Алгоритм Флойда
Разработка программы нахождения кратчайшего расстояния между вершинами взвешенного ориентированного графа по алгоритму Флойда-Уоршелла. Особенности применения алгоритма для учета изменения топологии и нагрузки сети при решении задачи выбора маршрута.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Логика и основы алгоритмизации в инженерных задачах |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Белов В.А. |
Дата добавления | 22.02.2019 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Блок-схема алгоритма Флойда. Разработка его псевдокода в программе Microsoft Visual Studio. Программа реализации алгоритмов Беллмана-Форда. Анализ трудоемкости роста функции. Протокол тестирования правильности работы программы по алгоритму Флойда.
курсовая работа [653,5 K], добавлен 18.02.2013Изучение основных понятий и определений теории графов. Рассмотрение методов нахождения кратчайших путей между фиксированными вершинами. Представление математического и программного обоснования алгоритма Флойда. Приведение примеров применения программы.
контрольная работа [1,4 M], добавлен 04.07.2011Алгоритмы нахождения кратчайшего пути: анализ при помощи математических объектов - графов. Оптимальный маршрут между двумя вершинами (алгоритм Декстры), всеми парами вершин (алгоритм Флойда), k-оптимальных маршрутов между двумя вершинами (алгоритм Йена).
курсовая работа [569,6 K], добавлен 16.01.2012Особливість знаходження найкоротшого шляху між кожною парою вершин у графі. Формалізація алгоритму Флойда-Уоршелла. Багатократне застосування алгоритму Дейкстри з послідовним вибором кожної вершини графу. Аналіз допущення наявності дуг з від’ємною вагою.
отчет по практике [151,8 K], добавлен 04.12.2021Теоретическое обоснование теории графов. Методы нахождения медиан графа. Задача оптимального размещения насосной станции для полива полей. Алгоритм Флойда, поиск суммарного расстояния до вершин. Функция нахождения индекса минимального значения в массиве.
курсовая работа [336,8 K], добавлен 28.05.2016Постановка задач линейного программирования. Примеры экономических задач, сводящихся к задачам линейного программирования. Допустимые и оптимальные решения. Алгоритм Флойда — алгоритм для нахождения кратчайших путей между любыми двумя узлами сети.
контрольная работа [691,8 K], добавлен 08.09.2010Разработка алгоритма реализации на ЭВМ процесса поиска кратчайшего пути в графе методом Дейкстры. Программная реализация алгоритма поиска кратчайшего пути между двумя любыми вершинами графа. Проверка работоспособности программы на тестовых примерах.
реферат [929,8 K], добавлен 23.09.2013Методология и технология разработки программного продукта. Решение задачи поиска кратчайших путей между всеми парами пунктов назначения, используя алгоритм Флойда. Разработка интерфейса программы, с использованием среды Delphi Borland Developer Studio.
курсовая работа [2,0 M], добавлен 26.07.2014Корректность определения кратчайших путей в графе и рёбра отрицательной длины. Анализ алгоритмов Дейкстры, Беллмана-Форда, Флойда-Уоршелла. Вычисление кратчайших расстояний между всеми парами вершин графа. Топологическая сортировка ориентированного графа.
презентация [449,3 K], добавлен 19.10.2014Анализ алгоритмов нахождения кратчайших маршрутов в графе без отрицательных циклов: Дейкстры, Беллмана-Форда и Флойда-Уоршалла. Разработка интерфейса программы на языке C++. Доказательство "правильности" работы алгоритма с помощью математической индукции.
курсовая работа [1,5 M], добавлен 26.07.2013Алгоритмы, использующие решение дополнительных подзадач. Основные определения теории графов. Поиск пути между парой вершин невзвешенного графа. Пути минимальной длины во взвешенном графе. Понятие кратчайшего пути для графов с помощью алгоритма Флойда.
реферат [39,6 K], добавлен 06.03.2010История и термины теории графов. Описание алгоритма Дейкстры. Математическое решение проблемы определения кратчайшего расстояния от одной из вершин графа до всех остальных. Разработка программы на объектно-ориентированном языке программирования Delphi 7.
контрольная работа [646,9 K], добавлен 19.01.2016Математические графы, области их применения. Способы раскраски вершин и ребер графов, задачи на их применение. Разработка алгоритма, работающего на основе операций с матрицей смежности. Описание логической структуры программы. Пример зарисовки графа.
курсовая работа [145,5 K], добавлен 27.01.2013Основные понятия и определения теории графов: теоремы и способы задания графа, сильная связность графов. Построение блок-схем алгоритма, тестирование разработанного программного обеспечения, подбор тестовых данных, анализ и исправление ошибок программы.
курсовая работа [525,6 K], добавлен 14.07.2012Области применения теории графов. Алгоритм решения задачи поиска инвариантного и полного графа. Реализация программы с графическим интерфейсом пользователя на основе алгоритма. Реализация редактора графа и вывод полученных результатов в понятной форме.
курсовая работа [493,3 K], добавлен 27.12.2008Программа формирования матрицы смежности по заданному списку окрестностей вершин ориентированного графа. Формирование динамического списка дуг ориентированного графа по заданному списку окрестностей. Анализ временной и емкостной сложности алгоритма.
курсовая работа [8,1 M], добавлен 07.09.2012Этапы нахождения хроматического числа произвольного графа. Анализ примеров раскраски графа. Характеристика трудоемкости алгоритма раскраски вершин графа Мейниеля. Особенности графов, удовлетворяющих структуру графов Мейниеля, основные классы графов.
курсовая работа [1,1 M], добавлен 26.06.2012Математическая постановка задачи. Обоснование выбора средств разработки. Входные и выходные данные работы программы. Решение задачи теста для написания и отладки программы. Описание программных модулей. Разработка алгоритма, анализ полученных результатов.
курсовая работа [2,2 M], добавлен 13.12.2015Общее понятие графа, его виды и сущность вершинного покрытия. Написание точного алгоритма решения задачи о надежности сети, нахождение минимального покрытия. Реализация данного алгоритма на языке TurboC++. Код программы, решающий поставленную задачу.
курсовая работа [1,3 M], добавлен 27.06.2014Задачи, решаемые методом динамического программирования. Основные этапы нахождения деревянного алгоритма решения задачи. Выполнение алгоритма Прима. Построение Эйлерового цикла. Решение задач средствами Excel. Алгоритм основной программы - Derevo.
курсовая работа [586,3 K], добавлен 04.04.2015