Нейроподобные растущие сети – новая технология обработки информации

Разработка новой технологии обработки информации, основанной на синтезе знаний выработанных сложившимися в Computer science направлениями. Разработка математического аппарата построения новой структуры. Топология и логика функционирования этой структуры.

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 17.11.2018
Размер файла 49,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

488

International symposium on the contribution of Europeans to the evolution and the achievements of computer technology

COMPUTERS IN EUROPE. PAST, PRESENT AND FUTURE.

Нейроподобные растущие сети - новая технология обработки информации

Ященко В.А.

Институт математических машин и систем АН Украины, г. Киев, Украина

Введение. История развития Computer science свидетельствует о неуклонно растущем уровне информационных технологий и интеллектуализации вычислительных систем.

Становление новой информационной технологии тесно связано с развитием искусственного интеллекта и обусловлено (по утверждению Г.Поспелова) тем, что в теории искусственного интеллекта были разработаны логико-лингвистические модели, позволяющие формализовать конкретные знания об объектах и протекающих в них процессах [1].

В.М.Глушков уделял большое внимание проблемам обработки информации и разработки интеллектуальных систем. В своих работах он подчеркивал важность интеллектуализации процессоров с двух позиций. Он говорил: "Идея интеллектуализации процессоров, решая свою основную задачу - упрощение общения пользователя с ЭВМ, способствует в то же время и решению другой важнейшей задачи - увеличению производительности ЭВМ"[2]. Действительно, использование макроопераций в вычислительном процессе существенно повышает общее быстродействие ЭВМ. Так, ЭВМ "МИР-2" успешно конкурировала в скорости выполнения ряда аналитических преобразований с большими ЭВМ.

Национальный японский проект ЭВМ пятого поколения также следует расценивать как дальнейшее развитие идей интеллектуализации вычислительной техники.

Другим компьютерным течением, получившим развитие параллельно с развитием ЭВМ с традиционной архитектурой, являются нейрокомпьютеры. Все возрастающий интерес к нейроинтеллектуальным системам объясняется значительными трудностями, возникающими при классической реализации искусственного интеллекта, и успехами в области разработки нейрокомпьютеров и систем на их основе. В нейронных сетях, применяемых в нейрокомпьютерах, в отличие от традиционных ЭВМ, элементы имеют множество параллельных соединений, и информация распределяется по всей сети, осуществляя параллельные вычисления. Это позволяет решать задачи в реальном времени на высоком интеллектуальном уровне.

С целью поддержки фундаментальных исследований в этом направлении в Японии с 1993 года принята программа “Real world computing program”. Ее основная цель- создание адаптивной, эволюционирующей ЭВМ. Проект рассчитан на 10 лет. Основой разработки является нейротехнология, используемая для распознавания образов, обработки семантической информации, управления роботами, которые способны адаптироваться к окружающей обстановке.

Анализ современного состояния Computer science показывает, что в настоящее время вычленились составляющие, которые фактически превратились в отдельные научные направления, уже имеющие явно выраженные признаки отдельных научных дисциплин. Это нейрокомпьютерные дисциплины и дисциплины, изучающие классические формы ЭВМ.

В истории развития науки подобная дифференциация знаний не является специфичной только для Computer science. Дифференциация и обособление научных знаний в отдельные научные дисциплины является историческим фактом. Этот факт стал для Л. фон. Берталанфи исходной позицией в разработке общей теории систем. Главная цель этой теории определена Берталанфи как синтез научных знаний, выработанных отдельными научными дисциплинами, в единое целое - знания об окружающей человека действительности.

“Общая теория систем определяет совокупность общесистемных свойств реальных систем, в которой центральное положение занимает свойство иерархичности. Оно состоит в том, что каждая данная система является метасистемой по отношению к составляющим ее подсистемам и одновременно подсистемой системы более высокого ранга (уровня), выступающей по отношению к ней метасистемой. Из этого следует, что мир является системой, знания о которой должны быть сведены в целое путем установления связей и отношений между отдельными научными дисциплинами. Это означает, что знания, выработанные каждой научной дисциплиной, представляют собой части целого и должны быть подвергнуты операции синтеза путем выявления связей и отношений между частями. А связи и отношения могут быть выявлены только проведением междисциплинарных исследований” [3].

Таким образом, вычленение и обособление научных знаний в Computer science, следует считать объективным процессом, который должен завершиться синтезом этих знаний в единое целое. Этот синтез открывает возможность, благодаря междисциплинарным исследованиям, выработать знания о тех закономерностях, которые являются общими для дисциплин, образующих междисциплинарную область, так как познать эти закономерности, находясь в рамках каждой отдельной дисциплины нельзя.

Цель и задачи. Исходя из этого, была определена цель - разработать новую технологию обработки информации, основанную на синтезе знаний выработанных сложившимися в Computer science направлениями.

Для достижения поставленной цели необходимо решить следующие задачи:

в результате синтеза знаний, заключенных в технологиях обработки информации в нейронных сетях, семантических сетях, растущих пирамидальных сетях и интеллектуальных системах, разработать новую нейроподобную структуру;

описать топологию и логику функционирования этой структуры, сформулировать определения и разработать правила ее построения;

разработать математический аппарат построения новой структуры;

для повышения уровня интеллектуализации ЭВМ разработать модель представления знаний на базе новой структуры.

Из проведенных междисциплинарных исследований было установлено, в новую информационную структуру должны быть “погружены” функции, обеспечивающие “жизнеспособность” интеллектуальных систем.

К этим функциям относятся:

а) восприятие - функция, обеспечивающая прием и трансформацию визуальной, текстовой, звуковой и др. видов информации во внутреннее представление системы, обработку визуальной информации и соотнесение ее с обработкой текстовой информации, а также порождение визуальных образов на основе внутренних представлений хранимых в системе;

б) представление знаний и их обработка - функция, формирующая понятия, обеспечивающая накопление, обобщение, структурирование и классификацию знаний о внешнем мире (о проблемной области);

в) общение и обучение - функция, преобразующая во внутренние образы различные текстовые, речевые, зрительные и др. сообщения. Система, обеспечивающая поддержку данной функции, должна воспринимать вопросы, адресуемые ей и синтезировать ответы и свои вопросы, обучаться решению проблем возникающих в процессе ее функционирования;

г) поведение - функция, вырабатывающая механизмы поведения системы с целью адекватного взаимодействия с окружающей средой.

С целью синтеза новой информационной технологии были проанализированы технологии обработки информации в семантических сетях, растущих пирамидальных сетях (РПС), разработанных и исследованных профессором В.П.Гладуном [4], и нейросетях. Ни одна из этих технологий полностью не удовлетворяет требованиям, предъявляемым к синтезируемой структуре (не содержит всей совокупности вышеперечисленных функций).

Однако анализ показал, что РПС содержат привлекательный механизм восприятия, структурирования, обобщения и классификации информации одновременно с перестройкой (ростом) самой структуры сети. Но в РПС отсутствует механизм определения весовых коэффициентов связей между вершинами сети и порогов возбуждения самих вершин. В результате РПС лишаются свойств пластичности сети и тем самым лишаются возможности обработки неточной информации, чем в совершенстве обладают нейронные сети.

Нейронные сети создавались как аналоги биологических нейронов, организованных в некотором соответствии с анатомией мозга. В связи с этим нейронные сети моделируют многие свойства, присущие мозгу. Так, они обучаются на примерах и извлекают существенные признаки из поступающей информации. Отклик сети после обучения может быть до некоторой степени нечувствителен к небольшим изменениям входных сигналов. Эта способность выделять образ сквозь искажения важна для распознавания образов в реальном мире. Она позволяет преодолеть требования строгой точности, предъявляемые обычным компьютером, и открывает путь к системе, которая может иметь дело с окружающим нас миром. В то же время, несмотря на многочисленные достоинства и успешные применения нейронных сетей, они имеют ряд недостатков, ограничивающих их возможности.

Нейроподобные растущие сети. В результате синтеза знаний, выработанных различными направлениями Computer science, получены новые знания, имеющие отражение в новой структуре - нейроподобных растущих сетях (н-РС), на основе которых, сохраняя преимущества технологий обработки информации в нейронных сетях, РПС и интеллектуальных системах, осуществляется новая технология обработки информации. В теории нейроподобных сетей основными понятиями являются понятия структуры, раскрывающей схему связей и взаимодействия между элементами сети, а также понятие архитектуры.

Нейроподобные сети представляются следующими категориями:

топологическая (пространственная) структура - это граф связей элементов сети; логическая структура определяет принципы и правила установления связей, а также логику функционирования сети; физическая структура - схема связей физических элементов сети (в случае аппаратной реализации нейроподобной сети); архитектура сети определяется как принципы построения сети, выражающие единство физической и логической структур.

Класс н-РС состоит из однослойных, многослойных, многомерных однослойных и многомерных многослойных нейроподобных растущих сетей, а также из однослойных, многослойных, многомерных однослойных и многомерных многослойных рецепторно-эффекторных нейроподобных растущих сетей [5,6]. Топологическая структура нейроподобных растущих сетей представляется связным ориентированным графом. Логическая структура описывается правилами построения и функционирования сети.

Определение 1. Нейроподобной растущей сетью называется совокупность определенным образом взаимосвязанных нейроподобных элементов, предназначенных для приема и преобразования информации, причем в процессе приема информации сеть увеличивается в размерах - растет.

Нейроподобные растущие сети (рис.1) формально задаются следующим образом: S = (R, A, D, M, P, N), здесь R - конечное множество рецепторов, которые составляют порождающее множество сети; A - конечное множество нейроподобных элементов, соответствующих сочетаниям признаков, которые определяют условные и безусловные рефлексы, реакции, мотивации и т.п., а также слова, фразы, описания понятий, объектов, конъюнктивные связи объектов, и т.п; D - конечное множество дуг, связывающих рецепторы с нейроподобными элементами и нейроподобные элементы между собой; P={Pi}, здесь Pi - порог возбуждения вершины ai, Pi = f(mi ) і P (P - минимально допустимый порог возбуждения) при условии, что множеству дуг D, приходящих на вершину ai, соответствует множество весовых коэффициентов M ={mi}, причем mi может принимать как положительные, так и отрицательные значения; N - коэффициент связности сети.

нейроподобный сеть обработка информация

Рис.1

В биологических средах информация об одном и том же объекте или классе объектов представляется в различных отображениях, например, в зрительном, вербальном, тактильном и др. В связи с этим при моделировании описаний внешнего мира необходимо иметь возможность отражать данные описания в различных взаимосвязанных структурах. Такой структурой являются многомерные нейроподобные растущие сети, описывающие объекты или классы объектов в различных информационных пространствах.

Определение 2. Информационным пространством называется область нейроподобной растущей сети, состоящая из множества вершин и дуг, объединенных в единую информационную структуру.

Определение 3. Множество взаимосвязанных ациклических графов, описывающих нейроподобные растущие сети в различных информационных пространствах, называются многомерными нейроподобными растущими сетями (мн-РС).

Формально мн-РС задается пятеркой: S = (R, A, D, P, M, N), при этом RЙ Rl , Rr , Rv ; AЙ Al , Ar , Av ; DЙ Dl , Dr , Dv ; PЙ Pl, Pr, Pv, где Rl, Rr, Rv - конечное подмножество рецепторов; Al, Ar, Av - конечное подмножество нейроподобных элементов; Dl, Dr, Dv - конечное подмножество дуг; Pl, Pr, Pv - конечное подмножество порогов возбуждения нейроподобных элементов, принадлежащих различным информационным пространствам, например, лингвистическому, речевому или визуальному; M- конечное множество весовых коэффициентов связей; N - конечное множество переменных коэффициентов связности.

Базовым принципом физиологии высшей нервной деятельности является основной закон биологии - единство организма и среды. Этот закон предусматривает приспособительную изменчивость организма относительно среды.

В основе приспособительного поведения любого организма лежит способность к обучению, т.е. способность запоминать последствия своих действий. Можно сказать, что изучение разумного поведения - это в какой-то мере исследование способности приобретать знания о связях в окружающем мире. “Организм обучается путем построения сенсорно-моторных схем: он извлекает из своего опыта соотношения между информацией, воспринимаемой его сенсорными системами, и своими действиями (моторной активностью)” [7].

Таким образом, взаимодействие биологических объектов с окружающей средой осуществляется через акты движения. С целью обеспечения возможности моделирования процессов обучения и приобретения системой знаний нейроподобные растущие сети развиваются в рецепторно-эффекторные нейроподобные растущие сети (рэн-РС).

Определение 4. Рецепторно-эффекторной растущей сетью называется двухсторонний ациклический граф, в котором минимальное число заходящих дуг на вновь образуемые вершины графа равно переменному коэффициенту n, где n всегда больше двух.

Рис.2

Определение 5. Рецепторно-эффекторные растущие сети, в которых каждой дуге рецепторной зоны, приходящей на вершины этой зоны, соответствует определенный весовой коэффициент, а вершинам - определенный порог возбуждения, и каждой дуге эффекторной зоны, приходящей на вершины этой зоны соответствует определенный весовой коэффициент, а вершинам - определенный порог возбуждения, называются рецепторно-эффекторными нейроподобными растущими сетями.

Рецепторно-эффекторные нейроподобные растущие сети (рис.2) формально задаются следующим образом:

S=(R, Ar, Dr, Pr, Mr, Nr, E, Ae, De, Pe, Me, Ne ), R ={ri}, - конечное множество рецепторов, Ar={ai}, - конечное множество нейроподобных элементов рецепторной зоны, Dr={di}, - конечное множество дуг рецепторной зоны, E={ei}, - конечное множество эффекторов, Ae={ai}, - конечное множество нейроподобных элементов эффекторной зоны, De={di}, - конечное множество дуг эффекторной зоны, Pr={Pi}, Pe={Pi }, где Pi - порог возбуждения вершины air , aie Pi =f(mi) при условии, что множеству дуг Dr , De , приходящих на вершину air, aie , соответствует множество весовых коэффициентов Mr ={mi}, Me={mi}, причем mi может принимать как положительные, так и отрицательные значения. Nr, Ne - переменные коэффициенты связности рецепторной и эффекторной зон. В рэн-РС рецепторные поля R, являются аналогом сенсорной и рецепторной областей биологических объектов, эффекторные поля E - аналог моторной области биологических объектов. Рецепторно-эффекторные нейроподобные растущие сети подразделяются на однослойные, многослойные и многомерные рецепторно-эффекторные нейроподобные растущие сети.

Нейроподобные растущие сети являются динамической структурой, которая изменяется в зависимости от значения и времени поступления информации на рецепторы, а также предыдущего состояния сети. В ней информация об объектах представляется ансамблями возбужденных вершин и связями между ними. Запоминание описаний объектов и ситуаций сопровождается вводом в сеть новых вершин и дуг при переходе какой - либо группы рецепторов и нейроподобных элементов в состояние возбуждения. Процесс возбуждения волнообразно распространяется по сети. Переменный коэффициент связности позволяет управлять числом дуг, приходящих на вновь образуемые нейроподобные элементы, и числом нейроподобных элементов в сети, что является одной из отличительных чертой нового класса сетей от существующих нейронных сетей.

Основные отличия и сравнительные характеристики нейроподобных растущих сетей и общепринятых нейронных сетей приведены в табл.1.

Табл. 1

Нейроподобные растущие сети

Нейронные сети

Нейроподобный элемент. Вычислительное устройство с памятью.

Нейронный элемент. Пороговый элемент

Определяется некоторая произвольная функция входов, например: формула Байеса P(H:E)=P(E:H) P(H)/(P(E:H) P(H)+ P(E:неH) P(неH))*

Определяется взвешенная сумма входов, обработанная не линейно

Связи и веса задаются и появляются ровно столько сколько необходимо.

Связи и веса определяются архитектурой сети.

Количество связей избыточно. Требуются специальные методы отсеивания связей.

Коэффициент связности

Позволяет управлять соотношением связь / нейроподобный элемент

Коэффициент связности

Отсутствует

Перестраиваемая структура. Нейроподобные элементы связаны между собой по смыслу

Фиксированная структура. Элементы связаны каждый с каждым

Возможность композиции и декомпозиции (дедукции-индукции). По набору признаков определяется объект по объекту набор признаков.

Возможность композиции и декомпозиции

Отсутствует

Многоуровневая структура. Число уровней (слоев) произвольное, определяется по смыслу.

Используется обычно до 3-х уровней (слоев). Использование более 3-х слоев не осмысленно.

Скорость обучения от нескольких минут до секунд.

Скорость обучения от многих часов до секунд.

Появление ложных фантомов (ложных аттракторов) - отсутствует

Появление ложных фантомов (ложных аттракторов) - присутствует

Емкость сети 100%

Емкость сети 20-30%

Параллелизм вычислений по ветвям активности во всех слоях параллельно.

Эффективность счета повышена (счет по активной части сети).

Параллелизм вычислени по слоям последовательно.

Эффективность счета понижена (счет по всей сети ( по всей матрице связей)).

*) P(H) - априорная вероятность исхода в случае отсутствия дополнительных свидетельств

P(H:E) - вероятность осуществления некоторой гипотезы H при наличии определенных подтверждений свидетельств E.

P(E:H), P(E:неH) - соответственно, вероятности получения ответа Да если возможный исход верен или неверен.

Из самого названия нейроподобные растущие сети видно, что сеть нейроподобная, т.е. обладает свойствами нейронных сетей, в то же время растущая, сохраняя свойства РПС, что позволяет избежать некоторых недостатков присущих нейронным сетям. И в то же время поддерживает функции присущие биологическим объектам и интеллектуальным системам.

Так, функция восприятие, осуществляется рецепторным полем н-РС, а в многомерных н-РС рецепторными полями различных информационных пространств (визуального, текстового, звукового, тактильного и др.).

Представление знаний их обработка и обучение сети, осуществляются в рецепторных зонах н-РС и в рецепторных и эффекторных зонах рецепторно-эффекторных н-РС в процессе восприятия информации и построения сети.

Общение и поведение системы, обладающей новой информационной структурой, определяется наличием в рецепторно-эффекторных н-РС рецепторной и эффекторной зон. В рецепторной зоне осуществляется накопление условий возникающих во внешней среде, а в эффекторной зоне вырабатываются действия адекватные внешним условиям, осуществляя адекватное взаимодействие с окружающей средой. Рецепторно-эффекторные н-РС, содержащие рецепторные и эффекторные зоны, позволяют на соответствующие условия (восприятие информации) вырабатывать управляющие воздействия во внешний мир (формировать поведения системы).

Заключение. В основе нейроподобных растущих сетей является синтез знаний выработанных классическими теориями - растущих пирамидальных сетей и нейронных сетей. Первые из них дают возможность образовывать смыслы, как объекты и связи между ними по мере построения самой сети, т.е. число объектов, как и связей между ними будет такое именно, какое нужно, будучи ограниченным лишь объемом памяти машины. При этом каждый смысл (понятие) приобретает отдельную компоненту сети как вершину, связанную с другими вершинами. В общем это вполне соответствует структуре отражаемой в мозге, где каждое явное понятие представлено определенной структурой и имеет свой обозначающий символ. Если указанные компоненты являются нейроподобными элементами, а связи приобретают различный вес, то получим универсальную нейроподобную сеть со всеми ее необходимыми свойствами. Вместе с тем эта сеть практически свободна от ограничений на количество нейроподобных элементов в котором и нужно разместить соответствующую информацию, т.е. построить саму сеть, представляющую данную предметную область. Во вторых эта сеть приобретает повышенную семантическую ясность за счет образования не только связей между нейроподобными элементами, но и самих элементов как таковых, т.е. здесь имеет место не просто построение сети путем размещения смысловых структур в среде нейроподобных элементов, а, собственно, создание самой этой среды, как эквивалента среды памяти [6].

Литература

Поспелов Г.С. Искусственный интеллект - основка новой информационной технологии. М.: Наука, 1988. - 280 с.

Глушков В.М. Основы безбумажной информатики. М.: Наука, 1987. - 552с.

Брюхович Е.И. К вопросу об информатизации общества. Методология решения задачи научного предвидения для вывода из кризиса отечественной вычислительной техники // Математические машины и системы. - 1997.-№2.-С.122-132.

Гладун В.П. Процессы формирования новых знаний - София: СД "Педагог 6", - 1994. - 192с.

Ященко В.А. Рецепторно-эффекторные нейроподобные растущие сети эффективное средство моделирования интеллекта. I, II - // Кибернетика и сист. анализ № 4, 1995. С. 54 - 62, № 5, 1995. С. 94 - 102.

Рабинович З.Л., Ященко В.А. Подход к моделированию мыслительных процессов на основе нейроподобных растущих сетей // Кибернетика и сист. анализ № 5, 1996. С.3-20.

Линдсей П., Норман Д. Переработка информации у человека (Введение в психологию).\Под редакц. А.Р. Лурия. - М.: - 1974. - с.549.

Размещено на Allbest.ru

...

Подобные документы

  • Роль компьютерных сетей, принципы их построения. Системы построения сети Token Ring. Протоколы передачи информации, используемые топологии. Способы передачи данных, средства связи в сети. Программное обеспечение, технология развертывания и монтажа.

    курсовая работа [279,7 K], добавлен 11.10.2013

  • Информатика как наука о способах получения, накопления, хранения, преобразования, передачи и использования информации. История возникновения информатики. Первая программа обучения с получением степени Computer Science. Основные свойства информации.

    презентация [960,5 K], добавлен 09.12.2013

  • Разработка проекта автоматизированной системы обработки экономической информации для малого рекламного предприятия. Назначение и основные функции проектируемой системы, требования к ней. Технология обработки и защиты экономической информации предприятия.

    контрольная работа [27,8 K], добавлен 10.07.2009

  • Технологии обработки экономической информации в среде ТП MS Excel. Работа в среде СКМ Maple. Технологии обработки данных в среде СУБД MS Access и анализ языка запросов SQL как средства расширения возможностей СУБД. Разработка отчетов в СУБД Access.

    контрольная работа [1,5 M], добавлен 04.04.2012

  • Технологические процессы обработки информации в информационных технологиях. Способы доступа к Internet. Информационные технологии в локальных и корпоративных компьютерных сетях. Средства обработки графической информации. Понятие информационной технологии.

    учебное пособие [1,4 M], добавлен 23.03.2010

  • Основные возможности программных комплексов "АРМ-Клиент", "Астрал-Отчет". Технология обработки информации в системе электронной обработки данных. Разработка рабочего места налогового инспектора, предназначенного для автоматизации заполнения деклараций.

    дипломная работа [285,3 K], добавлен 12.04.2013

  • Анализ существующих алгоритмов обработки информации человеком и современных моделей памяти. Разработка алгоритмов и математической модели ассоциативного мышления. Имитационная модель обработки информации. Компьютерный эксперимент по тестированию модели.

    курсовая работа [2,3 M], добавлен 19.11.2014

  • Требования и структура систем обработки экономической информации. Технология обработки информации и обслуживание системы, защита информации. Процесс создания запросов, форм, отчетов, макросов и модулей. Средства организации баз данных и работы с ними.

    курсовая работа [2,7 M], добавлен 25.04.2012

  • Требования, предъявляемые к свойствам систем распределенной обработки информации. Логические слои прикладного программного обеспечения вычислительных систем. Механизмы реализации распределенной обработки информации. Технологии обмена сообщениями.

    курсовая работа [506,8 K], добавлен 03.03.2011

  • Цели, задачи и виды, методы и направления обработки информации, современные системы. Проблемы, связанные с компьютерными способами обработки информации. Конвертирование текста из DJVU в PDF, преобразование из PDF в WORD, редактирование полученного текста.

    дипломная работа [1,8 M], добавлен 18.06.2011

  • Сущность языка программирования, идентификатора, структуры данных. Хранение информации, алгоритмы их обработки и особенности запоминающих устройств. Классификация структур данных и алгоритмов. Операции над структурами данных и технология программирования.

    контрольная работа [19,6 K], добавлен 11.12.2011

  • Разработка технологии обработки информации, структуры и формы представления данных. Проектирование программных модулей. Блок-схема алгоритма и исходный код программы анализа арифметического выражения, синтаксического анализа простой программы на языке С.

    курсовая работа [2,4 M], добавлен 12.12.2011

  • Разработка технологии обработки информации, а также структуры и формы представления данных. Подбор алгоритма и программы решения задачи. Определение конфигурации технических средств. Специфика процесса тестирования и оценки надежности программы.

    курсовая работа [959,1 K], добавлен 12.12.2011

  • Автоматизированная обработка информации: понятия и технология. Организация размещения, обработки, поиска, хранения и передачи информации. Защита информации от несанкционированного доступа. Антивирусные средства защиты информации. Сетевые технологии.

    методичка [28,8 K], добавлен 14.01.2009

  • Работа средств обработки информации. Передача с помощью света по нити из оптически прозрачного материала в основе оптоволоконной сети. Принцип функционирования коаксиального кабеля и витой пары. Сравнение шины с нервными волокнами. Кэш данных и команд.

    реферат [543,6 K], добавлен 22.04.2013

  • Анализ выбора цифрового сигнального процессора и структурной схемы устройства обработки информации. Расчет надежности устройства и производительности обмена данных, разработка ленточного графика. Обзор особенностей радиального и межмодульного интерфейса.

    дипломная работа [1,8 M], добавлен 20.05.2012

  • Cоздание и описание логической модели автоматизированной системы обработки информации. Проектирование структуры системы в виде диаграмм UML. Анализ программных средств разработки программного обеспечения и интерфейса. Осуществление тестирования программы.

    дипломная работа [2,5 M], добавлен 25.01.2015

  • Представление графической информации в компьютере. Графические форматы и их преобразование. Информационные технологии обработки графической информации. Формирование и вывод изображений. Файлы векторного формата и растровый графический редактор.

    курсовая работа [1,0 M], добавлен 25.04.2013

  • Анализ существующих технологий создания web-приложений. Разработка сетевой технологии публикации и обработки информации о детях в детском саде №176 "Белочка" с помощью JSP-страниц и сервлетов с использованием JDBC-драйвера для доступа к базе данных.

    курсовая работа [3,8 M], добавлен 18.12.2011

  • Основная цель и модели сети. Принцип построения ее соединений. Технология клиент-сервер. Характеристика сетевых архитектур Ethernet, Token Ring, ArcNet: метод доступа, среда передачи, топология. Способы защиты информации. Права доступа к ресурсам сети.

    презентация [269,0 K], добавлен 26.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.