Анализ и прогнозирование развития устройств персонального компьютера (на примере винчестеров)

Эволюция устройств хранения цифровой информации. Типы, конструкция и назначение жестких дисков персонального компьютера. Основные характеристики винчестеров. Методы записи, стирания файов и увеличения плотности. Принцип позиционирования магнитных головок.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 01.03.2019
Размер файла 195,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

БИТИ НИЯУ МИФИ

РЕФЕРАТ

«Анализ и прогнозирование развития устройств персонального компьютера (на примере винчестеров)»

Киреева О.В.

Балаково, Россия

Введение

Данная работа посвящена анализу и прогнозированию развития устройств ПК (на примере винчестеров). В прошлом существовала проблема хранения информации, так как все данные содержались на перфокартах или магнитных лентах, которые были компактными, но объем, который они могли сохранить был слишком мал.

Поэтому вскоре изобрели жёсткие диски, называемые в народе «Винчестерами» (англ.HDD, Hard Drive Disk).

1. Описание и устройство жесткого диска

Жёсткий диск называют винчестером потому что у него есть обвисшая головка, магнитные диски, которые находятся в вакууме. На этих дисках есть головка, которая намагничивает его разделы. Название «Винчестер» пошло от зарядника винтовки.

Начальная версия жёсткого диска была очень огромной и это было первое устройство, которое позволяло записывать информацию при отключении электричества. Есть постоянно запоминающее устройство, оперативно запоминающее устройство и жесткий диск. Постоянно запоминающее устройство (ПЗУ) работает от батареи в компьютере, оно запоминает всю информацию которая нужна при загрузке ПК. Оперативно запоминающее устройство - это устройство, которое стирает всю свою информацию при выключении компьютера. А жёсткий диск запоминает информацию при отсутствии электричества. Это происходит из за магнитных дисков, которые посредством намагничивания винчестера позволяют запомнить информацию. У жёсткого диска есть разделы которые устанавливаются с операционной системой.

Таблица этих разделов бывает нескольких видов. Функция жесткого магнитного диска заключается в хранении информации. Винчестер состоит из блока металлических дисков, покрытых покрыты тончайшей пылью окислов железа. Для записи на диск используются магнитные головки, которые изготовлены из пружинистой стали. В современных винчестерах присутствует соленоидный привод, который служит для перемещения магнитных головок с одной дорожки на другую.

2. Характеристика жесткого диска

Рассмотрим основные характеристики «винчестера»:

Интерфейс - совокупность взаимодействия нескольких устройств, что в случае с жёсткими дисками является совокупностью линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии (контроллеры интерфейсов), и правил (протокола) обмена. В ходе развития интерфейса описывается его структура в виде объектов и их свойств, которые находятся в базе данных, записи которой используются при генерации кода.

Ёмкость -- наибольшая численность информации, которую может вместить жесткий диск.. Ёмкость современных устройств может достигать 6000Гб. Первый жёсткий диск был разработан фирмой IBM d 1973 году и имел ёмкость 16 Кбайт. Ёмкость сегодняшних HDD измеряется в терабайтах[1].

Физический размер -- почти все накопители 2001--2008 годов для персональных компьютеров и серверов имеют ширину либо 3,5, либо 2,5 дюйма -- под размер стандартных креплений для них соответственно в настольных компьютерах и ноутбуках. Также получили распространение форматы 1,8, 1,3, 1 и 0,85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5,25 дюймов.

Время произвольного доступа-- среднее время, за которое жесткий диск выполняет операцию позиционирования головки чтения/записи на произвольный участок магнитного диска. Диапазон этого параметра -- от 2,5 до 16 мс. Как правило, минимальным временем обладают диски для серверов (например, у Hitachi Ultrastar 15K147 -- это 3,7 мс), самым большим из актуальных -- диски для портативных устройств (12,5 мс). Для сравнения, у SSD-накопителей этот параметр меньше 1 мс[1].

Скорость вращения шпинделя -- количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки); 5400, 5700, 5900, 7200 и 10 000 (персональные компьютеры); 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции). Увеличению скорости вращения шпинделя в винчестерах для ноутбуков препятствует гироскопический эффект, влияние которого пренебрежимо мало в неподвижных компьютерах.

Надёжность -- определяется как среднее время наработки на отказ. Также подавляющее большинство современных дисков поддерживают технологию S.M.A.R.T.

Количество операций ввода-вывода в секунду -- у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе[1].

Потребление энергии -- важный фактор для мобильных устройств.

Сопротивляемость ударам-- сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных при последовательном доступе:

- внутренняя зона диска: от 44,2 до 74,5 Мб/с;

- внешняя зона диска: от 60,0 до 111,4 Мб/с.

Объём буфера -- буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных дисках он обычно варьируется от 8 до 128 Мб.

3. Принцип работы

В основу записи и воспроизведения информации на магнитные диски легли законы всеми известных физиков М. Фарадея (1791 -- 1867) и Д. К. Максвелла (1831 -- 1879). Запись и чтение данных с магнитного диска представлены далее (рисунок 1).

Рисунок 1 - Принцип работы магнитного диска

Принцип работы заключается в том, что запись информации производится на магнитно-чувствительный материал. Под воздействием внешнего магнитного поля собственные магнитные поля доменов располагаются в направлении магнитных силовых линий. После этого остаются зоны намагниченности, благодаря которым сохраняется информация[1].

Организация быстрой работы является важным фактором. Быстрый доступ к данным обеспечивается за счет вращения диска с достаточно хорошей скоростью и путем передвижения головки по диску. Жёсткий диск вращается со скоростью -- 3600-- 7200 об/мин.

4. Устройство жесткого диска

Жёсткий диск состоит из гермозоны, устройства позиционирования и блока электроники.

4.1 Гермозона

Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, в некоторых моделях разделённые сепараторами, а также блок головок с устройством позиционирования, и электропривод шпинделя.

Вопреки расхожему мнению, в подавляющем большинстве устройств внутри гермозоны нет вакуума. Одни производители делают её герметичной (отсюда и название) и заполняют очищенным и осушенным воздухом или нейтральными газами, в частности, азотом, а для выравнивания давления устанавливают тонкую металлическую или пластиковую мембрану. (В таком случае внутри корпуса жёсткого диска предусматривается маленький карман для пакетика силикагеля, который абсорбирует водяные пары, оставшиеся внутри корпуса после его герметизации). Другие производители выравнивают давление через небольшое отверстие с фильтром, способным задерживать очень мелкие (несколько микрометров) частицы. Однако в этом случае выравнивается и влажность, а также могут проникнуть вредные газы.

Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления (например, в самолёте) и температуры, а также при прогреве устройства во время работы[1]. Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр -- пылеуловитель.

Блок головок -- пакет кронштейнов (рычагов) из сплавов на основе алюминия, совмещающих в себе малый вес и высокую жёсткость (обычно по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.

Диски (пластины), как правило, изготовлены из металлического сплава. Хотя были попытки делать их из пластика и даже стекла (IBM), но такие пластины оказались хрупкими и недолговечными. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика -- окислов железа, марганца и других металлов.

Точный состав и технология нанесения составляют коммерческую тайну. Большинство бюджетных устройств содержит одну или две пластины, но существуют модели с большим числом пластин.

Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту (от 3600 до 15 000). При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины.

Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин.

Шпиндельный двигатель жёсткого диска трёхфазный синхронный, что обеспечивает стабильность вращения магнитных дисков, смонтированных на оси (шпинделе) двигателя. Статор двигателя содержит три обмотки, включённых «звездой» с отводом посередине, а ротор -- постоянный секционный неодимовый магнит.

Сепаратор (разделитель) -- пластина, изготовленная из пластика или алюминия, находящаяся между пластинами магнитных дисков и над верхней пластиной магнитного диска. Используется для выравнивания потоков воздуха внутри гермозоны.

4.2 Устройство позиционирования

Устройство позиционирования головок (жарг. актуатор) представляет собой малоинерционный соленоидный двигатель. Он состоит из неподвижной пары сильных неодимовых постоянных магнитов, а также катушки (соленоид) на подвижном кронштейне блока головок. Двигатель, совместно с системой считывания и обработки записанной на диск сервоинформации и контроллером (VCM controller) образует сервопривод[2].

Система позиционирования головок может быть и двухприводной. При этом основной электромагнитный привод перемещает блок с обычной точностью, а дополнительный пьезоэлектрический механизм совмещает головки с магнитной дорожкой с повышенной точностью.

Принцип работы двигателя заключается в следующем: обмотка находится внутри статора (обычно два неподвижных магнита), ток, подаваемый с различной силой и полярностью, заставляет её точно позиционировать кронштейн (коромысло) с головками по радиальной траектории. От скорости работы устройства позиционирования зависит время поиска данных на поверхности пластин.

В каждом накопителе существует специальная зона, называемая парковочной, именно на ней останавливаются головки в те моменты, когда накопитель выключен, либо находится в одном из режимов низкого энергопотребления. В состоянии парковки кронштейн (коромысло) блока головок находится в крайнем положении и упирается в ограничитель хода. При операциях доступа к информации (чтение/запись) одним из источников шума является вибрация вследствие ударов кронштейнов, удерживающих магнитные головки, об ограничители хода в процессе возвращения головок в нулевую позицию.

Для снижения шума на ограничителях хода установлены демпфирующие шайбы из мягкой резины. Значительно уменьшить шум жёсткого диска можно программным путём, меняя параметры режимов ускорения и торможения блока головок. Для этого разработана специальная технология -- Automatic Acoustic Management. Официально возможность программного управления уровнем шума жёсткого диска появилась в стандарте ATA/ATAPI-6 (для этого нужно менять значение управляющей переменной), хотя некоторые производители делали экспериментальные реализации и ранее.

4.3 Блок электроники

В ранних жёстких дисках управляющая логика была вынесена на MFM- или RLL-контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управления шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала[2].

Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.

Блок управления представляет собой систему управления, принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа «звуковая катушка», коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя), приёма и обработки сигналов с датчиков устройства (система датчиков может включать в себя одноосный акселерометр, используемый в качестве датчика удара, трёхосный акселерометр, используемый в качестве датчика свободного падения, датчик давления, датчик угловых ускорений, датчик температуры).

Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера. Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например, метод

PRML (Partial Response Maximum Likelihood -- максимальное правдоподобие при неполном отклике). Осуществляется сравнение принятого сигнала с образцами. При этом выбирается образец, наиболее похожий по форме и временным характеристикам с декодируемым сигналом.

5. Технология записи данных на жесткий диск

Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке за счёт электромагнитной индукции.

5.1 Метод продольной записи

Биты информации записываются с помощью маленькой головки, которая, проходя над поверхностью вращающегося диска, намагничивает миллиарды горизонтальных дискретных областей -- доменов. При этом вектор намагниченности домена расположен продольно, то есть параллельно поверхности диска. Каждая из этих областей является логическим нулём или единицей, в зависимости от направления намагниченности.

Максимально достижимая при использовании данного метода плотность записи составляет около 23 Гбит/смІ. К 2010 году этот метод был практически вытеснен методом перпендикулярной записи.

5.2 Метод перпендикулярной записи

Метод перпендикулярной записи -- технология, при которой биты информации сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Предыдущий метод записи, параллельно поверхности магнитной пластины, привёл к тому что в определённый момент инженеры упёрлись в «потолок» -- дальше увеличивать плотность информации на дисках было невозможно. И тогда вспомнили о другом способе записи, который был известен ещё с 70-х годов прошлого века[2].

Плотность записи при этом методе резко подскочила -- на свыше 30 % ещё на первых образцах (на 2009 год -- 400 Гбит/дюймІ / 62 Гбит/смІ). А теоретический предел отодвинулся на порядки и составляет 1 Тбит на квадратный дюйм.

Жёсткие диски с перпендикулярной записью стали доступны на рынке с 2006 года. Благодаря перпендикулярной записи винчестеры продолжают бить рекорды ёмкости, вмещая уже по 8 и даже 10 Терабайт.

6. Перспективы развития записи данных на жесткий диск

6.1 Метод черепичной магнитной записи

Метод черепичной магнитной записи был реализован в начале 2010-х. В нём используется тот факт, что ширина области чтения меньше, чем ширина записывающей головки. Запись дорожек в этом методе производится с частичным наложением в рамках групп дорожек (пакетов). Каждая следующая дорожка пакета частично закрывает предыдущую, оставляя от нее узкую часть, достаточную для считывающей головки. Черепичная запись увеличивает плотность записанной информации, однако осложняет перезапись -- при каждом изменении требуется полностью перезаписать весь пакет перекрывающихся дорожек.

6.2 Метод тепловой магнитной записи

Метод тепловой магнитной записи остаётся перспективным, продолжаются его доработки и внедрение. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». На 2009 год были доступны только экспериментальные образцы, плотность записи которых составляла 150 Гбит/смІ. Специалисты Hitachi называют предел для этой технологии в 2,3?3,1 Тбит/смІ, а представители Seagate Technology -- 7,75 Тбит/смІ.

6.3 Структурированные носители данных

Структурированный (паттернированный) носитель данных-- перспективная технология хранения данных на магнитном носителе, использующая для записи данных массив одинаковых магнитных ячеек, каждая из которых соответствует одному биту информации, в отличие от современных технологий магнитной записи, в которых бит информации записывается на нескольких магнитных доменах.

6.4 Низкоуровневое форматирование

На заключительном этапе сборки устройства поверхности пластин форматируются -- на них формируются дорожки и секторы. Конкретный способ определяется производителем и/или стандартом, но, как минимум, на каждую дорожку наносится магнитная метка, обозначающая её начало[2].

Существуют утилиты, способные тестировать физические секторы диска и ограниченно просматривать и править его служебные данные. Конкретные возможности подобных утилит сильно зависят от модели диска и технических сведений, известных автору программного обеспечения соответствующего семейства моделей.

6.5 Геометрия магнитного диска

С целью адресации пространства поверхности пластин диска делятся на дорожки -- концентрические кольцевые области. Каждая дорожка делится на равные отрезки -- секторы. Адресация CHS предполагает, что все дорожки в заданной зоне диска имеют одинаковое число секторов.

Цилиндр -- совокупность дорожек, равноотстоящих от центра, на всех рабочих поверхностях пластин жёсткого диска. Номер головки задаёт используемую рабочую поверхность, а номер сектора -- конкретный сектор на дорожке.

Чтобы использовать адресацию CHS, необходимо знать геометрию используемого диска: общее количество цилиндров, головок и секторов в нём.

Первоначально эту информацию требовалось задавать вручную; в стандарте ATA1 была введена функция автоопределения геометрии (команда Identify Drive).

6.6 Влияние геометрии на скорость дисковых операций

Геометрия жёсткого диска влияет на скорость чтения записи. Ближе ко внешнему краю пластины диска возрастает длина дорожек (вмещается больше секторов) и, соответственно, количество данных, которые устройство может считать или записать за один оборот. При этом скорость чтения может изменяться от 210 до 30 Мб/с. Зная эту особенность, целесообразно размещать корневые разделы операционных систем именно здесь. Нумерация секторов начинается от внешнего края диска с нуля.

7. Адресация данных

Существует 2 основных способа адресации секторов на диске: цилиндр-головка-сектор (англ. cylinder-head-sector, CHS) и линейная адресация блоков (англ. linear block addressing, LBA).

CHS. При этом способе сектор адресуется по его физическому положению на диске 3 координатами -- номером цилиндра, номером головки и номером сектора. В дисках объёмом больше 528 482 304 байт (504 Мб) со встроенными контроллерами эти координаты уже не соответствуют физическому положению сектора на диске и являются «логическими координатами»[2].

LBA. При этом способе адрес блоков данных на носителе задаётся с помощью логического линейного адреса. LBA-адресация начала внедряться и использоваться в 1994 году совместно со стандартом EIDE (Extended IDE). Необходимость LBA была вызвана, в частности, появлением дисков больших объёмов, которые нельзя было полностью использовать с помощью старых схем адресации. информация винчестер компьютер запись

Метод LBA соответствует Sector Mapping для SCSI. BIOS SCSI-контроллера выполняет эти задачи автоматически, то есть для SCSI-интерфейса метод логической адресации был характерен изначально.

Заключение

В заключении данной работы хотелось бы отметить, что такие технические средства как жесткие диски постоянно модернизируются, поскольку технический прогресс не стоит на месте и требует новых исследований не только в области информационных технологий, но и в совершенствовании их аппаратного обеспечения.

Список литературы

1. Мюллер С. Модернизация и ремонт ПК = Upgrading and Repairing PCs / Скотт Мюллер. -- 17-е изд. -- М.: Вильямс, 2007. -- С. 653--700.

2. Евгений aka Saturn История магнитного складирования // UPgrade : журнал. -- 2011. -- № 4 (508). -- С. 20--25.

Размещено на Allbest.ru

...

Подобные документы

  • Структура персонального компьютера. Общие сведения о периферийных устройствах компьютера. Работа с дисковыми накопителями для хранения информации на гибких и жестких магнитных дисках. Устройства для чтения компакт-дисков. Варианты конструкции мыши.

    реферат [496,4 K], добавлен 10.01.2016

  • Конструкция, общее устройство и принцип действия накопителей на жестких магнитных дисках. Основные характеристики винчестеров: емкость, среднее время поиска, скорость передачи данных. Наиболее распространенные интерфейсы жестких дисков (SATA, SCSI, IDE).

    презентация [324,3 K], добавлен 20.12.2015

  • Архитектура современного персонального компьютера. Виды и характеристики центральных и внешних устройств ЭВМ. Структурная и функциональная схемы персонального компьютера. Устройства для ввода информации в системный блок и для отображения информации.

    курсовая работа [592,5 K], добавлен 18.01.2012

  • Конструкция системного блока, монитора, клавиатуры и мыши персонального компьютера, как элементов его минимальной комплектации, а также их назначение, особенности работы и современные тенденции развития. Отрывки статей о новинках архитектуры компьютера.

    реферат [43,4 K], добавлен 25.11.2009

  • Компоновка частей компьютера и связь между ними. Понятие архитектуры персонального компьютера, принципы фон Неймана. Назначение, функции базовых программных средств, исполняемая программа. Виды, назначение, функции, специфика периферийных устройств.

    контрольная работа [433,2 K], добавлен 23.09.2009

  • Состав и обоснование выбора компонентов персонального компьютера (процессора, материнской платы, комплектующих и периферийных устройств), требования к ним и характеристики. Структурная схема компьютера, его программное обеспечение и расчёт стоимости.

    контрольная работа [1,3 M], добавлен 12.02.2015

  • Технические характеристики 18 моделей винчестеров с плотностью записи 20 GB на пластину и выше. Тестирование жестких дисков EIDE. Текущая линейка жестких дисков для настольных систем различных производителей (Fujitsu, IBM, Seagate, Maxtor, WD, Samsung).

    реферат [1,0 M], добавлен 03.05.2010

  • Архитектура персонального компьютера, функциональные и технические характеристики его устройств. Компоненты материнской платы, строение процессора, виды памяти. Принципы работы процессора и обращение к данным. Пути развития персонального компьютера.

    курсовая работа [102,4 K], добавлен 11.02.2011

  • Принцип действия процессора, оперативной памяти персонального компьютера. Ввод данных с помощью клавиатуры, мыши, графического планшета, сканера, цифровой камеры и микрофона. Использование устройств для вывода информации: монитора, принтера и колонок.

    презентация [2,0 M], добавлен 05.02.2014

  • Описание особенностей работы устройств для стирания записей с носителей на жестких магнитных дисках, а также с неоднородных полупроводниковых носителей. Изучение способов стирания информации с флеш–памяти. Выбор системы виброакустического зашумления.

    контрольная работа [2,9 M], добавлен 23.01.2015

  • Сущность глобальной компьютеризации и ее распространенность на современном этапе. Основные характеристики персонального компьютера и требования к нему, главные критерии выбора и оценка ассортимента. Порядок выбора конфигурации персонального компьютера.

    реферат [398,1 K], добавлен 31.10.2010

  • Теоретический анализ научно-технической и методической литературы по системам охлаждения устройств персонального компьютера. Проектирование и изготовление системы охлаждения устройств персонального компьютера. Планы и сценарии уроков по технологии.

    курсовая работа [35,4 K], добавлен 05.12.2008

  • Организация и основные характеристики основной памяти персонального компьютера. Запоминающие устройства ЭВМ как совокупность устройств, обеспечивающих хранение и передачу данных. Хранение и обработка информации. Основные виды памяти компьютера.

    контрольная работа [52,0 K], добавлен 06.09.2009

  • Сферы применения персонального компьютера (ПК). Основные блоки ПК, способы компьютерной обработки информации. Устройства ввода и вывода, хранения информации: системный блок, клавиатура, монитор, мышь, сканер, дигитайзер, принтер, дисковый накопитель.

    презентация [278,6 K], добавлен 25.02.2011

  • Конфигурация современного персонального компьютера. Назначение и типы монитора, модема, системного блока, принтера, клавиатуры. Материнская плата, процессор, оперативная память. Сборка компьютера, установка компонентов. Безопасность на рабочем месте.

    курсовая работа [557,9 K], добавлен 19.11.2009

  • Современные микропроцессоры, обработка цифровой информации. Устройства для хранения данных, обмена информацией персонального компьютера, блоки питания, мониторы. Составление визитки, схемы, табулирование функции и построение графика в Microsoft Office.

    курсовая работа [1,6 M], добавлен 12.09.2013

  • Описание устройств ввода графической, звуковой информации, их назначение, классификация, конструкция, характеристики. Графические планшеты, сканнеры. Анализ способов представления и кодирования информации. Программные средства для архивации данных.

    контрольная работа [31,2 K], добавлен 22.11.2013

  • Составные части персонального компьютера. Основные компоненты системного блока и периферийные устройства. Устройство и назначение звуковой платы. Принцип работы оперативной памяти. Устройство и назначение жесткого диска. CD и DVD дисководы и USB-порты.

    презентация [1,7 M], добавлен 09.04.2011

  • Принцип действия, назначение периферийных устройств персонального компьютера. Основные функции форматирования текста в редакторе Microsoft Word. Создание, ведение и обработка данных в Microsoft Access. Понятие о мастерах и шаблонах MS PowerPoint.

    контрольная работа [1,3 M], добавлен 14.01.2013

  • Жесткий диск как основное устройство для хранения информации. Основные характеристики и общий вид внешнего и внутреннего диска. Интерфейс, емкость, физический размер, скорость вращения шпинделя и передачи данных. Установка и обслуживание жестких дисков.

    контрольная работа [885,7 K], добавлен 21.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.