любой интеллектуальной системы. В ней хранятся знания, представляющие собой выявленные закономерности предметной области (принципы, связи, законы), позволяющие решать задачи в этой предметной области. Знания - хорошо структурированные данные, или данные о данных (метаданные). С точки зрения искусственного интеллекта знания определяют как формализованную информацию, на которую ссылаются в процессе логического вывода. Существует множество моделей представления знаний, но большинство из них относятся к следующим классам: логические модели; продукционные модели; семантические сети; фреймовые модели.

Формальные логические модели основаны на классическом исчислении предикатов первого порядка, когда предметная область описывается в виде набора аксиом. Вся информация, необходимая для решения задач, рассматривается как совокупность правил и утверждений, которые представляются как формулы в некоторой логике предикатов. Знания отражают совокупность таких формул, а получение новых знаний сводится к реализации процедур логического вывода. Эта логическая модель применима в основном в исследовательских «идеальных» системах, так как предъявляет высокие требования и ограничения предметной области. В промышленных экспертных системах используются ее различные модификации и расширения.

Исследования процессов принятия решения человеком показали, что рассуждая и принимая решение, человек использует продукционные правила (от английского production - правило вывода, порождающее правило). Продукционная модель, основанная на правилах, позволяет представить знания в виде предложений: ЕСЛИ (список условий), ТО (следует выполнить перечень действий). Условие - это предложение, по которому происходит поиск в базе знаний, а действие есть некоторая операция, выполняемая при успешно осуществленном поиске. Действия могут быть как промежуточными, выступающими далее как условия, так и целевыми, завершающими работу ИС. В продукционной модели база знаний состоит из совокупности правил. Программа, управляющая перебором правил, называется машиной вывода. Механизм выводов связывает знания и создает из их последовательности заключение. Вывод бывает прямой (метод сопоставления, от данных к поиску цели) или обратный (метод генерации гипотезы и ее проверки, от цели к данным).

Продукционная модель наглядная, модульная, легко вносятся дополнения и изменения, имеет простой механизм логического вывода, чаще всего используется в промышленных экспертных системах.

Семантика - это наука, исследующая свойства знаков и знаковых систем, их смысловую связь с реальными объектами. Семантическая сеть - это ориентированный граф, вершины которого есть понятия, а дуги - отношения между ними (рис. 4.4.1). Достоинствами сетевых моделей являются: большие выразительные возможности; наглядность системы знаний, представленной графически; близость структуры сети, представляющей систему знаний, семантической структуре фраз на естественном языке; соответствие современным представлениям об организации долговременной памяти человека. К недостаткам можно отнести то, что сетевая модель не содержит ясного представления о структуре предметной области, которая ей соответствует, поэтому ее формирование и модификация затруднительны; сетевые модели представляют собой пассивные структуры, для их обработки используется специальный аппарат формального вывода. Проблема поиска решения в базе знаний типа семантической сети сводится к задаче поиска фрагмента сети, соответствующего некоторой подсети поставленной задачи, что, в свою очередь, говорит еще об одном недостатке модели - сложности поиска вывода на семантических сетях.

Рис. 4.4.1. Семантическая сеть

Сетевые модели являются наглядным и достаточно универсальным средством представления знаний. Однако их формализация в конкретных моделях представления, использования и модификации знаний представляет достаточно трудоемкий процесс, особенно при наличии множественных отношений между понятиями.

Термин фрейм (от анг. frame - каркас, рамка) предложен для обозначения структуры единицы знаний, которую можно описать некоторой совокупностью понятий, для ее пространственного восприятия. Фрейм имеет определенную внутреннюю структуру, состоящую из совокупности элементов, называемых слотами. Каждый слот, в свою очередь, представляется определенной структурой данных, процедурой, или может быть связан с другим фреймом. Фреймовая модель представляет собой систематизированную в виде единой теории технологическую модель памяти человека и его сознания. В отличие от других моделей во фреймах фиксируется жесткая структура.

Важным свойством фреймов является наследование свойств, заимствованных из теории семантических сетей. Наследование происходит по АКО - связям (A-Kind-Of= это). Слот АКО указывает на фрейм более высокого уровня иерархии, откуда неявно наследуется, т.е. переносятся значения аналогичных слотов. Например, в сети фреймов на рис. 4.4.2. «конструктор» наследует свойства фреймов «инженер» и «человек», которые стоят на более высоком уровне иерархии. Модель фреймов достаточно универсальна, позволяет отобразить все многообразие знаний о мире через:

· Фреймы - структуры, для обозначения объектов и понятий (лекция, конспект, кафедра);

· Фреймы - роли (студент, преподаватель, декан);

· Фреймы - сценарии (сдача экзамена, празднование именин, получение стипендии);

· Фреймы - ситуации (тревога, рабочий режим учебного дня) и др.

Рис. 4.4.2. Сеть фреймов

Основным преимуществом фреймов как модели представления знаний является их способность отражать концептуальную основу организации памяти человека, а также гибкость и наглядность.

Обобщая анализ моделей представления знаний, можно сделать следующие выводы:

· Нельзя дать универсальных рекомендаций по выбору модели. Этот выбор определяется возможностью и удобством представления исследуемой предметной области с учетом необходимости использования знаний.

· Наиболее мощными являются смешанные модели представления знаний.

4.4.3 Экспертные системы

Экспертные системы предназначены для анализа данных, содержащихся в базах знаний, и выдачи рекомендаций по запросу пользователя. Используются в тех случаях, когда исходные данные хорошо формализуются, но для принятия решения требуются специальные, обширные знания. Экспертные системы - это сложные программные комплексы, аккумулирующие знания специалистов в конкретных предметных областях и тиражирующие этот эмпирический опыт для консультаций мене квалифицированных пользователей.

Предметные области: медицина, фармакология, химия, геология, экономика, юриспруденция и др., в которых большая часть знаний является личным опытом специалистов высокого уровня (экспертов), нуждаются в экспертных системах. Те области, где большая часть знаний представлена в виде коллективного опыта (например, высшая математика), не нуждаются в них.

Современные ЭС способны:

- По совокупности признаков заболевания установить диагноз, назначить лечение, дозировать медикаменты, выработать программу курса лечения;

- Выполнять задачи диагностических систем в исследовании явлений и процессов (например, для анализа крови; управления производством; изучения состояния недр земли, нефтяных полей, залежей угля и т.п.);

- Распознавать речь, на данном этапе в ограниченной области применения;

- Распознавать человеческие лица, отпечатки пальцев и др.

На рис. 4.4.3. изображены основные компоненты модели экспертной системы:

Рис. 4.4.3. Структура модели экспертной системы

Характерной особенностью любой экспертной системы является способность к саморазвитию. Исходные данные хранятся в базе знаний в виде фактов, между которыми установлены определенные логические связи. Если при тестировании выявлены некорректные рекомендации или заключения по конкретным вопросам, либо заключение не может быть сформулировано, это означает, или отсутствие важных фактов ее базе, или нарушения в логической системе связи. В любом случае система сама может сгенерировать достаточный набор вопросов к эксперту и автоматически повысить свое качество.

5. Алгоритмизация и программирование. Языки программирования высокого уровня

5.1 Алгоритмизация

5.1.1 Понятие алгоритма

Слово «алгоритм» происходит от «algorithmi» - латинской формы описания имени великого узбекского математика IХ в. аль - Хорезми, который сформулировал правила выполнения арифметических действий. Первоначально под алгоритмом и понимали только правила выполнения четырех арифметических действий над многозначными числами.

Понятие алгоритма - одно из фундаментальных понятий информатики.

Алгоритм - это формальное описание способа решения задачи, путем разбиения ее на конечную по времени последовательность действий (элементарных операций). Под словом «формальное» подразумевается, что описание должно быть абсолютно полным и учитывать все возможные ситуации, которые могут встретиться по ходу решения. Под элементарной операцией понимается действие, которое по определенным критериям (например, очевидности) не имеет смысла детализировать.

Алгоритм на выбранном языке программирования записывается с помощью команд описания данных, вычисления значений и управления последовательностью выполнения программ.

5.1.2 Свойства алгоритма

Алгоритм должен быть составлен таким образом, чтобы исполнитель, в расчете на которого он создан, мог однозначно и точно следовать командам алгоритма и эффективно получать определенный результат. Это накладывает на записи алгоритма ряд обязательных требований, суть которых вытекает из приведенного выше неформального толкования понятия алгоритма. Сформулируем эти требования в виде перечня свойств, которым должны удовлетворять алгоритмы.

Дискретность (разрывность) - это свойство алгоритма, характеризующее его структуру: каждый алгоритм состоит из отдельных законченных действий. Говорят: «Делится на шаги».

Массовость - применимость алгоритма ко всем задачам рассматриваемого типа, при любых исходных данных. Например, алгоритм решения квадратного уравнения в области действительных чисел должен содержать все возможные исходы решения, т.е., рассмотрев значения дискриминанта, алгоритм находит либо два различных корня, либо два равных, либо делает вывод о том, что действительных корней нет.

Определенность (детерминированность, точность) - свойство алгоритма, указывающее на то, что каждый шаг алгоритма должен быть строго определен, и не допускать различных толкований; также строго должен быть определен порядок выполнения отдельных шагов. В алгоритмах недопустимы ситуации, когда после выполнения очередной команды исполнителю неясно, какая из команд алгоритма должна выполняться на следующем шаге. Результативность - свойство, состоящее в том, что любой алгоритм должен завершаться за конечное число шагов. Вывод о том, что решения не существует - тоже результат. Вопрос о рассмотрении бесконечных алгоритмов остается за рамками теории алгоритмов.

Формальность - это свойство указывает на то, что любой исполнитель, способный воспринимать и выполнять инструкции алгоритма, действует формально, т.е. отвлекается от содержания поставленной задачи и лишь строго выполняет инструкции. Рассуждать «что, как и почему?» должен разработчик алгоритма, а исполнитель формально (не думая) поочередно исполняет предложенные команды и получает необходимый результат.

5.1.3 Способы описания алгоритмов

Существуют несколько способов описания алгоритма: словесное, псевдокод, блок-схема, программа.

Словесное описание представляет структуру алгоритма на естественном языке. Запись алгоритма осуществляется в произвольной форме, никаких правил не существует.

Псевдокод - описание структуры алгоритма на естественном, частично формализованном языке, позволяющее выявить основные этапы решения задачи, перед точной его записью на языке программирования. В псевдокоде используются некоторые формальные конструкции и общепринятая математическая символика.

Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором используемых слов и конструкций.

Блок-схема - описание структуры алгоритма с помощью геометрических фигур с линиями - связями, показывающими порядок выполнения отдельных инструкций. В блок - схеме каждой формальной конструкции соответствует определенная геометрическая фигура или связанная линиями совокупность фигур.

Основные конструкции, использующиеся для построения блок - схем.

Рис. 5.1.1

5.2 Блок-схемы алгоритма

5.2.1 Алгоритмы решения задач

Логическая структура алгоритма решения любой задачи может быть выражена комбинацией трех базовых структур: следования, ветвления и цикла (это содержание теоремы Бема - Якопини).

Линейная структура (следование) самая важная из структур. Она означает, что действия могут быть выполнены друг за другом (рис. 5.2.1.).

Рис. 5.2.1

Прямоугольники могут представлять как одну единственную команду, так и множество операторов, необходимых для выполнения сложной обработки данных.

Пример 5.2.1.

Опишем алгоритм сложения двух чисел на псевдокоде и в виде блок-схемы (рис. 5.2.2.).

Рис. 5.2.2. Блок - схема к примеру 5.2.1.

1. Псевдокод:

2. Ввод двух чисел a, b

3. Вычисляем сумму S = a + b

4. Вывод S

5. Конец.

Ветвление (развилка) - это структура, обеспечивающая выбор между двумя альтернативами. Выполняется проверка условия, а затем выбирается один из путей (рис. 5.2.3). Если условие имеет значение «Истина», то выполняется «Действие А». Если условие имеет значение «Ложь», выполняется «Действие В». Эта структура называется, также «Если - ТО - ИНАЧЕ» или «развилка». Каждый путь (ТО или ИНАЧЕ) ведет к общей точке слияния, так что выполнение алгоритма продолжается независимо от того, какой путь был выбран. Может оказаться, что для одного из результатов проверки ничего выполнять не надо. В этом случае можно применить только один обрабатывающий блок (рис. 5.2.4).

Рис. 5.2.3. Полное ветвление

Рис. 5.2.4. Структура «неполное ветвление»

Такая структура называется «неполным ветвлением» или «неполной развилкой».

Пример 5.2.2.

Вывести значение наибольшего числа из двух чисел (рис. 5.2.5).

Псевдокод:

1. Ввод двух чисел a, b

2. ЕСЛИ a>b, ТО «выводим a», ИНАЧЕ «выводим b»

3. Конец.

Рис. 5.2.5. Блок - схема к примеру 5.2.2.

Цикл (или повторение) предусматривает повторное выполнение некоторого набора команд алгоритма. Циклы позволяют записать длинные последовательности операций обработки данных с помощью небольшого числа повторяющихся команд. Различают два типа циклов: «цикл с предусловием» и «цикл с постусловием».

Цикл с предусловием («Пока») (рис. 5.2.6).

Рис. 5.2.6. Структура цикла «Пока».

Цикл начинается с проверки логического выражения. Если оно истинно, то выполняется тело цикла, затем все повторяется, пока логическое выражение сохраняет значение «истина». Как только оно становится ложным, выполнение операций прекращается и управление передается дальше. Особенностью цикла с предусловием является то, что если изначально логическое выражение имеет значение «ложь», то тело цикла не выполнится ни разу.

Пример 5.2.3.

Вычислить сумму 100 чисел (рис. 5.2.7).

Псевдокод:

1. НАЧ

2. I =1; S = 0

3. ПОКА i<=100 делать

НЦ

4. Ввести ai

5. S = S + ai

6. i = i + 1

КЦ

7. Вывод S

8. Конец.

Цикл с постусловием («До»).

В отличие от цикла с предусловием, тело цикла с постусловием всегда будет выполнено хотя бы один раз, после чего проверяется условие. В этой конструкции тело цикла будет повторяться до тех пор, пока значение логического выражения ложно. Как только оно становится истинным, выполнение тела цикла прекращается (рис. 5.2.8).

Рис. 5.2.7. Блок - схема к примеру 5.2.3 с циклом «Пока»

Рис. 5.2.8. Структура «цикла с постусловием».

Пример 5.2.4.

Вывести максимальное значение из 100 натуральных чисел (рис. 5.2.9).

Псевдокод:

1. Начало

2. Ввести a1

3. max = a1; i = 2

4. НЦ

a. Ввести ai

b. ЕСЛИ max < ai ТО max = ai

c. i = i + 1

5. ДО I>100;

6. КЦ

7. Вывести max.

8. Конец.

Рис. 5.2.9. Блок - схема к примеру 5.2.4. с циклом «До»

Базовые алгоритмические структуры можно комбинировать одну с другой - как путем организации их следования, так и путем создания суперпозиций (вложений одной структуры в другую). Используя описанные структуры, можно полностью исключить использование каких-либо еще операторов условного и безусловного перехода, что является важным признаком структурного программирования. Приведем несколько примеров (рис. 5.2.10, 5.2.11, 5.2.12, 5.2.13).

Рис. 5.2.10. Алгоритм типа «развилка, вложенная в цикл, с предусловием», для нахождения суммы положительных чисел и N возможных

Рис. 5.2.11. Алгоритм типа «цикл, с предусловием, вложенный в неполную развилку»

Рис. 5.2.12. Алгоритм типа «неполная развилка, вложенная в пол-

5.3 Программирование

5.3.1 Языки программирования

Языки программирования - это искусственные языки. От естественных они отличаются ограниченным числом «слов», значение которых понятно транслятору, и очень строгими правилами записи команд (операторов).

Транслятор-это специальное служебное приложение, которое либо переводит текст программы в машинный код, либо исполняет его.

С помощью языка программирования создается не готовая программа, а только ее текст, описывающий ранее разработанный алгоритм. Чтобы получить работающую программу, надо этот текст либо автоматически перевести в машинный код (для этого служат программы - компиляторы) и затем использовать отдельно от исходного текста, либо сразу выполнять команды языка, указанные в тексте программы (этим занимаются программы-интерпретаторы). Компиляторы полностью обрабатывают текст программы (исходный код). Они просматривают его в поисках синтаксических ошибок, выполняют определенный смысловой анализ и затем автоматический перевод (транслируют) на машинный язык - генерируют машинный код.

Интерпретатор моделирует некую виртуальную вычислительную машину, для которой базовыми инструкциями служат не элементарные команды процессора, а операторы языка программирования.

5.3.2 Уровни языков программирования

Разные типы процессов имеют разные наборы команд. Если язык программирования ориентирован на конкретный тип процессора и учитывает его особенности, то он называется языком программирования низкого уровня. В данном случае «низкий» не значит «плохой». Имеется ввиду, что операторы языка близки к машинному коду и ориентированы на конкретные команды процессора. Языком низкого уровня является язык ассемблера, который просто представляет каждую команду машинного кода, но не в виде чисел, а с помощью символьных, условных обозначений, называемых мнемониками. Однозначное преобразование одной машинной инструкции в одну команду ассемблера называют транслитерацией. Так как наборы инструкций для каждой модели процессора отличаются, конкретной компьютерной архитектуре соответствует свой язык ассемблера, написанная на нем программа может быть использована только в этой среде.

С помощью языков низкого уровня создаются очень эффектные и компактные программы, так как разработчик получает доступ ко всем возможностям процессора. С другой стороны, при этом требуется очень хорошо понимать устройства компьютера, затрудняется отладка больших приложений, а результирующая программа не может быть перенесена на компьютер с другим типом процессора. Подобные языки обычно применяют для написания небольших системных приложений, драйверов устройств, модулей стыковки с нестандартным оборудованием, когда важнейшими требованиями становятся компактность, быстродействие и возможность прямого доступа к аппаратным ресурсам.

В некоторых областях, например в машинной графике, на языке ассемблера пишутся библиотеки, эффективно реализующие требующие интенсивных вычислений алгоритмы обработки изображения.

Языки программирования высокого уровня значительно ближе и понятнее человеку, нежели компьютеру. Особенности конкретных компьютерных архитектур в них не учитываются, поэтому создаваемые программы на уровне исходных текстов легко переносимы на другие платформы. Разрабатывать программы на языках высокого уровня с помощью понятных и мощных команд значительно проще, а ошибок при создании программы допускается гораздо меньше.

5.3.3 Поколение языков программирования

Языки программирования принято делить на пять поколений. В первое входят языки, созданные в начале 50-х годов, когда первые компьютеры только появились на свет. Это был первый язык ассемблера, созданный по принципу «одна инструкция - одна строка».

Расцвет второго поколения языков программирования пришелся на конец 50-х начало 60-х годов. Тогда был разработан символический ассемблер, в котором появилось понятие переменной. Он стал первым полноценным языком программирования. Благодаря его возникновению заметно возросли скорость разработки и надежность программ.

Появление третьего поколения принято относить к 60-м годам. В это время родились универсальные языки высокого уровня, с их помощью удается решать задачи из любых областей. Такие качества новых языков, как относительная простота, независимость от конкретного компьютера, позволили резко повысить производительность труда программиста. Благодаря понятной структуре этих языков, значительное число специалистов некомпьютерных областей могли написать небольшие программы. Подавляющее большинство языков этого поколения успешно применяется и сегодня.

С начала 70-х годов по настоящее время продолжается период языков 4-го поколения. Эти языки предназначены для реализации крупных проектов, повышения их надежности и скорости создания. Они обычно ориентированы на специализированные области применения , где хороших результатов можно добиться , используя не универсальные, а проблемно ориентированные языки, оперирующие конкретными понятиями узкой предметной области . Как правило, в эти языки встраиваются мощные операторы, позволяющие одной строкой описать такую функциональность, для реализации которой на языках младших поколений потребовались бы тысячи строк исходного кода.

Рождение языков пятого поколения произошло в середине 80-х годов. К ним относятся также системы автоматического создания прикладных программ с помощью визуальных средств разработки, без знания программирования. Главная идея заключается в возможности автоматического формирования результирующего текста на универсальных языках программирования. Инструкции же вводятся в компьютер в максимально наглядном виде с помощью методов, наиболее удобных для человека, незнакомого с программированием.

6. Программное обеспечение и технологии программирования

6.1 Системы программирования

Процесс создания программы включает:

Составление исходного кода программ (рис. 6.1) на языке программирования;

Этап трансляции, необходимый для создания объектного кода программы;

Построение загрузочного модуля, готового к исполнению.

Все перечисленные выше действия требуют наличия специальных программных средств.

Рис. 6.1. Процесс создания программы, готовой к исполнению

Совокупность этих программных средств, входит в состав системы программирования:

· Текстовый редактор (необходимый для создания и редактирования исходного кода программы на языке программирования);

· Компилятор;

· Редактор связей;

· Отладчик;

· Библиотеки функций;

· Справочная система.

6.1.1 Классификация языков программирования

Многие языки, первоначально разработанные для больших и малых ЭВМ, в дальнейшем были приспособлены к персональным компьютерам. Хорошо вписались в ПК не только Паскаль, Бейсик, Си, Лого, но и ЛИСП, ПРОЛОГ - языки искусственного интеллекта.

В течение многих лет программное обеспечение строилось на основе операционных и процедурных языков, таких как Фортран, Бейсик, Паскаль, Ада, Си. И сегодня современные версии этих и им подобных языков (Модула, Форт и др.) доминируют при разработке прикладных программных средств. Однако по мере эволюции языков программирования получили широкое распространение и другие, принципиально иные, подходы к созданию программ (рис. 6.1.1).

Рис. 6.1.1. Классификация языков программирования

Классическое операционное и/или процедурное программирование требует от программиста детального описания того, как решать задачу, т.е. формулировки алгоритма и его специальной записи. При этом ожидаемые свойства результата обычно не указываются. Основные понятия языков этих групп - оператор и данные. При процедурном подходе операторы объединяются в группы - процедуры. Структурное программирование в целом не выходит за рамки этого направления, оно лишь дополнительно фиксирует некоторые полезные приемы технологии программирования.

Принципиально иное направление в программировании связано с методологиями (иногда говорят «парадигмами») непроцедурного программирования. К ним можно отнести объектно-ориентированное и декларативное программирование. Объектно-ориентированный язык создает окружение в виде множества независимых объектов. Каждый объект ведет себя подобно отдельному компьютеру, их можно использовать для решения задач как «черные ящики», не вникая во внутренние механизмы их функционирования. Из языков объектного программирования, популярных среди профессионалов, следует назвать, прежде всего, Си++, для более широкого круга программистов предпочтительны среды типа Delphi и Visual Basic.

При использовании декларативного языка программист указывает исходные информационные структуры, взаимосвязи между ними и то, какими свойствами должен обладать результат. При этом процедуру его получения («алгоритм») программист не строит (по крайней мере, в идеале). В этих языках отсутствует понятие «оператор» («команда»). Декларативные языки можно подразделить на два семейства - логические (типичный представитель - Пролог) и функциональные (Лисп). По всей видимости, непроцедурные языки имеют большое будущее. Все сказанное выше можно отобразить схемой - крупно-структурной классификацией языков программирования. В ней указаны основные методологии программирования; в нижнем ряду - типичные языки соответствующих групп.

6.1.2 Обзор языков программирования высокого уровня

Fortran (Фортран ). Первый компилируемый язык, созданный Джимом Бэкусом в 50-е годы. Основным критерием при разработке компиляторов Фортрана является эффективность исполняемого кода. В Фортране впервые был реализован ряд важнейших понятий программирования, но создание программы не очень удобно. Однако для этого языка было создано огромное количество библиотек, поэтому Фортран продолжает активно использоваться во многих организациях. Сейчас ведутся работы над очередным стандартом Фортрана (HPF) для параллельных суперкомпьютеров, со множеством процессоров.

Cobol (Кобол). Это компилируемый язык для применения в экономической области и решения бизнес задач, разработанный в начале 60-х годов. Отличается большой «многословностью»- его операторы иногда выглядят как обычные английские фразы. В Коболе были реализованы очень мощные средства работы с большими объемами данных, хранящихся на различных внешних носителях. На этом языке создано очень много приложений, которые активно эксплуатируются и сегодня. Достаточно сказать, что наибольшую зарплату в США получают программисты на Коболе.

Algol (Алгол). Компилируемый язык, созданный в 1960 году. Был признан заменить Фортран, но из-за более сложной структуры не получил широкого распространения. В 1968 г. была создана версия Алгол-68, по своим возможностям и сегодня опережающая многие языки программирования, однако из-за отсутствия достаточно эффективных компьютеров для нее не удалось своевременно создать хорошие компиляторы.

Pascal (Паскаль). Создан в конце 70-х годов основоположником множества идей современного программирования Никлаусом Виртом. Во многом напоминает Алгол, но в нем ужесточен ряд требований к структуре программы и имеются возможности, позволяющие успешно применять его при создании крупных проектов.

Basic (Бейсик). Для этого языка имеются и компиляторы, и интерпретаторы, а по популярности он занимает первое место в мире. Он создан в 60-х годах в качестве учебного языка и очень прост в изучении.

С (си). Был создан в лаборатории Bell и первоначально не рассматривался как массовый. Он планировался для замены Ассемблера. Си во многом похож на Паскаль и имеет дополнительные средства для прямой работы с памятью (указатели). На этом языке в 70-х годах написано множество прикладных и системных программ и ряд известных OC (Unix).

С++ (Си++). Это объектно-ориентированное расширение языка Си, созданное Бьярном Страуструном в 1980году. Множество новых мощных возможностей, позволивших резко повысить производительность программистов, наложилось на унаследованную от языка Си определенную низкоуровневость. В результате чего создание сложных и надежных программ требует от разработчиков высокого профессионального уровня.

Java (Джава, Ява). Этот язык был создан компанией Sun в начале 90-х годов на основе Cu++ путем исключения из него низкоуровневых возможностей, главная особенность этого языка компиляция не в машинный код, а в платформно - независимый байт-код (каждая команда занимает один байт). Этот байт-код может выполняться с помощью интерпретатора виртуальной Java -машины JVM (Java virtual machine), версии которой созданы сегодня для любых платформ. Благодаря наличию множества Java-машин программы на Java можно переносить не только на уровне исходных текстов, но и на уровне двоичного байт-кода, поэтому по популярности язык Ява сегодня занимает второе место в мире после Бейсика.

Особое внимание в развитии этого языка уделяется двум направлениям: поддержке всевозможных мобильных устройств и микрокомпьютеров, встраиваемых в бытовую технику (технология Jini) и создание платформно - независимых программных модулей, способных работать на серверах в глобальных и локальных сетях с различными ОС (технология Java Bens). Пока основной недостаток этого языка - невысокое быстродействие, т.к. язык Ява интерпретируемый.

6.1.3 Языки программирования БД

Эта группа отличается от алгоритмических языков, прежде всего решаемыми задачами. Первые БД появились очень рано, как только появилась потребность в обработке больших массивов информации и выборке групп записей по определенным признакам. Для этого был создан структурированный язык запросов SQL. Он основан на могучей математической теории и позволяет выполнять эффективную обработку БД, манипулируя не отдельными записями, а группами записей.

6.1.4 Языки программирования для Интернета

HTML. Язык для оформления документов. Очень прост и содержит элементарные команды форматирования текста, добавления рисунков, задания шрифтов и цветов, организации ссылок и таблиц. Все Web - страницы написаны на языке HTML или используют его расширения.

6.2 Стратегии решения задач

6.2.1 Этапы подготовки и решения задач на компьютере

Компьютер предназначен для решения разнообразных задач: научно-технических, инженерных, разработки системного программного обеспечения, обучения, управления производственными процессами и т.д. В процессе подготовки и решения на компьютере научно-технических задач можно выделить следующие этапы:

1. Постановка задачи - формулируется цель решения задачи, подробно описывается ее содержание; проводится анализ условий, при которых решается поставленная задача, выявляется область определения входных параметров задачи.

2. Формальное построение модели задачи - предполагает построение модели с характеристиками, адекватными оригиналу, на основе какого-либо его физического или информационного принципа; анализируется характер и сущность величин, используемых в задаче;

3. Построение математической модели задачи - характеризуется математической формализацией задачи, при которой существующие взаимосвязи между величинами выражаются с помощью математических соотношений. Как правило, математическая модель строится с определенной точностью, допущениями и ограничениями;

4. Выбор и обоснование метода решения - модель решения задачи реализуется на основе конкретных приемов и методов решения. В большинстве случаев математическое описание задачи трудно перевести на машинный язык. Выбор и использование метода решения позволяет свести решение задачи к конкретному набору машинных команд. При обосновании метода решения рассматриваются вопросы влияния различных факторов и условий на конечный результат, в том числе на точность вычислений, время решения задачи на компьютере, требуемый объем памяти и др.;

5. Построение алгоритма - на данном этапе составляется алгоритм решения задачи, в соответствии с выбранным методом решения. Процесс обработки данных разбивается на отдельные относительно самостоятельные блоки, определяется последовательность выполнения этих блоков;

6. Составление программы - алгоритм решения переводится на конкретный язык программирования;

7. Отладка программы - процесс устранения синтаксических и логических ошибок в программе. В процессе трансляции программы с помощью синтаксического и семантического контроля выявляются недопустимые конструкции и символы для данного языка программирования. Затем проверяется логика работы программы в процессе ее выполнения с конкретными исходными данными. Для этого используются специальные методы и отладчики, выполняющие специальные действия на этапе отладки, такие как удаление, замена или вставка отдельных операторов или целых фрагментов программы, вывод промежуточных результатов, изменение значений заданных переменных и др.

8. Решение задачи на компьютере и анализ результатов. Первоначально выполняется многократное решение задачи на компьютере для различных наборов исходных данных. Получаемые результаты анализируются специалистом, поставившим задачу. Разработанная программа поставляется заказчику в виде готовой к исполнению машинной программы. К ней прилагается документация, включающая инструкцию по эксплуатации.

В задачах другого типа некоторые этапы могут отсутствовать. Например, проектирование программного обеспечения не требует построения математической модели.

Все этапы тесно связаны между собой. Например, анализ результатов может привести к необходимости внесения изменений в программу, алгоритм, метод решения или даже в постановку задачи.

6.3 Программные и аппаратные компоненты компьютерных сетей

6.3.1 Определение и назначение

Компьютерной сетью называется объединение нескольких ЭВМ для совместного решения информационных, вычислительных, учебных и др. задач.

Простейшим видом сети является одно - ранговая сеть, обеспечивающая связь ПК конечных пользователей и позволяющая совместно использовать дисководы, принтеры, файлы.

Более развитые сети включают специальные выделенные компьютеры-серверы. Сервер - ЭВМ, выполняющая в сети особые функции обслуживания остальных компьютеров, которые называются рабочими станциями. Есть серверы файловые, коммуникационные, серверы для проведения математических расчетов, серверы баз данных.

6.3.2 Классификация сетей

Компьютерные сети можно классифицировать по ряду признаков, в том числе по степени территориальной распределенности. При этом различают: глобальные, региональные и локальные сети.

Глобальные сети объединяют пользователей по всему миру и часто используют спутниковые каналы связи. В этих сетях осуществляется формирование единого научного, экономического, социального и культурно информационного пространства. При этом соединяются узлы связи и ЭВМ, находящиеся на расстоянии 10-15 тыс. км друг от друга.

Региональные сети объединяют пользователей города, области и маленькой страны. Расстояние между узлами сети составляют 10-1000км.

Локальные сети ЭВМ связывают абонентов одного или близлежащих зданий одного предприятия, учреждения (обычно 10-100 компьютеров). Особенностью ЛВС является наличие одного высокоскоростного канала связи для передачи информации в цифровом виде. На больших расстояниях такой тип передачи неприемлем из-за неизбежного затухания высокочастотного сигнала. Существуют проводные и беспроводные (радио) каналы. Расстояния в ЛВС между ЭВМ небольшие - до 10км, а в радио канале - до 20км.

Назначение всех видов компьютерных сетей определяется двумя функциями:

* обеспечение совместного использования аппаратных и программных ресурсов сети;

* обеспечение совместного доступа к ресурсам данных.

Так, например, все участники локальной сети могут совместно использовать одно общее устройство печати (сетевой принтер) или, например, ресурсы жестких дисков одного выделенного компьютера (файлового сервера). Это же относится и к программному, и к информационному обеспечению. Если в сети имеется специальный компьютер, выделенный для совместного использования участниками сети, он называется файловым сервером. Компьютерные сети, в которых нет выделенного сервера, а все локальные компьютеры могут общаться друг с другом на «равных правах» (обычно это небольшие сети), называются одноранговыми.

6.3.3 Сетевое программное обеспечение

Для реализации услуг в сети и доступа пользователей к услугам разрабатываются программное обеспечение. В настоящее время получили распространение 2 основные концепции такого программного обеспечения.

В первой концепции сетевое программное обеспечение ориентированно на предоставление пользователям некоторого общедоступного главного компьютера сети, называемого файловым сервером. Основным ресурсом такого сервера являются файлы. Это могут быть файлы, содержащие программные модули или данные. Сетевые программные средства, управляющие ресурсами файлового сервера и предоставляющие к ним доступ пользователям сети, называются сетевой операционной системой. Ее основная часть размещается на файловом сервере, на рабочих страницах устанавливается только небольшая оболочка, выполняющая функции интерфейса между программами, обращающимися за ресурсами, и файловым сервером.

Во второй концепции - популярной и чрезвычайно перспективной, называемой архитектурой «клиент-сервер», программное обеспечение ориентированно не только на коллективное использование ресурсов, но и на их обработку в месте размещения ресурсов по запросам пользователя. Программные системы архитектуры «клиент-сервер» состоят из 2 частей: программное обеспечение сервера и программное обеспечение пользователя-клиента. При этом в функции клиента входит:

· Предоставление пользовательского интерфейса, ориентированного на определенные производственные обязанности и полномочия пользователя;

· Формирование запросов к серверу;

· Анализ ответов сервера на запросы и предъявление их пользователю.

Основная функция сервера - выполнение специальных действий по запросам клиента, например, решение сложной математической задачи, соединение клиента с другим клиентом и т.д. Если сервер не в состоянии решить задачу из-за нехватки ресурсов, он в идеале сам находит более мощный сервер и передает ему задачу, становясь, в свою очередь клиентом, но, не информируя об этом, без особой нужды, начального клиента. Клиентом может быть весьма мощный компьютер, который в силу своих возможностей решает задачу самостоятельно.

6.3.4 Сетевая операционная система NET Ware

В любой физической конфигурации поддержка доступа от одного компьютера к другому, наличие и отсутствие выделенного компьютера, выполняется программой - сетевой ОС. Сетевая ОС является надстройкой по отношению к ОС отдельных компьютеров.

Для современных высокоразвитых ОС ПК вполне характерно наличие сетевых возможностей ( например, OS\2, Windows 95-2000 - XP, Windows NT, UNIX).

Рис. 6.3.1. Локальная сеть ПК Novel Net Ware с моноканальной структурой: ФС - файловый сервер с сетевой платой Ethernet и ядром Net Ware; РС - рабочая станция с сетевой платой Ethernet и с оболочкой Net Ware. С: D: E: - локальные диски.

Для обеспечения функционирования ЛС, использующей файловый сервер, в настоящее время разработан целый ряд сетевых ОС. Одной из них является NET Ware фирмы Novel.

Основные функции сетевой ОС, реализуемые Net Ware:

Разделение дисков файлового сервера, обеспечивающее надежное хранение и доступ к файлам;

Управление коммуникацией при различных топологиях подсетей и коммуникационных протоколах. Так, рабочие станции UNIX, как правило, используют протокол TCP/IP, а ПК сети Net Ware - IPX/SPX, и сетевая ОС обеспечивает поддержку этих протоколов.

Обеспечение работы на сервере программ, расширяющих и дополняющих функции самой сетевой ОС. Эти программы называются загружаемыми модулями Net Ware (N2H, Net Ware, loadable Modules).

Структура сетевой ОС Net Ware

Сетевая ОС Net Ware координирует функционирование Р.С. и регулирует процесс совместного использования сетевых ресурсов. Эти средства обеспечивают защиту и их целостность, контролируя право доступа к ним. Novel Net Were, как и другие операционные системы, ориентирована на работу с различными сетевыми платами. Возможных видов плат очень много. Поддерживаются многие платы Ethernet, Token - Ring, ARCnet.

Схема размещения и взаимодействия компонентов программного обеспечения сетевой ОС Net Ware Novel представлена на рис. 6.3.2.

Net Ware 386 является сетевой ОС с централизованным управлением, т.е. в сети один или несколько компьютеров должны быть выделены в качестве файл-сервера. На файловых серверах работает ОС Net Ware. На Р.С. (число которых может достигать нескольких сотен) должна быть загружена, т.н. клиентская часть Net Ware - специальная компонента системы (оболочка Net Ware ). Оболочка Net Ware состоит из модулей VLH.COM, LSL.COM и IPXODL.COM. При запросе некоторой сетевой услуги VLH.COM передает запрос другим модулям, которые отправляют его через драйвер сетевой карты на файловый сервер.

Рис. 6.32. Схема размещения и взаимодействия компонентов программного обеспечения сетевой ОС Net Ware Novel

6.3.5 Утилиты Net Ware

Утилиты разделяются на диалоговые и утилиты командной строки. Имеются варианты диалоговой утилиты выполняющейся под DOS и Windows. Развитый интерфейс DOS - утилит представляет собой выбор из меню. Графический интерфейс Windows - утилит существенно упрощает и ускоряет работу пользователя в сети. Утилиты командной строки позволяют задавать все параметры непосредственно при запуске утилиты в командной строке. Все утилиты обычно располагаются в сетевом каталоге SYSPUBLIC на винчестере файл-сервера.

6.4 Конфигурация (архитектура, топология) ЛВС

ЛВС в зависимости от назначения и технических решений могут иметь различные конфигурации (топологии), представленные на рис. 7.2.1-7.2.3 :

6.4.1 Кольцевая топология ЛВС

Рис. 6.4.1 Кольцевая топология

Кольцевая ЛС - информация передается по замкнутому кольцу. Каждый компьютер непосредственно связан с двумя соседними, хотя в принципе может связываться с любым абонентом сети. Каждый компьютер выступает в роли репитера (повторителя), усиливая сигналы и передавая их следующему компьютеру. Поэтому выход из строя хотя бы одного компьютера приводит к падению сети.

Способ передачи данных по кольцу называется передачей маркера. Маркер (token) - это специальная последовательность бит, передающаяся по сети. В каждой сети существует только один маркер. Маркер передает по кольцу последовательно от одного компьютера к другому до тех пор, пока его не захватит тот компьютер, который хочет передать данные. Передающий компьютер добавляет к маркеру данные и адрес получателя, и отправляет его дальше по кольцу. Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя. Затем принимающий компьютер посылает передающему сообщение, в котором подтверждает факт приема. Получив подтверждение, передающий компьютер восстанавливает маркер и возвращает его в сеть. Скорость движения маркера сопоставима со скоростью света. Так, в кольце диаметром 200 м маркер может циркулировать с частотой 477 376 об/с.

6.4.2 Радиальная топология ЛВС

Рис. 6.4.2 Радиальная (звездообразная) топология

При топологии звезда (рис. 6.4.2) все компьютеры с помощью сегментов кабеля подключаются к центральному устройству, называемому концентратором (hub). Сигналы от передающего компьютера поступают через концентратор ко всем остальным. В сетях с топологией звезда, концентратор служит центральным узлом. Концентраторы делятся на активные (многопортовые повторители) и пассивные. Активные регенерируют и передают сигналы так же, как репитеры. Обычно они имеют от 8 до 12 портов для подключения компьютеров. Активные концентраторы следует подключать к электрической сети. К пассивным концентраторам относятся монтажные или коммутирующие панели. Они просто пропускают через себя сигнал, не усиливая и не восстанавливая его. Их не надо подключать к электрической сети.

Недостатки этой топологии: дополнительный расход кабеля, установка концентратора. Главное преимущество перед шинной топологией - более высокая надежность. Выход из строя одного или нескольких компьютеров на работу сети не влияет. Только неисправность концентратора приводит к падению сети.

6.4.3 Шинная топология

Компьютеры подключены к общему каналу (шине), через который могут обмениваться сообщениями (рис. 6.4.3).

Рис.6.4.3. Топология шина: С - сервер; К - компьютер; Т - терминатор.

Производительность такой сети зависит от количества компьютеров, подключенных к шине. Чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть. На быстродействие также влияют:

- тип аппаратного обеспечения сетевых компьютеров;

- частота, с которой компьютеры передают данные;

- тип работающих сетевых приложений;

- тип сетевого кабеля;

- расстояние между компьютерами в сети.

Выход одного или нескольких компьютеров из строя никак не сказывается на работе сети.

Электрические сигналы распространяются по всему кабелю - от одного конца к другому. Сигналы, достигшие концов кабеля, отражаются от них. Возникает наложение сигналов, находящихся в разных фазах, и, как следствие, их искажение и ослабление. Поэтому, для гашения сигналов на концах кабеля устанавливают терминаторы. При разрыве кабеля или отсутствии терминаторов функционирование сети прекращаются. Сеть падает.

6.4.4 Ячеистая топология

Сеть с ячеистой топологией обладает высокой избыточностью и надежностью, так как каждый компьютер в такой сети соединен с каждым другим отдельным кабелем (рис. 6.4.4). Сигнал от компьютера-отправителя до компьютера-получателя может проходить по разным маршрутам, поэтому разрыв кабеля не сказывается на работоспособности сети. Основной недостаток - большие затраты на прокладку кабеля, что компенсируется высокой надежностью и простотой обслуживания. Ячеистая топология применяется в комбинации с другими топологиями при построении больших сетей.

Существуют комбинированные топологии. Чаще всего используются две комбинированные топологии: звезда-шина и звезда-кольцо.

...

Подобные документы

  • Процесс обработки информации на электронно-вычислительных машинах в 50-х гг. Возможность редактирования и форматирования текстовых документов в 70-х гг. Отличительные черты данных и программ. Операционная система и аппаратное обеспечение компьютера.

    презентация [68,1 K], добавлен 27.12.2011

  • Особенности, отличия, топология и функционирование локальных компьютерных сетей. Программное обеспечение информационно-вычислительных сетей. Основные протоколы передачи данных, их установка и настройка. Аутентификация и авторизация; система Kerberos.

    курсовая работа [67,7 K], добавлен 20.07.2015

  • Понятие, содержание, объект, предмет информатики. Основные виды и способы обработки и кодирования данных. Информация, информационные процессы и системы как объект правового регулирования общественных отношений. Архитектура, программное обеспечение ПЭВМ.

    курс лекций [6,5 M], добавлен 20.06.2009

  • Содержание информатики как научного направления, ее основные уровни. Понятие, задачи и свойства информационной технологии. Технологический процесс извлечения, обработки и транспортировки информации. Понятие компьютерных и локальных вычислительных сетей.

    презентация [5,8 M], добавлен 25.06.2013

  • Информатика - наука об общих свойствах и закономерностях информации. Появление электронно-вычислительных машин. Математическая теория процессов передачи и обработки информации. История компьютера. Глобальная информационная сеть.

    реферат [120,1 K], добавлен 18.04.2004

  • Устройство компьютерных сетей. Системы для передачи информации, состоящие из терминалов, серверов и коммуникационной среды. Технические, программные и информационные средства сетей. Классификация компьютерных сетей. Сетевые операционные системы.

    курсовая работа [3,7 M], добавлен 10.07.2014

  • Назначение и классификация компьютерных сетей. Распределенная обработка данных. Классификация и структура вычислительных сетей. Характеристика процесса передачи данных. Способы передачи цифровой информации. Основные формы взаимодействия абонентских ЭВМ.

    контрольная работа [36,8 K], добавлен 21.09.2011

  • Особенности информационных технологий - совокупности методов и средств реализации операций сбора, регистрации, передачи, накопления и обработки информации на базе программно-аппаратного обеспечения для решения управленческих задач экономического объекта.

    контрольная работа [28,4 K], добавлен 05.04.2010

  • Изучение сущности информации - сведений, знаний, которые получаются, передаются, преобразуются, регистрируются с помощью некоторых знаков. Способы передачи информации электрическими, магнитными и световыми импульсами. Программное обеспечение компьютеров.

    контрольная работа [18,6 K], добавлен 27.02.2011

  • Система методов и способов сбора, накопления, хранения, поиска и обработки информации на основе применения средств вычислительной техники. Телепроекты, телеконференции, дистанционное обучение. Системы компьютерной графики (компьютерных презентаций).

    реферат [37,7 K], добавлен 26.01.2015

  • Информатика как наука, ее функции. Виды, свойства и кодирование информации. Системы счисления. Высказывания и предикаты. Алгоритмы и их исполнители. Программное обеспечение. Языки и грамматики. Моделирование систем. Новые информационные технологии.

    тест [89,0 K], добавлен 10.12.2011

  • Программное обеспечение компьютера: понятие и содержание, классификация и типы. Назначение и особенности структуры операционной системы, ее формы. Файлы и файловая система. Принципы действия вирусов и антивирусных программ. Системы программирования.

    курсовая работа [199,1 K], добавлен 15.02.2012

  • Эволюция вычислительных систем. Базовые понятия и основные характеристики сетей передачи информации. Задачи, виды и топология локальных компьютерных сетей. Модель взаимодействия открытых систем. Средства обеспечения защиты данных. Адресация в IP-сетях.

    лекция [349,0 K], добавлен 29.07.2012

  • Обзор и характеристика программного обеспечения компьютера как совокупности программ системы обработки информации. Характеристика аппаратного обеспечения как комплекса электрических и механических устройств, входящих в состав ЭВМ. Взаимодействие систем.

    презентация [931,9 K], добавлен 23.12.2010

  • Информатика - технология сбора, хранения и защиты информации. Обработка текстовой информации, специализированное и прикладное программное обеспечение. Технические средства; базы данных; автоматизированные информационные системы; антивирусные средства.

    реферат [24,6 K], добавлен 09.12.2012

  • Разработка технологии защиты информации беспроводных сетей, которая может применяться для повышения защиты компьютера пользователя, корпоративных сетей, малых офисов. Анализ угроз и обеспечения безопасности беспроводной сети. Настройка программы WPA.

    дипломная работа [2,9 M], добавлен 19.06.2014

  • Особенности нейронных сетей как параллельных вычислительных структур, ассоциируемых с работой человеческого мозга. История искусственных нейронных сетей как универсального инструмента для решения широкого класса задач. Программное обеспечение их работы.

    презентация [582,1 K], добавлен 25.06.2013

  • Классификация автоматизированных информационных технологий; способы связи вычислительных сетей. Система программных средств для тестирования работы устройств компьютера, антивирусные программы. Создание БД "Поставки", обеспечение связи между таблицами.

    контрольная работа [903,0 K], добавлен 13.11.2011

  • Информатика как наука о способах получения, накопления, хранения, преобразования, передачи и использования информации. История возникновения информатики. Первая программа обучения с получением степени Computer Science. Основные свойства информации.

    презентация [960,5 K], добавлен 09.12.2013

  • Роль компьютерных сетей, принципы их построения. Системы построения сети Token Ring. Протоколы передачи информации, используемые топологии. Способы передачи данных, средства связи в сети. Программное обеспечение, технология развертывания и монтажа.

    курсовая работа [279,7 K], добавлен 11.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.