Устройство и назначение жестких дисков

Жесткий магнитный диск как основное устройство для хранения информации, емкость, физический размер, скорость вращения шпинделя и передачи данных. Геометрия магнитного диска, ее влияние на скорость дисковых операций. Низкоуровневое форматирование.

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 30.03.2019
Размер файла 26,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Балаковский инженерно-технологический институт филиал "Национального исследовательского ядерного университета "МИФИ"

УСТРОЙСТВО И НАЗНАЧЕНИЕ ЖЕСТКИХ ДИСКОВ

Петченко В.П.

Балаково, Россия

Содержание

  • Введение
    • 1. Описание и устройство жесткого диска
    • 2. Характеристика жесткого диска
    • 3. Принцип работы
    • 4. Устройство жесткого диска
    • 4.1 Гермозона
    • 4.2 Устройство позиционирования
    • 4.3 Блок электроники
    • 5. Технология записи данных на жесткий диск
    • 5.1 Метод продольной записи
    • 5.2 Метод перпендикулярной записи
    • 6. Перспективы развития записи данных на жесткий диск
    • 6.1 Метод черепичной магнитной записи.
    • 6.2 Метод тепловой магнитной записи
    • 6.3 Структурированные носители данных
    • 6.4 Низкоуровневое форматирование
    • 7. Геометрия магнитного диска
    • 7.1 Влияние геометрии на скорость дисковых операций
    • 8. Адресация данных
    • 8.1 CHS
    • 8.2 LBA
    • Заключение
    • Список литературы

Введение

Данная работа посвящена изучению, описанию и способам модернизации аппаратной составляющей персонального компьютера, конкретнее, изучению и описанию способов модернизации жесткого диска. В настоящее время информация накапливается с очень высокой скоростью и XXI век позволяет нам сохранять её в цифровом виде. Для этого, в компьютерах используют так называемые жесткие диски или "винчестеры". Хотя они и довольно компактные, они имеют предел для записи информации. В данной работе полностью разобрана структура устройства жесткого диска. История его создания и развития, так же разобраны перспективы создания более быстрых и более крупных, в отношении объема памяти, аппаратных устройств. И на последок рассмотрены исследования, в области увеличения скорости записи и объема памяти жестких дисков, крупнейшими компаниями в сфере информационных технологий, и перспективы реализации новейших разработок.

1. Описание и устройство жесткого диска

Накопитель на жёстких магнитных дисках (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск, в компьютерном сленге "винчестер" - запоминающее устройство произвольного доступа, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от "гибкого" диска, информация в жестком диске записывается на жёсткие пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома - магнитные диски. В жестких дисках используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.

2. Характеристика жесткого диска

Интерфейс - техническое средство взаимодействия 2-х разнородных устройств, что в случае с жёсткими дисками является совокупностью линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии (контроллеры интерфейсов), и правил (протокола) обмена. Современные серийно выпускаемые внутренние жёсткие диски могут использовать интерфейсы ATA (он же IDE и PATA), SATA, eSATA, SCSI, SAS, FireWire, SDIO и Fibre Channel.

Ёмкость - количество данных, которые могут храниться накопителем. С момента создания первых жёстких дисков в результате непрерывного совершенствования технологии записи данных их максимально возможная ёмкость непрерывно увеличивается. Ёмкость современных жёстких дисков (с форм-фактором 3,5 дюйма) на начало 2015 года достигает 6000 Гб (6 терабайт). В отличие от принятой в информатике системы приставок, обозначающих кратную 1024 величину (см.: двоичные приставки), производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как "200 ГБ", составляет 186,2 ГиБ.

Физический размер - почти все накопители 2001--2008 годов для персональных компьютеров и серверов имеют ширину либо 3,5, либо 2,5 дюйма - под размер стандартных креплений для них соответственно в настольных компьютерах и ноутбуках. Также получили распространение форматы 1,8, 1,3, 1 и 0,85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5,25 дюймов.

Время произвольного доступа - среднее время, за которое жесткий диск выполняет операцию позиционирования головки чтения/записи на произвольный участок магнитного диска. Диапазон этого параметра - от 2,5 до 16 мс. Как правило, минимальным временем обладают диски для серверов (например, у Hitachi Ultrastar 15K147 - это 3,7 мс), самым большим из актуальных - диски для портативных устройств (12,5 мс). Для сравнения, у SSD-накопителей этот параметр меньше 1 мс.

Скорость вращения шпинделя - количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки); 5400, 5700, 5900, 7200 и 10 000 (персональные компьютеры); 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции). Увеличению скорости вращения шпинделя в винчестерах для ноутбуков препятствует гироскопический эффект, влияние которого пренебрежимо мало в неподвижных компьютерах.

Надёжность - определяется как среднее время наработки на отказ. Также подавляющее большинство современных дисков поддерживают технологию S.M.A.R.T.

Количество операций ввода-вывода в секунду - у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.

Потребление энергии - важный фактор для мобильных устройств.

Сопротивляемость ударам - сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных при последовательном доступе:

• внутренняя зона диска: от 44,2 до 74,5 Мб/с

• внешняя зона диска: от 60,0 до 111,4 Мб/с

Объём буфера - буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных дисках он обычно варьируется от 8 до 128 Мб.

3. Принцип работы

Принцип работы жёстких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки. При подаче переменного электрического тока (то есть при записи) на катушку головки возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке за счёт электромагнитной индукции.

С середины 1990-х на рынке устройств хранения информации начали применяться головки на основе эффекта гигантского магнитного сопротивления (ГМС).

С начала 2000-х в головки на основе эффекта ГМС стали заменяться на головки на основе туннельного магниторезистивного эффекта (в них изменение магнитного поля приводит к изменению сопротивления в зависимости от изменения напряжённости магнитного поля; подобные головки позволяют увеличить вероятность достоверности считывания информации, особенно при больших плотностях записи информации). В 2007 году устройства на основе туннельного магниторезистивного эффекта с оксидом магния (эффект открыт в 2005) полностью заменили устройства на основе эффекта ГМС.

4. Устройство жесткого диска

Жёсткий диск состоит из гермозоны, устройства позиционирования и блока электроники.

4.1 Гермозона

магнитный диск шпиндель форматирование

Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, в некоторых моделях разделённые сепараторами, а также блок головок с устройством позиционирования, и электропривод шпинделя.

Вопреки расхожему мнению, в подавляющем большинстве устройств внутри гермозоны нет вакуума. Одни производители делают её герметичной (отсюда и название) и заполняют очищенным и осушенным воздухом или нейтральными газами, в частности, азотом, а для выравнивания давления устанавливают тонкую металлическую или пластиковую мембрану. (В таком случае внутри корпуса жёсткого диска предусматривается маленький карман для пакетика силикагеля, который абсорбирует водяные пары, оставшиеся внутри корпуса после его герметизации). Другие производители выравнивают давление через небольшое отверстие с фильтром, способным задерживать очень мелкие (несколько микрометров) частицы. Однако в этом случае выравнивается и влажность, а также могут проникнуть вредные газы. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления (например, в самолёте) и температуры, а также при прогреве устройства во время работы.

Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр - пылеуловитель.

Блок головок - пакет кронштейнов (рычагов) из сплавов на основе алюминия, совмещающих в себе малый вес и высокую жёсткость (обычно по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.

Диски (пластины), как правило, изготовлены из металлического сплава. Хотя были попытки делать их из пластика и даже стекла (IBM), но такие пластины оказались хрупкими и недолговечными. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика - окислов железа, марганца и других металлов. Точный состав и технология нанесения составляют коммерческую тайну. Большинство бюджетных устройств содержит одну или две пластины, но существуют модели с большим числом пластин.

Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту (от 3600 до 15 000). При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для "взлёта" головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин. Шпиндельный двигатель жёсткого диска трёхфазный синхронный, что обеспечивает стабильность вращения магнитных дисков, смонтированных на оси (шпинделе) двигателя. Статор двигателя содержит три обмотки, включённых "звездой" с отводом посередине, а ротор - постоянный секционный неодимовый магнит.

Сепаратор (разделитель) - пластина, изготовленная из пластика или алюминия, находящаяся между пластинами магнитных дисков и над верхней пластиной магнитного диска. Используется для выравнивания потоков воздуха внутри гермозоны.

4.2 Устройство позиционирования

Устройство позиционирования головок (жарг. актуатор) представляет собой малоинерционный соленоидный двигатель. Он состоит из неподвижной пары сильных неодимовых постоянных магнитов, а также катушки (соленоид) на подвижном кронштейне блока головок. Двигатель, совместно с системой считывания и обработки записанной на диск сервоинформации и контроллером (VCM controller) образует сервопривод.

Система позиционирования головок может быть и двухприводной. При этом основной электромагнитный привод перемещает блок с обычной точностью, а дополнительный пьезоэлектрический механизм совмещает головки с магнитной дорожкой с повышенной точностью.

Принцип работы двигателя заключается в следующем: обмотка находится внутри статора (обычно два неподвижных магнита), ток, подаваемый с различной силой и полярностью, заставляет её точно позиционировать кронштейн (коромысло) с головками по радиальной траектории. От скорости работы устройства позиционирования зависит время поиска данных на поверхности пластин.

В каждом накопителе существует специальная зона, называемая парковочной, именно на ней останавливаются головки в те моменты, когда накопитель выключен, либо находится в одном из режимов низкого энергопотребления. В состоянии парковки кронштейн (коромысло) блока головок находится в крайнем положении и упирается в ограничитель хода. При операциях доступа к информации (чтение/запись) одним из источников шума является вибрация вследствие ударов кронштейнов, удерживающих магнитные головки, об ограничители хода в процессе возвращения головок в нулевую позицию. Для снижения шума на ограничителях хода установлены демпфирующие шайбы из мягкой резины. Значительно уменьшить шум жёсткого диска можно программным путём, меняя параметры режимов ускорения и торможения блока головок.

Для этого разработана специальная технология - Automatic Acoustic Management. Официально возможность программного управления уровнем шума жёсткого диска появилась в стандарте ATA/ATAPI-6 (для этого нужно менять значение управляющей переменной), хотя некоторые производители делали экспериментальные реализации и ранее.

4.3 Блок электроники

В ранних жёстких дисках управляющая логика была вынесена на MFM- или RLL-контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управления шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала.

Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.

Блок управления представляет собой систему управления, принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа "звуковая катушка", коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя), приёма и обработки сигналов с датчиков устройства (система датчиков может включать в себя одноосный акселерометр, используемый в качестве датчика удара, трёхосный акселерометр, используемый в качестве датчика свободного падения, датчик давления, датчик угловых ускорений, датчик температуры).

Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например, метод PRML (Partial Response Maximum Likelihood - максимальное правдоподобие при неполном отклике). Осуществляется сравнение принятого сигнала с образцами. При этом выбирается образец, наиболее похожий по форме и временным характеристикам с декодируемым сигналом.

5. Технология записи данных на жесткий диск

Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке за счёт электромагнитной индукции.

5.1 Метод продольной записи

Биты информации записываются с помощью маленькой головки, которая, проходя над поверхностью вращающегося диска, намагничивает миллиарды горизонтальных дискретных областей - доменов. При этом вектор намагниченности домена расположен продольно, то есть параллельно поверхности диска. Каждая из этих областей является логическим нулём или единицей, в зависимости от направления намагниченности.

Максимально достижимая при использовании данного метода плотность записи составляет около 23 Гбит/смІ. К 2010 году этот метод был практически вытеснен методом перпендикулярной записи.

5.2 Метод перпендикулярной записи

Метод перпендикулярной записи - технология, при которой биты информации сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Предыдущий метод записи, параллельно поверхности магнитной пластины, привёл к тому что в определённый момент инженеры упёрлись в "потолок" - дальше увеличивать плотность информации на дисках было невозможно. И тогда вспомнили о другом способе записи, который был известен ещё с 70-х годов прошлого века.

Плотность записи при этом методе резко подскочила - на свыше 30 % ещё на первых образцах (на 2009 год - 400 Гбит/дюймІ / 62 Гбит/смІ). А теоретический предел отодвинулся на порядки и составляет 1 Тбит на квадратный дюйм.

Жёсткие диски с перпендикулярной записью стали доступны на рынке с 2006 года. Благодаря перпендикулярной записи винчестеры продолжают бить рекорды ёмкости, вмещая уже по 8 и даже 10 Терабайт.

6. Перспективы развития записи данных на жесткий диск

6.1 Метод черепичной магнитной записи.

Метод черепичной магнитной записи был реализован в начале 2010-х. В нём используется тот факт, что ширина области чтения меньше, чем ширина записывающей головки. Запись дорожек в этом методе производится с частичным наложением в рамках групп дорожек (пакетов). Каждая следующая дорожка пакета частично закрывает предыдущую (подобно черепичной кровле), оставляя от нее узкую часть, достаточную для считывающей головки. Черепичная запись увеличивает плотность записанной информации, однако осложняет перезапись - при каждом изменении требуется полностью перезаписать весь пакет перекрывающихся дорожек.

6.2 Метод тепловой магнитной записи

Метод тепловой магнитной записи остаётся перспективным, продолжаются его доработки и внедрение. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность "закрепляется". На 2009 год были доступны только экспериментальные образцы, плотность записи которых составляла 150 Гбит/смІ. Специалисты Hitachi называют предел для этой технологии в 2,3?3,1 Тбит/смІ, а представители Seagate Technology - 7,75 Тбит/смІ.

6.3 Структурированные носители данных

Структурированный (паттернированный) носитель данных-- перспективная технология хранения данных на магнитном носителе, использующая для записи данных массив одинаковых магнитных ячеек, каждая из которых соответствует одному биту информации, в отличие от современных технологий магнитной записи, в которых бит информации записывается на нескольких магнитных доменах.

6.4 Низкоуровневое форматирование

На заключительном этапе сборки устройства поверхности пластин форматируются - на них формируются дорожки и секторы. Конкретный способ определяется производителем и/или стандартом, но, как минимум, на каждую дорожку наносится магнитная метка, обозначающая её начало.

Существуют утилиты, способные тестировать физические секторы диска и ограниченно просматривать и править его служебные данные. Конкретные возможности подобных утилит сильно зависят от модели диска и технических сведений, известных автору программного обеспечения соответствующего семейства моделей.

7. Геометрия магнитного диска

С целью адресации пространства поверхности пластин диска делятся на дорожки - концентрические кольцевые области. Каждая дорожка делится на равные отрезки - секторы. Адресация CHS предполагает, что все дорожки в заданной зоне диска имеют одинаковое число секторов.

Цилиндр - совокупность дорожек, равноотстоящих от центра, на всех рабочих поверхностях пластин жёсткого диска. Номер головки задаёт используемую рабочую поверхность, а номер сектора - конкретный сектор на дорожке.

Чтобы использовать адресацию CHS, необходимо знать геометрию используемого диска: общее количество цилиндров, головок и секторов в нём. Первоначально эту информацию требовалось задавать вручную; в стандарте ATA-1 была введена функция автоопределения геометрии (команда Identify Drive).

7.1 Влияние геометрии на скорость дисковых операций

Геометрия жёсткого диска влияет на скорость чтения записи. Ближе ко внешнему краю пластины диска возрастает длина дорожек (вмещается больше секторов) и, соответственно, количество данных, которые устройство может считать или записать за один оборот. При этом скорость чтения может изменяться от 210 до 30 Мб/с. Зная эту особенность, целесообразно размещать корневые разделы операционных систем именно здесь.

Нумерация секторов начинается от внешнего края диска с нуля.

8. Адресация данных

Существует 2 основных способа адресации секторов на диске: цилиндр-головка-сектор (англ. cylinder-head-sector, CHS) и линейная адресация блоков (англ. linear block addressing, LBA).

8.1 CHS

При этом способе сектор адресуется по его физическому положению на диске 3 координатами - номером цилиндра, номером головки и номером сектора. В дисках объёмом больше 528 482 304 байт (504 Мб) со встроенными контроллерами эти координаты уже не соответствуют физическому положению сектора на диске и являются "логическими координатами".

8.2 LBA

При этом способе адрес блоков данных на носителе задаётся с помощью логического линейного адреса. LBA-адресация начала внедряться и использоваться в 1994 году совместно со стандартом EIDE (Extended IDE). Необходимость LBA была вызвана, в частности, появлением дисков больших объёмов, которые нельзя было полностью использовать с помощью старых схем адресации.

Метод LBA соответствует Sector Mapping для SCSI. BIOS SCSI-контроллера выполняет эти задачи автоматически, то есть для SCSI-интерфейса метод логической адресации был характерен изначально.

Заключение

В заключении данной работы хотелось бы отметить, что такие технические средства как жесткие диски постоянно модернизируются, поскольку технический прогресс не стоит на месте и требует новых исследований не только в области информационных технологий, но и в совершенствовании их аппаратного обеспечения.

Список литературы

1. Мюллер С. Модернизация и ремонт ПК = Upgrading and Repairing PCs / Скотт Мюллер. - 17-е изд. - М.: Вильямс, 2007. - С. 653--700.

2. Евгений aka Saturn История магнитного складирования // UPgrade: журнал. - 2011. - № 4 (508). - С. 20--25.

Размещено на Allbest.ru

...

Подобные документы

  • Жесткий диск как основное устройство для хранения информации. Основные характеристики и общий вид внешнего и внутреннего диска. Интерфейс, емкость, физический размер, скорость вращения шпинделя и передачи данных. Установка и обслуживание жестких дисков.

    контрольная работа [885,7 K], добавлен 21.09.2013

  • Внутреннее устройство большинства дисковых накопителей. Форматирование жесткого магнитного диска (винчестера). Физическая архитектура и логическая структура дисковых накопителей. Функции файловой системы. Физические и логические параметры жестких дисков.

    реферат [825,7 K], добавлен 19.02.2011

  • Конструкция, общее устройство и принцип действия накопителей на жестких магнитных дисках. Основные характеристики винчестеров: емкость, среднее время поиска, скорость передачи данных. Наиболее распространенные интерфейсы жестких дисков (SATA, SCSI, IDE).

    презентация [324,3 K], добавлен 20.12.2015

  • Современные внешние жесткие диски. Основные характеристики винчестера. Скорость вращения шпинделя. Скорость передачи данных при последовательном доступе. Состав и основные компоненты прибора. Установка и техническое обслуживание жесткого диска.

    курсовая работа [728,1 K], добавлен 13.06.2012

  • Жесткий диск - энергонезависимое, перезаписываемое компьютерное запоминающее устройство. Происхождение названия "винчестер". Характеристики жестких магнитных дисков, технологии записи данных. Устройство жесткого диска: гермозона и блок электроники.

    контрольная работа [411,3 K], добавлен 15.10.2009

  • Cервисные программы – утилиты для различных вспомогательных операций. Форматирование диска — процесс разметки устройств хранения или носителей информации. Низкоуровневое и высокоуровневое форматирование. Порядок дефрагментации и тестирования диска.

    реферат [509,6 K], добавлен 05.12.2010

  • Особенности конструкции современных жестких дисков, система оперативного наблюдения за их состоянием. Виды дефектов магнитного диска. Неисправности аппаратной части диска, характер их проявления и методика устранения. Признаки неисправностей оборудования.

    курсовая работа [1,8 M], добавлен 10.10.2014

  • Накопитель на жёстких магнитных дисках - энергонезависимое, перезаписываемое компьютерное запоминающее устройство (винчестер), его назначение и функции. Устройство жесткого диска, хранение данных и параметры. Физический и логический объем накопителей.

    презентация [1,4 M], добавлен 10.08.2013

  • Жесткий диск компьютера как постоянное запоминающее устройство: анализ функций, конструктивные особенности. Характеристика дисковых массивов, назначение. Рассмотрение преимуществ и недостатков чередования. Знакомство с примерами комбинированных уровней.

    презентация [1,9 M], добавлен 13.12.2013

  • Запоминающие устройства на жестких магнитных дисках. Устройство жестких дисков. Интерфейсы жестких дисков. Интерфейс ATA, Serial ATA. Тестирование производительности накопителей на жестких магнитных дисках. Сравнительный анализ Serial ATA и IDE-дисков.

    презентация [1,2 M], добавлен 11.12.2013

  • Первая перфорированная лента. "Мамонты" среди носителей информации. Дискета, гибкий магнитный диск, используемый для многократной записи и хранения данных. Облачное хранилище данных. Основное назначение, достоинства жёстких дисков и сменных накопителей.

    презентация [1,5 M], добавлен 17.05.2014

  • Жесткий диск (винчестер): общее понятие, предназначение, структура. Основные операции по обслуживанию дисков. Процесс форматирования диска. Логические и физические дефекты, возникающие на диске и методы их устранения. Дефрагментация и очистка винчестера.

    презентация [264,1 K], добавлен 23.10.2013

  • Сравнительный анализ и оценка характеристик накопителей на гибких и жестких магнитных дисках. Физическое устройство, организация записи информации. Физическая и логическая организация данных, адаптеры и интерфейсы. Перспективные технологии производства.

    дипломная работа [2,4 M], добавлен 16.04.2014

  • Дисковод (FDD) - это устройство, предназначенное для чтения информации с гибких магнитных дисков, а также записи на них (как правило, используется для переноса информации с одного компьютера на другой). Информация записывается на гибкий магнитный диск.

    контрольная работа [502,1 K], добавлен 28.02.2004

  • Назначение, устройство и принцип работы HDD. Ухудшение эксплуатационных характеристик жестких дисков в процессе использования. Диагностика работоспособности и определение неисправности. Дефекты аппаратного обеспечения. Программное восстановление данных.

    дипломная работа [735,0 K], добавлен 13.07.2011

  • Форматирование диска на низком уровне, создание физических структур: треков, секторов, управляющей информации. Разбиение объема винчестера на логические диски. Высокоуровневое форматирование, запись логических структур, ответственных за хранение файлов.

    статья [15,0 K], добавлен 05.04.2010

  • Производители жестких дисков и их классификация. Повышение плотности записи на винчестере. Дисковые массивы, некоторые аспекты реализации RAID-систем. Файловые системы FAT 16, FAT 32, NTFS. Диски со встроенным шифрованием. Форматирование жесткого диска.

    книга [2,4 M], добавлен 10.09.2013

  • Технические характеристики 18 моделей винчестеров с плотностью записи 20 GB на пластину и выше. Тестирование жестких дисков EIDE. Текущая линейка жестких дисков для настольных систем различных производителей (Fujitsu, IBM, Seagate, Maxtor, WD, Samsung).

    реферат [1,0 M], добавлен 03.05.2010

  • Характеристика состава компьютера, функции и устройство различных его частей. Интегрированные устройства. Параметры мониторов. Строение модемов. Протокол и скорость, типы оперативной памяти. Строение жесткого диска. Технология записи на компакт-диск.

    реферат [2,3 M], добавлен 27.09.2011

  • Представление числовой информации с помощью систем счисления. Кодирование символьной, текстовой, числовой и графической информации. Устройство жесткого диска; дисковод компакт-дисков CD-ROM. Использование главного меню Windows; языки программирования.

    контрольная работа [62,9 K], добавлен 16.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.