Искусственный интеллект в задачах управления и обработки информации
Решение прямой и обратной задач с помощью многослойной нейронной сети прямой передачи сигнала. Операторы отбора особей в новую популяцию. Нахождение глобального минимума функции одной переменной и двух аргументов с помощью генетических алгоритмов.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Основы искусственного интеллекта |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Евлюшин Н.С. |
Дата добавления | 21.02.2019 |
Размер файла | 921,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Преимущества нейронных сетей. Модели нейронов, представляющих собой единицу обработки информации в нейронной сети. Ее представление с помощью направленных графов. Понятие обратной связи (feedback). Основная задача и значение искусственного интеллекта.
реферат [1,2 M], добавлен 24.05.2015Разработка программ с помощью Turbo Pascal для решения задач, входящих в камеральные работы маркшейдера: решение обратной геодезической задачи и системы линейных уравнений методом Гаусса, определение координат прямой угловой засечки и теодолитного хода.
курсовая работа [1,5 M], добавлен 05.03.2013Использование вычислительных возможностей программ общего назначения при решении базовых геодезических задач. Решение прямой угловой засечки по формулам Юнга и обратной геодезической задачи. Решение с помощью системы для математических расчетов MATLAB.
курсовая работа [11,4 M], добавлен 31.03.2015Методика решения некоторых геодезических задач с помощью программ MS Excel, MathCad, MatLab и Visual Basic. Расчет неприступного расстояния. Решение прямой угловой засечки по формулам Юнга и Гаусса. Решение обратной засечки по формулам Пранис-Праневича.
курсовая работа [782,2 K], добавлен 03.11.2014Нахождение высоты конуса наименьшего объема, описанного около данного шара радиуса. Определение исследуемой функции, зависящей от одной переменной. Составление математической модели задачи. Построение графика заданной функции с помощью MS Excel.
задача [3,2 M], добавлен 15.02.2010История появления термина "искусственный интеллект". Приоритетные направления его применения: генерация речи, обработка визуальной информации. Нейронные, байесовы, иммунные сети, теории хаоса - примеры реализации современных интеллектуальных систем.
реферат [27,2 K], добавлен 14.01.2011Создание программы для поиска минимума функции двух вещественных переменных в заданной области с помощью генетического алгоритма. Генетические алгоритмы и операторы. Создание начальной популяции. Размножение. Мутация и селекция. Тестирование программы.
курсовая работа [131,6 K], добавлен 22.02.2015Основные генетические операторы. Схема функционирования генетического алгоритма. Задачи, решаемые с помощью генетических алгоритмов. Математическая постановка задачи оптимизации. Решение Диофантова уравнения. Программная реализация. Создание пособия.
курсовая работа [391,4 K], добавлен 20.02.2008Математическая модель задачи: расчет объема производства, при котором средние постоянные издержки минимальны. Построение графика функции с помощью графического редактора MS Excel. Аналитическое исследование функции, зависящей от одной переменной.
курсовая работа [599,7 K], добавлен 13.02.2010Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.
дипломная работа [2,7 M], добавлен 18.02.2017Преобразование формулы и решение ее с помощью Метода Эйлера. Моделирование метода оптимизации с функцией Розенброка. Поиск модели зашумленного сигнала. Нахождение минимума заданной целевой функции методом покоординатного спуска нулевого порядка.
курсовая работа [1,2 M], добавлен 21.12.2013Актуализация процесса мышления у машин в связи с развитием искусственного интеллекта и развитием робототехники. Определение возможности вычисления управляемой правилами функции с входами и выходами с помощью компьютера. Сущность сознательного процесса.
эссе [16,9 K], добавлен 23.06.2019Выявление закономерностей и свойств, применимых в искусственной нейронной сети. Построение графиков и диаграмм, определяющих степень удаленности между объектами. Моделирование, тестирование и отладка программной модели, использующей клеточный автомат.
дипломная работа [4,1 M], добавлен 25.02.2015Общие требования к изображению отрезка с помощью цифрового дифференциального анализатора. Сравнительный анализ обычного и несимметричного алгоритмов и алгоритма Брезенхема для генерации векторов (соединения двух точек изображения отрезком прямой).
презентация [65,3 K], добавлен 14.08.2013Нейронные сети и оценка возможности их применения к распознаванию подвижных объектов. Обучение нейронной сети распознаванию вращающегося трехмерного объекта. Задача управления огнем самолета по самолету. Оценка экономической эффективности программы.
дипломная работа [2,4 M], добавлен 07.02.2013Получение изображения объекта с помощью оптико-электронных систем, построенных на основе ПЗС-приемника. Методы обработки первичной измерительной информации. Реализация алгоритма обработки графической информации с помощью языка программирования Python.
лабораторная работа [1,1 M], добавлен 30.05.2023Решение нелинейного уравнения вида f(x)=0 с помощью программы Excel. Построение графика данной функции и ее табулирование. Расчет матрицы по исходным данным. Проведение кусочно-линейной интерполяции таблично заданной функции с помощью программы Mathcad.
контрольная работа [1,8 M], добавлен 29.07.2013Комплексное исследование истории развития, основных понятий, области применения и особенностей генетических алгоритмов. Анализ преимуществ генетических алгоритмов. Построение генетического алгоритма, позволяющего находить максимум целочисленной функции.
курсовая работа [27,9 K], добавлен 23.07.2011Разработка алгоритма и программы для распознавания пола по фотографии с использованием искусственной нейронной сети. Создание алгоритмов: математического, работы с приложением, установки весов, реализации функции активации и обучения нейронной сети.
курсовая работа [1,0 M], добавлен 05.01.2013Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа [1,1 M], добавлен 05.10.2010