Теория информации и информационные системы

Основные понятия и структура информационных систем, требования к эффективности и надежности их функционирования. Основные этапы технологии разработки. Процесс функционирования документальных баз данных. Система управления информационными потоками.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 23.11.2018
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Одним из недостатков использования ER-диаграмм Бахмана для описания формализованных схем (моделей) предметных

областей информационных систем является их статичность, не позволяющая наглядно и непосредственно отображать процессы, в которые вовлечены сущности и которым подвержены отношения (связи). Отчасти подобные проблемы преодолеваются введением дополнительных сущностей, выражающих собственно процессы и ситуации - событие, действие, момент времени. Аналогичным образом в некоторых случаях вводятся пространственные сущности для адекватного представления сущностей и отношений предметной области - маршрут, место, населенный пункт, здание, элемент здания, зона и т.д.

Вторым уровнем представления информации в информационной системе является схема базы данных, (называемая еще логической структурой данных), представляющая описание средствами конкретной СУБД мифологической схемы предметной области (информационные объекты, реквизиты, связи).

Совокупность средств и способов реализации схемы базы данных в конкретной СУБД составляет модель организации данных.

Схема базы данных содержит также ограничения целостности данных. Ограничения целостности представляют собой набор установок и правил по типам, диапазонам, соотношениям (и т.д.) значений атрибутов объектов, характеристик и особенностей связей между объектами. К примеру, диапазон значения атрибута «Дата рождения» объекта лицо не может выходить за рамки текущей даты, значение атрибута «Дата приобретения» объекта «Имущество» не может быть позднее значения атрибута «Дата продажи», значение атрибута «Количество» объекта «Материал» не должно быть меньше минимально необходимого на складе и т.п. Ограничения целостности Данных лежат в основе контроля корректности информации при ее вводе в систему и периодического контроля наличия смысловых и других ошибок в базе данных после проведения операций добавления, удаления и изменения данных.

Третий и самый «низкий» уровень представления информации в фактографических информационных системах выражается внутренней схемой базы данных, определяющей структуру организации и особенности хранения информационных массивов, в которых и находятся собственно сами данные.

Более конкретные особенности представления и организации данных определяются конкретным типом и особенностями СУБД, используемой для создания фактографической информационной системы.

1.4 Распределенные АПОИС

В до компьютерных информационных технологиях информационные ресурсы организаций и предприятий, с одной стороны, разделены и распределены логически (по различным подразделениям, службам) и физически (находятся в различных хранилищах, картотеках, помещениях). С другой стороны, информационные ресурсы создаются и используются своей определенной частью или в целом коллективно или индивидуально. Иначе говоря, с одними и теми же документами, картотеками и прочими информационными массивами могут в рамках общего проекта или в своей части одновременно работать несколько сотрудников и подразделений.

Первоначальные подходы к созданию баз данных АПОИС заключались в сосредоточении данных логически и физически в одном месте - на одной вычислительной установке. Однако такая организация информационных ресурсов чаще всего является не совсем естественной сточки зрения традиционных («бумажных») информационных технологий конкретного предприятия (организационной структуры) и при внедрении АПОИС происходит «ломка» привычных информационных потоков и структур. Все информационные ресурсы предприятия, организации сосредотачиваются централизованно в одном месте, что требует определенных технологических, кадровых и материальных затрат и может порождать ряд новых проблем и задач. Следует отметить, что такому подходу также способствовала и господствующая на начальном этапе автоматизации предприятий и организаций в 70-х годах тогдашняя парадигма вычислительных систем - общая мощная вычислительная установка (main frame) и групповая работа пользователей с удаленных терминалов через системы разделения времени.

Опыт внедрения автоматизированных систем управления в различных организационных структурах в 70-е-80-е гг. показал не всегда высокую эффективность подобной автоматизации, когда новые технологические информационно-управленческие подразделения (отдел автоматизации, отдел АСУ, информационная служба и т.п.) и новые электронные информационные потоки зачастую функционировали вместе с сохраняющимися традиционными организационными структурами, а также вместе с традиционными («бумажными», «телефонными») информационными потоками.

Осознание подобных проблем постепенно стало приводить к мысли о распределенных информационных системах.

Впервые задача об исследовании основ и принципов создания и функционирования распределенных информационных систем была поставлена известным специалистом в области баз данных К. Дейтом в рамках уже не раз упоминавшегося проекта System R, что в конце 70-х - начале 80-х годов вылилось в отдельный проект создания первой распределенной системы (проект System R). Большую роль в исследовании принципов создания и функционирования распределенных баз данных внесли также и разработчики системы Ingres.

Собственно в основе распределенных АПОИС лежат две основные идеи:

* много организационно и физически распределенных пользователей, одновременно работающих с общими данными - общей базой данных (пользователи с разными именами, в том числе располагающимися на различных вычислительных установках, с различными полномочиями и задачами);

* логически и физически распределенные данные, составляющие и образующие тем не менее единое взаимосогласованное целое - общую базу данных (отдельные таблицы, записи и даже поля могут располагаться на различных вычислительных установках или входить в различные локальные базы данных).

Крис Дейт сформулировал также основные принципы создания и функционирования распределенных баз данных.

К их числу относятся:

- прозрачность расположения данных для пользователя (иначе говоря, для пользователя распределенная база данных должна представляться и выглядеть точно так же, как и нераспределенная);

- изолированность пользователей друг от друга (пользователь должен «не чувствовать», «не видеть» работу других пользователей в тот момент, когда он изменяет, обновляет, удаляет данные);

- синхронизация и согласованность (непротиворечивость) состояния данных в любой момент времени.

Из основных вытекает ряд дополнительных принципов:

* локальная автономия (ни одна вычислительная установка для своего успешного функционирования не должна зависеть от любой другой установки);

* отсутствие центральной установки (следствие предыдущего пункта);

* независимость от местоположения (пользователю все равно где физически находятся данные, он работает так, как будто они находятся на его локальной установке);

* непрерывность функционирования (отсутствие плановых отключений системы в целом, например для подключения новой установки или обновления версии СУБД);

* независимость от фрагментации данных (как от горизонтальной фрагментации, когда различные группы записей одной таблицы размещены на различных установках или в различных локальных базах, так и от вертикальной фрагментации, Iкогда различные поля-столбцы одной таблицы размещены на разных установках);

* независимость от реплицирования (дублирования) данных (когда какая-либо таблица базы данных, или ее часть физически может быть представлена несколькими копиями, расположенными на различных установках, причем «прозрачно» для пользователя);

* распределенная обработка запросов (оптимизация запросов должна носить распределенный характер-сначала глобальная оптимизация, а далее локальная оптимизация на каждой из задействованных установок);

* распределенное управление транзакциями (в распределенной системе отдельная транзакция может требовать выполнения действий на разных установках, транзакция считается завершенной, если она успешно завершена на всех вовлеченных установках);

* независимость от аппаратуры (желательно, чтобы система могла функционировать на установках, включающих компьютеры разных типов);

* независимость от типа операционной системы (система должна функционировать вне зависимости от возможного различия ОС на различных вычислительных установках);

* независимость от коммуникационной сети (возможность функционирования в разных коммуникационных средах);

* независимость от СУБД (на разных установках могут функционировать СУБД различного типа, на практике ограничиваемые кругом СУБД, поддерживающих SQL).

В обиходе СУБД, на основе которых создаются распределенные информационные системы, также характеризуют термином «Распределенные СУБД)), и, соответственно, используют термин «Распределенные базы данных».

Важнейшую роль в технологии создания и функционирования распределенных баз данных играет техника «представлений» (Views).

Представлением называется сохраняемый в базе данных авторизованный глобальный запрос на выборку данных.

Авторизованность означает возможность запуска такого запроса только конкретно поименованным в системе пользователем. Глобальность заключается в том, что выборка данных может осуществляться со всей базы данных, в том числе из данных, расположенных на других вычислительных установках. Напомним, что результатом запроса на выборку является набор данных, представляющий временную на сеанс открытого запроса таблицу, с которой (которыми) в дальнейшем можно работать, как с обычными реляционными таблицами данных. В результате таких глобальных авторизованных запросов для конкретного пользователя создается некая виртуальная база данных со своим перечнем таблиц, связей, т.е. со «своей» схемой и со «своими» данными. В принципе, с точки зрения информационных задач, в большинстве случаев пользователю безразлично, где и в каком виде находятся собственно сами данные. Данные должны быть такими и логически организованы таким образом, чтобы можно было решать требуемые информационные задачи и выполнять установленные функции.

При входе пользователя в распределенную систему ядро СУБД, идентифицируя пользователя, запускает запросы его ранее определенного и хранимого в БД представления и формирует ему «свое» видение БД, воспринимаемое пользователем как обычная (локальная) база данных. Так как представление базы данных виртуально, то «настоящие» данные физически находятся там, где они находились до формирования представления. При осуществлении пользователем манипуляций сданными ядро распределенной СУБД по системному каталогу базы данных само определяет, где находятся данные, вырабатывает стратегию действий, т.е. определяет, где, на каких установках целесообразнее производить операции, куда для этого и какие данные необходимо переместить из других установок или локальных баз данных, проверяет выполнение ограничений целостности данных. При этом большая часть таких операций прозрачна (т.е. невидима) для пользователя, и он воспринимает работу в распределенной базе данных, как в обычной локальной базе.

Технологически в реляционных СУБД техника представлений реализуется через введение в язык SQL-конструкций, позволяющих аналогично технике «событий-правил-процедур» создавать именованные запросы-представления:

В данных конструкциях после имени представления и ключевого слова AS размещается запрос на выборку данных, собственно и формирующий соответствующее представление какого-либо объекта базы данных.

Авторизация представлений осуществляется применением команд (директив) GRANT, присутствующих в базовом перечне инструкций языка SQL и предоставляющих полномочия и привилегии пользователям:

Соответственно директива REVOKE отменяет уставленные ранее привилегии. Несмотря на простоту и определенную изящность идеи «представлений», практическая реализация подобной технологии построения и функционирования распределенных систем встречает ряд серьезных проблем. Первая из них связана с размещением системного каталога базы данных, ибо при формировании для пользователя «представления» распределенной базы данных ядро СУБД в первую очередь должно «узнать», где и в каком виде в действительности находятся данные. Требование отсутствия центральной установки приводит к выводу о том, что системный каталог должен быть на любой локальной установке. Но тогда возникает проблема обновлений. Если какой-либо пользователь изменил данные или их структуру в системе, то эти изменения должны отразиться во всех копиях системного каталога. Однако размножение обновлений системного каталога может встретить трудности в виде недоступности (занятости) системных каталогов на других установках в момент распространения обновлений. В результате может быть не обеспечена непрерывность согласованного состояния данных, а также возникнуть ряд других проблем.

Решение подобных проблем и практическая реализация распределенных информационных систем осуществляется через отступление от некоторых рассмотренных выше принципов создания и функционирования распределенных систем. В зависимости оттого, какой принцип приносится в «жертву» (отсутствие центральной установки, непрерывность функционирования, согласованного состояния данных и др.) выделились несколько самостоятельных направлений в технологиях распределенных систем - технологии «Клиент-сервер», технологии реплецирования, технологии объектного связывания.

Реальные распределенные информационные системы, как правило, построены на основе сочетания всех трех технологий, но в методическом плане их целесообразно рассмотреть отдельно. Дополнительно следует также отметить, что техника представлений оказалась чрезвычайно плодотворной также и в другой сфере СУБД-защите данных. Авторизованный характер запросов, формирующих представления, позволяет предо ставить конкретному пользователю те данные и в том виде, которые необходимы ему для его непосредственных задач, исключив возможность доступа, просмотра и изменения других данных.

1.5 Технологии и модели «Клиент-сервер»

Системы на основе технологий «Клиент-сервер» исторически выросли из первых централизованных многопользовательских автоматизированных информационных систем, интенсивно развивавшихся в 70-х годах (системы main frame), и получили, вероятно, наиболее широкое распространение в сфере информационного обеспечения крупных предприятий и корпораций.

В технологиях «Клиент-сервер» отступают от одного из главных принципов создания и функционирования распределенных систем - отсутствия центральной установки. Поэтому можно выделить две основные идеи, лежащие в основе клиент-серверных технологий:

* общие для всех пользователей данные на одном или нескольких серверах;

* много пользователей (клиентов) на различных вычислительных установках, совместно (параллельно и одновременно) обрабатывающих общие данные.

Иначе говоря, системы, основанные на технологиях «Клиент-сервер», распределены только в отношении пользователей, поэтому часто их не относят к «настоящим» распределенным системам, а считают отдельным, уже упоминавшимся классом многопользовательских систем.

Важное значение в технологиях «Клиент-сервер» имеют понятия сервера и клиента.

Под сервером в широком смысле понимается любая система, процесс, компьютер, владеющие каким-либо вычислительным ресурсом (памятью, временем, производительностью процессора и т.д.).

Клиентом называется также любая система, процесс, компьютер, пользователь, запрашивающие у сервера какой-либо ресурс, пользующиеся каким-либо ресурсом или обслуживаемые сервером иным способом.

В своем развитии системы «Клиент-сервер» прошли несколько этапов, в ходе которых сформировались различные модели систем «Клиент-сервер». Их реализация и, следовательно, правильное понимание основаны на разделении структуры СУБД на три компонента:

компонент представления, реализующий функции ввода и отображения данных, называемый иногда еще просто как интерфейс пользователя;

прикладной компонент, включающий набор запросов, событий, правил, процедур и других вычислительных функций, реализующий предназначение автоматизированной информационной системы в конкретной предметной области;

компонент доступа к данным, реализующий функции хранения, извлечения, физического обновления и изменения данных (машина данных).

Исходя из особенностей реализации и распределения (расположения) в системе этих трех компонентов различают четыре модели технологий «Клиент-сервер».

модель файлового сервера (File Server - FS);

модель удаленного доступа к данным (Remote Data Access - RDA);

модель сервера базы данных (DataBase Server - DBS);

модель сервера приломсетш (Application Server - AS).

Модель файлового сервера

Модель файлового сервера является наиболее простой и характеризует собственно не столько способ образования фактографической информационной системы, сколько общий способ взаимодействия компьютеров в локальной сети. Один из компьютеров сети выделяется и определяется файловым сервером, т.е. общим хранилищем любых данных.

В FS-модели все основные компоненты размещаются на клиентской установке. При обращении к данным ядро СУБД, в свою очередь, обращается с запросами на ввод-вывод данных за сервисом к файловой системе. С помощью функций операционной системы в оперативную память клиентской установки полностью или частично на время сеанса работы копируется файл базы данных. Таким образом, сервер в данном случае выполняет чисто пассивную функцию.

Достоинством данной модели являются ее простота, отсутствие высоких требований к производительности сервера (главное-требуемый объем дискового пространства). Следует также отметить, что программные компоненты СУБД в данном случае не распределены, т.е. никакая часть СУБД на сервере не инсталлируется и не размещается.

С другой стороны также очевидны и недостатки такой модели. Это, прежде всего, высокий сетевой трафик, достигающий пиковых значений особенно в момент массового вхождения в систему пользователей, например в начале рабочего дня. Однако более существенным с точки зрения работы с общей базой данных является отсутствие специальных механизмов безопасности файла (файлов) базы данных со стороны СУБД. Иначе говоря, разделение данных между пользователями (параллельная работа с одним файлом данных) осуществляется только средствами файловой системы ОС для одновременной работы нескольких прикладных программ с одним файлом.

Несмотря на очевидные недостатки, модель файлового сервера является естественным средством расширения возможностей персональных (настольных) СУБД в направлении поддержки многопользовательского режима и, очевидно, в этом плане еще будет сохранять свое значение.

Модель удаленного доступа к данным

Модель удаленного доступа к данным основана на учете специфики размещения и физического манипулирования данных во внешней памяти для реляционных СУБД. В RDA-модели компонент доступа к данным в СУБД полностью отделен от двух других компонентов (компонента представления и прикладного компонента) и размещается на сервере системы. Компонент доступа к данным реализуется в виде самостоятельной программной части СУБД, называемой SQL-сервером, и инсталлируется на вычислительной установке сервера системы. Функции SQL-сервера ограничиваются низкоуровневыми операциями по организации, размещению, хранению и манипулированию данными в дисковой памяти сервера. Иначе говоря, SQL-сервер играет роль машины данных.

На клиентских установках инсталлируются отделенные программные части СУБД, реализующие интерфейсные и прикладные функции. Пользователь, входя в клиентскую часть системы, регистрируется через нее на сервере системы и начинает обработку данных. Прикладной компонент системы (библиотеки запросов, процедуры обработки данных) полностью размещается и выполняется на клиентской установке. При реализации своих функций прикладной компонент формирует необходимые SQL-инструкции, направляемые SQL-серверу. SQL-сервер, представляющий специальный программный компонент, ориентированный на интерпретацию SQL-инструкций и высокоскоростное выполнение низкоуровневых операций с данными, принимает и координирует SQL-инструкции от различных клиентов, выполняет их, проверяет и обеспечивает выполнение ограничений целостности данных и направляет клиентам результаты обработки SQL-инструкций, представляющие как известно наборы (таблицы) данных.

Таким образом, общение клиента с сервером происходит через SQL-инструкции, а с сервера на клиентские установки передаются только результаты обработки, т.е. наборы данных, которые могут быть существенно меньше по объему всей базы данных. В результате резко уменьшается загрузки сети, а сервер приобретает активную центральную функцию. Кроме того, ядро СУБД в виде SQL-сервера обеспечивает также традиционные и важные функции по обеспечению ограничений целостности и безопасности данных при совместной работе нескольких пользователей.

Другим, может быть неявным, достоинством RDA-модели является унификация интерфейса взаимодействия прикладных компонентов информационных систем с общими данными. Такое взаимодействие стандартизовано в рамках языка SQL уже упоминавшимся специальным протоколом ODBC (Open Database Connectivity), играющим важную роль в обеспечении интероперабелыюсти, т.е. независимости от типа СУБД на клиентских установках в распределенных системах. Иначе говоря, специальный компонент ядра СУБД на сервере (так называемый драйвер ODBC) способен воспринимать, обрабатывать запросы и направлять результаты их обработки на клиентские установки, функционирующие под управлением реляционных СУБД других, не «родных» типов. Такая возможность существенно повышает гибкость в создании распределенных информационных систем на базе интеграции уже существующих в какой-либо организации локальных баз данных под управлением настольных или другого типа реляционных СУБД. Специальные драйверы ODBC могут обеспечить возможность использования настольной СУБД в качестве клиента SQL-сервера «тяжелой» многопользовательской клиент-серверной СУБД. К недостатка/и RDA-модели можно отнести высокие требования к клиентским вычислительным установкам, так как прикладные программы обработки данных, определяемые спецификой предметной области АИС, выполняются на них. Другим недостатком является все же существенный трафик сети, обусловленный тем, что с сервера базы данных клиентам направляются наборы (таблицы) данных, которые в определенных случаях могут занимать достаточно существенный объем.

Модель сервера базы данных

Развитием RDA-модели стала модель сервера базы данных. Ее сердцевиной является рассмотренный ранее механизм хранимых процедур. В отличие от RDA-модели, определенные для конкретной предметной области АИС события, правила и процедуры, описанные средствами языка SQL, хранятся вместе с данными на сервере системы и на нем же выполняются. Иначе говоря, прикладной компонент полностью размещается и выполняется на сервере системы.

На клиентских установках в DBS-модели размещается только интерфейсный компонент (компонент представления) АИС, что существенно снижает требования к вычислительной установке клиента. Пользователь через интерфейс системы на клиентской установке направляет на сервер базы данных только лишь вызовы необходимых процедур, запросов и других функций по обработке дачных. Все затратные операции по доступу и обработке данных выполняются на сервере и клиенту направляются лишь результаты обработки, а не наборы данных, как в RDA-модели. Этим обеспечивается существенное снижение трафика сети в DBS-модели по сравнению с RDA-моделью.

Следует, однако, заметить, что на сервере системы выполняются процедуры прикладных задач одновременно всех пользователей системы. В результате резко возрастают требования к вычислительной установке сервера, причем как к объему дискового пространства и оперативной памяти, так и к быстродействию. Это основной недостаток DBS-модели.

К достоинствам же DBS-модели, помимо разгрузки сети, относится н более активная роль сервера сети, размещение, хранение и выполнение на нем механизма событий, правил и процедур, возможность более адекватно и эффективно «настраивать» распределенную АИС на вес нюансы предметной области системы. Также более надежно обеспечивается согласованность состояния и изменения данных, и, вследствие этого, повышается надежность хранения и обработки данных, эффективно координируется коллективная работа пользователей с общими данными.

Модель сервера приложений

Чтобы разнести требования к вычислительным ресурсам сервера в отношении быстродействия и памяти по разным вычислительным установкам, используется модель сервера приложений. Суть AS-модели заключается в переносе прикладного компонента АИС на специализированный в отношении повышенных ресурсов по быстродействию дополнительный сервер системы.

AS-модель, сохраняя сильные стороны DBS-модели, позволяет более оптимально построить вычислительную схему информационной системы, однако, как и в случае RDA-модели, повышает трафик сети.

В еще не устоявшейся до конца терминологии по моделям и технологиям «Клиент-сервер» RDA-модель характеризуют еще как модель с так называемыми «толстыми», а DBS-модель и AS-модель как модели, соответственно, с «топкими» клиентами. По критерию звеньев системы RDA-модель и DBS-модель называют двухзвенными (двухуровневыми) системами, а AS-модель трехзвенной (трехуровневой) системой.

В практических случаях используются смешанные модели, когда простейшие прикладные функции и обеспечение ограничений целостности данных поддерживаются хранимыми на сервере процедурами (DBS-модель), а более сложные функции предметной области (так называемые «правила бизнеса») реализуются прикладными программами на клиентских установках (RDA-модель) или на сервере приложений (AS-модель).

Как и в DBS-модели, на клиентских установках располагается только интерфейсная часть системы, т. с. компонент представления. Однако вызовы функций обработки данных направляются на сервер приложений, где эти функции совместно выполняются для всех пользователей системы. За выполнением низкоуровневых операций по доступу и изменению данных сервер приложений, как в RDA-модели, обращается к SQL-серверу, направляя ему вызовы SQL-процедур, и получая, соответственно, от него наборы данных. Как известно, последовательная совокупность операций над данными (SQL-инструкций), имеющая отдельное смысловое значение, называется транзакцией. В этом отношении сервер приложений от клиентов системы управляет формированием транзакций, которые выполняет SQL-сервер. Поэтому программный компонент СУБД, инсталлируемый на сервере приложений, еще называют также монитором обработки транзакций.

1.6 Технологии реплицирования данных

Во многих случаях узким местом распределенных систем, построенных на основе технологий «Клиент-сервер» или объектного связывания данных, является недостаточно высокая производительность из-за необходимости передачи по сети большого количества данных. Определенную альтернативу построения быстродействующих распределенных систем предоставляют технологии реплицирования данных.

Репликой называют особую копию базы данных для размещения на другом компьютере сети с целью автономной работы пользователей с одинаковыми (согласованными) данными общего пользования.

Основная идея реплицирования заключается в том, что пользователи работают автономно с одинаковыми (общими) данными, растиражированными по локальным базам данных, обеспечивая с учетом отсутствия необходимости передачи и обмена данными по сети максимальную для своих вычислительных установок производительность. Программное обеспечение СУБД для реализации такого подхода соответственно дополняется функциями тиражирования (реплицирования) баз данных, включая тиражирование как самих данных и их структуры, так и системного каталога с информацией о размещении реплик, иначе говоря, с информацией о конфигурировании построенной таким образом распределенной системы.

При этом, однако, возникают две проблемы обеспечения одного из основополагающих принципов построения и функционирования распределенных систем, а именно - непрерывности согласованного состояния данных:

обеспечение согласованного состояния во всех репликах количества и значений общих данных;

обеспечение согласованного состояния во всех репликах структуры данных. своей реплике, потому что заблокированы соответствующие записи в другой реплике. А разблокировка этих записей в другой реплике также невозможна до тех пор, пока не разблокируются соответствующие записи в первой реплике, т.е. когда завершится транзакция в первой реплике. Создается тупиковая ситуация.

Для обнаружения (распознавания) тупиков в реплицированных системах применяются такие же алгоритмы, которые были разработаны в алгоритмах транзакций централизованных систем «Клиент-сервер», - строится и поддерживается аналогичный граф ожидания транзакций и применяются аналогичные алгоритмы распознавания и разрушения тупиков, основанные в основном на технике приоритетов.

В целом ряде предметных областей распределенных информационных систем режим реального времени с точки зрения непрерывности согласования данных не требуется. Такие системы автоматизируют те организационно-технологические структуры, в которых информационные процессы не столь динамичны. Если взять, к примеру, автоматизированную информационную систему документооборота, то традиционная «скорость» перемещения и движения служебных документов соответствует рабочему дню или в лучшем случае рабочим часам. В этом случае обновление реплик распределенной информационной системы, если она будет построена на технологии реплицирования, требуется, скажем, только лишь один раз за каждый рабочий час, или за каждый рабочий день,

Такого рода информационные системы можно строить на основе принципа отложенных обновлений. Накопленные в какой-либо реплике изменения данных специальной командой пользователя направляются для обновления всех остальных реплик систем. Такая операция называется синхронизацией реплик. Возможность конфликтов и тупиков в этом случае при синхронизации реплик существенно снижается, а немногочисленные подобные конфликтные ситуации легко разрешить организационными мерами.

Решение второй проблемы согласованности данных, а именно - согласованности структуры данных, осуществляется через частичное отступление, как и в системах «Клиент-сервер», от принципа отсутствия центральной установки и основывается на технике «главной» реплики.

Суть этой техники заключается в том, что одна из реплик базы данных системы объявляется главной. При этом изменять структуру базы данных только в главной реплике. Эти изменения структуры данных тиражируются на основе принципа отложенных обновлений, т.е. через специальную синхронизацию реплик. Частичность отступления от принципа отсутствия центральной установки заключается в том, что в отличие от чисто централизованных систем, выход из строя главной реплики не влечет сразу гибель всей распределенной системы, так как остальные реплики продолжают функционировать автономно. Более того, на практике СУБД, поддерживающие технологию реплицирования, позволяют пользователю с определенными полномочиями (администратору системы) преобразовать любую реплику в главную и тем самым полностью восстановить работоспособность всей системы.

Процесс синхронизации реплик в современных СУБД включает обмен только теми данными, которые были изменены или добавлены в разных репликах. С этой целью в системном каталоге базы данных создаются специальные таблицы текущих изменений и организуется система глобальной идентификации (именования) всех объектов распределенной системы, включая раздельное поименование одинаковых объектов (вплоть до записей таблиц) в разных репликах. Такой подход несколько увеличивает объем базы данных, но позволяет существенно ограничить транспортные расходы на синхронизацию реплик.

Важным, сточки зрения гибкости и эффективности функционирования распределенных информационных систем, построенных на технологиях реплицирования, является возможность создания так называемых частичных реплик и включения в реплики как реплицируемых, так и нереплицируемых объектов. Частичной репликой называется база данных, содержащая ограниченное подмножество записей полной реплики. Распространенным способом создания частичных реплик является использование фильтров, устанавливаемых для конкретных таблиц полной (главной) реплики. Частичные реплики позволяют решить некоторые проблемы, связанные с разграничением доступа к данным и повышают производительность обработки данных. Так, к примеру, в реплику базы данных для определенного подразделения целесообразно реплицировать только те записи таблицы «Сотрудники», которые относятся к данному подразделению, исключив тем самым доступ к другим записям. Техника частичных реплик также снижает затраты на синхронизацию реплик, так как ограничивает количество передаваемых по сети изменений данных.

Возможность включения в реплики объектов базы данных, которые не подлежат репликации, позволяет более гибко и адекватно настроить схему и прочие объекты БД (запросы, формы и отчеты) на специфику предметной области, особенности ввода данных и решаемые информационные задачи по конкретному элементу распределенной системы.

Технологии репликации данных в тех случаях, когда не требуется обеспечивать большие потоки и интенсивность обновляемых в информационной сети данных, являются экономичным решением проблемы создания распределенных информационных систем с элементами централизации по сравнению с использованием дорогостоящих «тяжелых» клиент-серверных систем.

На практике для совместной коллективной обработки данных применяются смешанные технологии, включающие элементы объектного связывания данных, репликаций и клиент-серверных решений.

При этом дополнительно к проблеме логического проектирования, т.е. проектирования логической схемы организации данных (таблицы, поля, ключи, связи, ограничения целостности), добавляется не менее сложная проблема транспортно-технологического проектирования информационных потоков, разграничения доступа и т.д. К сожалению, пока не проработаны теоретико-методологические и инструментальные подходы для автоматизации проектирования распределенных информационных систем с учетом факторов как логики, так и информационно-технологической инфраструктуры предметной области. Тем не менее развитие и все более широкое распространение распределенных информационных систем, определяемое самой распределенной природой информационных потоков и технологий, является основной перспективой развития автоматизированных информационных систем.

2. Документальные информационные системы

В развитии программного обеспечения СУБД в 70-е-80-е годы превалировало направление, связанное с фактографическими информационными системами, т.е. с системами, ориентированными на работу со структурированными данными. Были разработаны основы и модели организации фактографических данных, отработаны программно-технические решения по накоплению и физическому хранению таких данных, реализованы специальные языки запросов к базам данных и решен целый ряд других задач по эффективному управлению большими объемами структурированной информации. В результате основу информационного обеспечения деятельности предприятий и организаций к началу 90-х годов составили фактографические информационные системы, вобравшие в себя в совокупности колоссальный объем структурированных данных'.

Вместе с тем создание и эксплуатация фактографических информационных систем требует либо изначально структурированных данных, таких, например, как отчеты датчиков в АСУ ТП, финансовые массивы бухгалтерских АИС и т.д., либо предварительной структуризации данных, как, например, в информационной системе кадрового подразделения, где все данные по сотрудникам структуризируются по ряду формализованных позиций. При этом зачастую структуризация данных требует больших накладных, в том числе и организационных расходов, что, в конечном счете, приводит к материальным издержкам информатизации.

Кроме того, входные информационные потоки в целом ряде организационно-технологических и управленческих сфер представлены неструктурированными данными в виде служебных документов и иных текстовых источников. Извлечение из текстов данных по формализованным позициям для ввода в фактографические системы может приводить к ошибкам и потере части информации, которая в исходных источниках имеется, но в силу отсутствия в схеме базы данных адекватных элементов не может быть отражена в банке данных фактографических АИС. В результате, несмотря на интенсивное развитие и распространение фактографических информационных систем, огромная часть неструктурированных данных, необходимых для информационного обеспечения деятельности различных предприятий и организаций, остается в неавтоматизированном или слабо автоматизированном виде. К таким данным относятся огромные массивы различной периодики, нормативно-правовая база, массивы служебных документов делопроизводства и документооборота.

Потребности в системах, ориентированных на накопление и эффективную обработку неструктурированной или слабоструктурированной информации привели к возникновению еще в 70-х годах отдельной ветви программного обеспечения систем управления базами данных, на основе которых создаются документальные информационные системы.

Однако теоретические исследования вопросов автоматизированного информационного поиска документов, начавшись e в 50-х-60-х годах, к сожалению, не получили такой строгой, полной и в то же время технически реализуемой модели представления и обработки данных, как реляционная модель в фактографических системах. Не получили также стандартизации (как язык SQL) и многочисленные попытки создания универсальных так называемых информационно-поисковых языков, предназначенных для формализованного описания смыслового содержания документов и запросов по ним. В итоге, несмотря на то, что первые системы автоматизированного информационного поиска документов появились еще в 60-х годах, развитые коммерческие информационно-поисковые системы, ориентированные на накопление и обработку текстовых Документов, получили распространение лишь в конце 80-х - начале 90-х годов.

2.1 Общая характеристика и виды документальных информационных систем

Напомним, что в фактографических информационных системах единичным элементом данных, имеющим отдельное смысловое значение, является запись, образуемая конечной совокупностью полей-атрибутов. Иначе говоря, информация о предметной области представлена набором одного или нескольких типов структурированных на отдельные поля записей.

В отличие от фактографических информационных систем, единичным элементом данных в документальных информационных системах является неструктурированный на более мелкие элементы документ. В качестве неструктурированных документов в подавляющем большинстве случаев выступают, прежде всего, текстовые документы, представленные в виде текстовых файлов, хотя к классу неструктурированных документированных данных могут также относиться звуковые и графические файлы.

Основной задачей документальных информационных систем является накопление и предоставление пользователю документов, содержание, тематика, реквизиты и т.п. которых адекватны его информационным потребностям. Поэтому можно дать следующее определение документальной информационной системы - единое хранилище документов с инструментарием поиска и отбора необходимых документов. Поисковый характер документальных информационных систем исторически определил еще одно их название - информационно-поисковые системы (ИПС), хотя этот термин не совсем полно отражает специфику документальных ИС. Соответствие найденных документов информационным потребностям пользователя называется пертинентностью. В силу теоретических и практических сложностей с формализацией смыслового содержания документов пертинентность вносится скорее к качественным понятиям, хотя, как будет рассмотрено ниже, может выражаться определенными количественными показателями.

В зависимости от особенностей реализации хранилища документов и механизмов поиска документальные ИПС можно разделить на две группы:

* системы на основе индексирования;

* семантически-навигационные системы.

В семантически-навигационных системах документы, помещаемые в, хранилище (в базу) документов, оснащаются специальными навигационными конструкциями, соответствующими смысловым сетям (отсылкам) между различными документами или отдельными фрагментами одного документа. Такие конструкции реализуют некоторую семантическую (смысловую) сеть в базе документов. Способ и механизм выражения информационных потребностей, в подобных системах, заключаются в явной навигации пользователя по смысловых отсылкам между документами. В настоящее время такой подход реализуется в гипертекстовых ИПС.

В системах на основе индексирования исходные документы помещаются в базу без какого-либо дополнительного пре образования, но при этом смысловое содержание каждого документа отображается в некоторое поисковое пространство. Процесс отображения документа в поисковое пространство называется индексированием и заключается в присвоении каждому документу некоторого индекса-координаты в поисковой пространстве. Формализованное представление (описание) индекса документа называется поисковым образом документа (ПОД). Пользователь выражает свои информационные потребности средствами и языком поискового пространства, формируя поисковый образ запроса (ПОЗ) к базе документов. Система на основе определенных критериев и способов ищет документы, поисковые образы которых соответствуют или близки поисковым образам запроса пользователя, и выдает соответствующие документы.

Соответствие найденных документов запросу пользователя называется релевантностью. Особенностью документальных ИПС является также то, что в их функции, как правило, включаются и задачи информационного оповещения пользователей по всем новым поступающим в систему документам, соответствующим заранее определенным информационным потребностям пользователя. Принцип решения задач информационного оповещения в документальных ИПС на основе индексирования, аналогичен принципу решения задач поиска документов по запросам и основан на отображении в поисковое пространство информационных потребностей пользователя в виде так называемых поисковых профилей пользователей (ППП). Информационно - поисковая система по мере поступления и индексирования новых документов сравнивает их образы с поисковыми профилями пользователей и принимает решение о соответствующем оповещении.

Поисковое пространство, отображающее поисковые образы документов и реализующее механизмы информационного поиска документов так же, как и в СУБД фактографических систем, строится на основе языков документальных баз данных, называемых информационно-поисковыми языками (ИПЯ). Информационно-поисковый язык представляет собой некоторую формализованную семантическую систему, предназначенную для выражения содержания документа и запросов по поиску необходимых документов. По аналогии с языками баз данных фактографических систем ИПЯ можно разделить на структурную и манипуляционную составляющие.

Структурная составляющая ИПЯ (поискового пространства) документальных ИПС на основе индексирования реализуется индексными указателями в форме информационно-поисковых каталогов, тезаурусов и генеральных указателей.

Информационно-поисковые каталоги являются традиционными технологиями организации информационного поиска в документальных фондах библиотек, архивов и представляют собой классификационную систему знаний по определенной предметной области. Смысловое содержание документа в информационно-поисковых каталогах отображается тем или иным классом каталога, а индексирование документов заключается в присвоении каждому документу специального кода (индекса) соответствующего по содержанию класса (классов) каталога и создания на этой основе специального индексного указателя.

Тезаурус представляет собой специальным образом организованную совокупность основных лексических единиц (понятий) предметной области (словарь терминов) и описание парадигматических отношений между ними. Парадигматические отношения выражаются семантическими отношениями между элементами словаря, не зависящими от любого контекста. Независимость от контекста означает обобщенность (абстрагированность) смысловых отношений, например отношения «род-вид», «предмет-целое», «субъект-объект-средство-место-время действия». Так же, как и в информационно-поисковых каталогах, в системах на основе тезаурусов в информационно-поисковое пространство отображается не весь текст документа, а только лишь выраженное средствами тезауруса смысловое содержание документа.

Генеральный указатель (глобальный словарь-индекс) в общем виде представляет собой перечисление всех слов (словоформ), имеющихся в документах хранилища, с указанием (отсылками) координатного местонахождения каждого слова (№ документа - № абзаца- № предложения- № слова). Индексирование нового документа в таких системах производится через дополнение координатных отсылок тех словоформ генерального указателя, которые присутствуют в новом документе. Так как поисковое пространство в таких системах отражает полностью весь текст документа (все слова документа), а не только его смысловое содержание, то такие системы получили название полнотекстовых ИПС.

Структурная составляющая ИПЯ семантически-навигационных систем реализуется в виде техники смысловых отсылок в текстах документов и специальном навигационном интерфейсе по ним и в настоящее время представлена гипертекстовыми технологиями.

Поисковая (манипуляционная) составляющая ИПЯ реализуется дескрипторными и семантическими языками запросов.

В дескрипторных языках документы и запросы представляются наборами некоторых лексических единиц (слов, словосочетаний, терминов) - дескрипторов; не имеющих между собой связей, или, как еще говорят, не имеющих грамматики. Таким образом, каждый документ или запрос ассоциируется или, лучше сказать, представлен некоторым набором дескрипторов. Поиск осуществляется через поиск документов с подходящим набором дескрипторов. В качестве элементов-дескрипторов выступают либо элементы словаря ключевых терминов, либо элементы генерального указателя (глобального словаря всех словоформ). В силу отсутствия связей между дескрипторами, набор которых для конкретного документа и конкретного запроса выражает, соответственно, поисковый образ документа - ПОД или поисковый образ запроса ПОЗ, такие языки применяются, прежде всего, в полнотекстовых системах.

Семантические языки содержат грамматические и семантические конструкции для выражения (описания) смыслового содержания документов и запросов. Все многообразие семантических языков подразделяется на две большие группы:

* предикатные языки;

* реляционные языки.

В предикатных языках в качестве элементарной осмысленной конструкции высказывания выступает предикат, который представляет собой многоместное отношение некоторой совокупности грамматических элементов. Многоместность отношения означает, что каждый элемент предиката играет определенную роль для группы лексических элементов в целом, но не имеет конкретных отношений с каждым элементом этой группы в отдельности. Аналогом предикатного высказывания в естественном языке выступает предложение, констатирующее определенный факт или описывающее определенное событие.

В реляционных языках лексические единицы высказываний могут вступать только в бинарные (друг с другом), но не в совместные, т.е. не многоместные отношения.

В качестве лексических единиц семантических языков выступают функциональные классы естественного языка, важнейшими из которых являются:

* понятия-классы (общее определение совокупности однородных элементов реального мира, обладающих некоторым характерным набором свойств, позволяющих одни понятия-классы отделять от других);

* понятия-действия (лексический элемент, выражающий динамику реального мира, содержит универсальный набор признаков, включающий субъект действия, объект действия, время действия, место действия, инструмент действия, цель и т.д.);

* понятия-состояния (лексические элементы, фиксирующие состояния объектов);

* имена (лексические элементы, идентифицирующие понятия-классы);

* отношения (лексические элементы, служащие для установления связей на множестве понятий и имен);

...

Подобные документы

  • Предмет и основные понятия информационных систем. Базовые стандарты корпоративных информационных систем. Характеристика входящих и исходящих потоков информации. Основные понятия искусственного интеллекта. Обеспечение безопасности информационных систем.

    курс лекций [295,6 K], добавлен 11.11.2014

  • Роль структуры управления в информационной системе. Примеры информационных систем. Структура и классификация информационных систем. Информационные технологии. Этапы развития информационных технологий. Виды информационных технологий.

    курсовая работа [578,4 K], добавлен 17.06.2003

  • Классификация автоматизированных информационных систем. Классические примеры систем класса А, B и С. Основные задачи и функции информационных систем (подсистем). Информационные технологии для управления предприятием: понятие, компоненты и их назначение.

    контрольная работа [22,9 K], добавлен 30.11.2010

  • Этапы проектирования информационных систем. Корпоративные информационные системы, тенденции их развития. Требования к организации базы данных. Основные концепции реляционных баз данных. Выбор системы проектирования. Логическая структура приложения.

    дипломная работа [2,2 M], добавлен 20.12.2012

  • Формы представляемой информации. Основные типы используемой модели данных. Уровни информационных процессов. Поиск информации и поиск данных. Сетевое хранилище данных. Проблемы разработки и сопровождения хранилищ данных. Технологии обработки данных.

    лекция [15,5 K], добавлен 19.08.2013

  • Основные характеристики и принцип новой информационной технологии. Соотношение информационных технологий и информационных систем. Назначение и характеристика процесса накопления данных, состав моделей. Виды базовых информационных технологий, их структура.

    курс лекций [410,5 K], добавлен 28.05.2010

  • Автоматизированное рабочие место экономиста-пользователя, его назначение и характеристика. Организация информационных систем. Особенности документальных форм ввода и вывода информации при компьютерной обработке. Роль системы управления базы данных.

    шпаргалка [79,5 K], добавлен 29.11.2013

  • Информационные системы и технологии в экономике: основные понятия и определения. Составляющие информационных технологий, их классификация. Особенности систем ведения картотек, обработки текстовой информации, машинной графики, электронной почты и связи.

    реферат [14,7 K], добавлен 06.10.2011

  • Понятие и структура, общие требования к информационной системе, этапы разработки и предъявляемые требования. Особенности работы системы управления базами данных, технологии и принцип работы. Разработка, преобразование ER-диаграммы в реляционную модель.

    курсовая работа [383,8 K], добавлен 26.03.2015

  • Задачи информационных потоков в логистике. Виды и принципы построения, структура и элементы информационных логистических систем, основные требования к ним. Рекомендации по созданию, внедрению и режиму работы информационных систем в сфере логистики.

    реферат [25,9 K], добавлен 14.01.2011

  • Определение понятия "система". История развития и особенности современных информационных систем. Основные этапы развития автоматизированной информационной системы. Использование отечественных и международных стандартов в области информационных систем.

    презентация [843,9 K], добавлен 14.10.2013

  • Понятие, классификация, этапы развития и значение информационных систем. Информационно–логическая модель, алгоритм функционирования и потенциальный экономический эффект информационной системы по планированию себестоимости продукции растениеводства.

    курсовая работа [682,2 K], добавлен 08.12.2010

  • Эволюция технического обеспечения. Основные требования, применение и характеристики современных технических средств автоматизированных информационных систем. Комплексные технологии обработки и хранения информации. Создание базы данных учета и продажи.

    курсовая работа [127,1 K], добавлен 01.12.2010

  • Сущность понятия "информационная система", история и направления развития, признаки классификации; процессы. Принципы функционирования и жизненный цикл ИС. Основные виды обеспечения, структура банка и хранилищ данных, пользователи, области применения.

    курсовая работа [93,9 K], добавлен 12.01.2012

  • Классификация информационных систем и технологий в организационном управлении. Методы и организация создания ИС и ИТ. Состав, структура, внутримашинного информационного обеспечения. Информационные технологии и процедуры обработки экономической информации.

    контрольная работа [28,9 K], добавлен 25.07.2012

  • Свойства и классификация информации. Угрозы, безопасность информационных систем и модели системы безопасности. Основные задачи и программное обеспечение маркетингового анализа. Состав библиотеки типовых журналов и справочников. Основные понятия Grid.

    шпаргалка [690,0 K], добавлен 22.04.2010

  • Классификация информации по разным признакам. Этапы развития информационных систем. Информационные технологии и системы управления. Уровни процесса управления. Методы структурного проектирования. Методология функционального моделирования IDEF0.

    курсовая работа [5,2 M], добавлен 20.04.2011

  • Общее понятие и признаки классификации информационных систем. Типы архитектур построения информационных систем. Основные компоненты и свойства базы данных. Основные отличия файловых систем и систем баз данных. Архитектура клиент-сервер и ее пользователи.

    презентация [203,1 K], добавлен 22.01.2016

  • Характеристика информационных технологий (ИТ) управления бюджетом муниципального образования. Основные цели и задачи реализации федеральной целевой программы "Электронная Россия 2002-2010 гг.". Этапы развития информационных систем управления в России.

    контрольная работа [53,5 K], добавлен 19.05.2010

  • Определение базы данных и банков данных. Компоненты банка данных. Основные требования к технологии интегрированного хранения и обработки данных. Система управления и модели организации доступа к базам данных. Разработка приложений и администрирование.

    презентация [17,1 K], добавлен 19.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.