Разработка автоматизированной процедуры улучшения цифрового изображения при помощи маски Лапласа

Использование метода фильтрации, называемого маской Лапласа, для улучшения цифровых изображений. Программное обеспечение для этих экспериментов и основные требования к нему. Выбор и настройка параметров маски Лапласа для цифровой обработки изображений.

Рубрика Программирование, компьютеры и кибернетика
Вид творческая работа
Язык русский
Дата добавления 07.03.2019
Размер файла 962,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Разработка автоматизированной процедуры улучшения цифрового изображения при помощи маски Лапласа

В настоящее время уделяется повышенное внимание как за рубежом, так и в России, научным исследованиям в области разработки автоматизированных процедур для цифровой обработки изображений (ЦОИ), и в частности, созданию проблемно-ориентированных подсистем, с реализацией в этих подсистемах определенных иерархических процедур, удовлетворяющих требованиям общей теории автоматизированного проектирования [1,2]. Это можно объяснить тем, что ЦОИ стала просто незаменимой при решении многих задач. Без ЦОИ уже нельзя обойтись при научных исследованиях в области освоения космоса, медицины, информационных технологиях и так далее [3,4]. Хорошим примером применения методов ЦОИ служит задача коррекции искажений на изображении [5]. Ко всему этому можно добавить, что область использования ЦОИ постоянно увеличивается. Но вместе с тем, можно выделить следующие характерные особенности:

· Существует достаточно много различных алгоритмов и подходов для решения разных задач ЦОИ. Но к сожалению, для большинства алгоритмов нельзя заранее сказать, насколько обосновано (в смысле качества обнаружения, быстродействия и т.д.) их использование при решении определенной задачи ЦОИ.

· Практически для любой задачи всегда можно подобрать некоторое количество алгоритмов, при помощи которых ее можно решить. Но вот выбор из них оптимального, исходя из заданного множества критериев, достаточно часто базируется на эвристических принципах и (или) результатах вычислительных экспериментов по решению конкретной задачи. Именно поэтому очень много времени разработчики тратят на реализацию требуемых алгоритмов и сравнений результатов их работы.

· В большинстве случаев при решении конкретных задач применяют различные комбинации известных алгоритмов. Это связано с тем, что для разработки абсолютно нового алгоритма необходим колоссальный опыт работы в области ЦОИ.

Анализ указанных особенностей показал, что одним из направлений по сокращению временных затрат и повышения эффективности и надежности программного обеспечения для ЦОИ является разработка средств, автоматизирующих процедуры выбора и настройки алгоритмов ЦОИ.

В данной работе представлена разработанная автоматизированная процедура для решения вышеназванной задачи коррекции искажений на изображении.

Постановка задачи улучшения изображения

Улучшение изображения - это процесс манипулирования изображением, в результате которого оно становится более подходящим для конкретного применения, чем оригинал. Здесь важно слово «конкретного», так как оно изначально требует, что методы улучшения изображений являются проблемно-ориентированными. Так, например, метод, который весьма полезен для улучшения рентгеновских изображений, может оказаться не лучшим подходом для улучшения спутниковых изображений, снятых в инфракрасном диапазоне электромагнитного спектра.

Общей теории улучшения изображений не существует. Если изображение обрабатывается с целью визуальной интерпретации, то оценку, насколько хорошо работает конкретный метод, дает, в конечном счете, наблюдатель. Методы улучшения настолько разнообразны и используют так много различных подходов к обработке изображения, что трудно собрать осмысленную совокупность подходящих для улучшения методов в одной главе, не проводя отдельное обширное исследование.

Следует учитывать тот факт, что применение методов улучшения изображений очень часто приводит к искажению информации об объектах, которые присутствуют там. Например, увеличение контраста и усиление краев зачастую приводит к искажениям форм и размеров дефектоскопического объекта, что недопустимо.

Предлагается для решения этой задачи не использовать методы улучшения изображений, а использовать методы фильтрации полезного сигнала, понимая под которым изображения дефектов. В этом случае сигнал от дефекта можно интерпретировать как локальную неоднородность двумерного конечного нестационарного стохастического сигнала. Следовательно можно ставить задачу фильтрации на фоне помех локальных неоднородностей в изображении.

С формальной точки зрения цифровое изображение представляет из себя двумерную матрицу f (x, y) размером DimXхDimY, где x - целое число от 0 до DimX - 1, определяющее номер пикселя в строке, - целое число от 0 до DimY - 1, определяющее номер строки матрицы, где находится данный пикселя.

В самом простом случае любой пиксель имеет скалярное целочисленное значение, которое пропорционально значению функции распределения яркости f (x, y) в данной точке плоскости.

В таком представлении над изображением f (x, y) можно производить различные алгебраические операции.

Формально процесс искажения исходного изображения f (x, y) можно записать так:

цифровой изображение лаплас программный

g (x, y)=H (f (x, y)) + n (x, y), (1)

где g (x, y) - искаженное изображение;

n (x, y) - аддитивный шум;

H (*) - искажающий оператор

Базируясь на (1), задачу улучшения изображения можно сформулировать следующим образом:

Имеем:

- искаженное изображение g (x, y);

- информацию об операторе H (*) и основных параметрах n (x, y).

Требуется:

- Построить приближенное изображение максимально близкое к исходному изображению.

Схематически эта постановка представлена на Рисунке 1.

Понятно, что чем больше информации об операторе H (*) основных параметрах n (x, y), то тем ближе (в заданной метрике) изображение f (x, y) к функции . Необходимо отметить, что в ситуациях, когда искажения в изображение вносит исключительно шум, то (1) преобразуется в достаточно простое выражение:

.

В этих случаях для подавления шума можно применять методы пространственной фильтрации.

А если заранее известно, что H является линейным трансляционно-инвариантным оператором, то можно представить в виде

h (x, y) - пространственное представление искажающего оператора или передаточная функция. Она также носит название - функция разброса точек (PSF - Point Spread Function);

* - операция свертки

Так как операция свертки двух функций во временной области (или, как в данном случае пространственной) эквивалентна их произведению в частотной области, то это уравнение можно записать так:

.

Здесь заглавными буквами обозначены результаты преобразования Фурье соответствующих функций.

Функцию называют оптической передаточной функцией (OTF - Optical Transfer Function)

Разработка автоматизированной процедуры выбора параметров для маски Лапласа

Оператор Лапласа изображения f (x, y) записывается так:

 (2)

Ввиду того, что изображение представлено дискретной функцией, то в качестве приближений (2) применяют разные формулы, например:

Отсюда следует, что:

и соответствующая маска Лапласа будет иметь вид:

Кроме того, в практике ЦОИ применяются следующие фильтры (маски) высоких частот Лапласа:

Если качество восстановленного изображения не устраивает оператора, то он может выбрать следующую маску:

В этом случае, оператор в интерактивном режиме подбирает подходящий параметр для более «тонкой» настройки.

Блок-схема алгоритма автоматизированного выбора маски Лапласа представлена на Рисунке 2.

Результаты вычислительных экспериментов

Для отработки разработанной процедуры автоматизированного выбора параметров маски Лапласа была использована система MATLAB, при помощи которой было разработано соответствующее программное обеспечение [6-9]. После этого, были проведены численные эксперименты, результаты которых представлены на Рисунке 3 - 9.

На Рисунок 3 представлено исходной изображение.

На Рисунок 4 представлен результат обработки исходного изображения маской ML 1.

На Рисунок 5 результат обработки маской ML 2.

На Рисунок 6 результат обработки маской ML 3.

На Рисунок 7 результат обработки маской ML б (б=0.6).

На Рисунок 8 результат обработки маской ML б (б=0.8).

На Рисунок 9 результат обработки маской ML б (б=1.0).

По результатам экспериментов был сделан вывод о целесообразности выбора маски Лапласа ML б (б=0.8).

 

Рисунок 3. Исходное изображение Рисунок 4. Результат обработки маской ML 1

 

Рисунок 5. Результат обработки маской ML Рисунок 6. Результат обработки маской ML 3

 

Рисунок 7. Результат обработки маской Рисунок 8. Результат обработки маской

ML б(б=0.6) ML б (б=0.8)

Рисунок 9. Результат обработки маской

ML б (б=1.0)

В настоящее время наблюдается непрерывное появление новых алгоритмов и методов для решения задач ЦОИ [10]. Этот факт говорит об отсутствии методов, удовлетворяющих в достаточной мере исследователей в области ЦОИ. Кроме того, необходимо отметить тот факт, что надёжность решения задач ЦОИ падает при снижении контрастности и резкости изображений, присутствия шумовых или геометрических искажений.

Поэтому, одним из направлений, которое поможет сократить временные затраты с одновременным повышением эффективности и надежности программного обеспечения для ЦОИ является разработка автоматизированных процедур выбора и настройки алгоритмов ЦОИ.

Библиография

цифровой изображение лаплас программный

1. Гатчин Ю.А., Коробейников А.Г. Проектирование интегрированных автоматизированных технологических комплексов // СПб: СПб ГИТМО (ТУ), 2000, 171 c.

2. Коробейников А.Г. Методы автоматизированного проектирования //LAP LAMBERT Academic Publishing-2011. - 248 с.-ISBN 978-3-8465-1652-2

3. Гришенцев А.Ю., Коробейников А.Г. Методы и модели цифровой обработки изображений.-Санкт-Петербург: Политехнический университет, 2014. - 190 с.-ISBN 978-5-7422-4892-7.

4. Коробейников А.Г., Божьев А.Н., Гатчин Ю.А., Савков С.В., Ашевский Д.Ю., Алексанин С.А., Заколдаев Д.А. Вероятностный подход к оценке информационных угроз радиоэлектронных объектов // Вестник Чувашского государственного университета.-Чебоксары: федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Чувашский государственный университет им. И.Н. Ульянова», 2015.- №3.-Информатика, вычислительная техника и управление.-С. 154-163.-ISSN 1810-1909.

5. Бейтс Р., Мак-Доннелл М. Восстановление и реконструкция изображений. - М.: Мир, 1989. 336 с.

6. Коробейников А.Г. Разработка и анализ математических моделей с использованием MATLAB и MAPLE. - СПб: СПбГУ ИТМО, 2010. - 144 с.

7. Коробейников А.Г. Проектирование и исследование математических моделей в средах MATLAB и MAPLE.-Санкт-Петербург: СПбГУ ИТМО, 2012. - 160 с.

8. Коробейников А.Г., Гришенцев А.Ю. Разработка и исследование многомерных математических моделей с использованием систем компьютерной алгебры // СПбНИУ ИТМО.-Санкт-Петербург: СПбНИУ ИТМО, 2013. - 100 с.

9. Коробейников А.Г. Математическое моделирование. Проектирование и анализ многомерных математических моделей с применением систем компьютерной алгебры // LAP LAMBERT Academic Publishing. - 2014. - 125 с.-ISBN 978-3-659-16593-1.

10. Коробейников А.Г., Алексанин С.А. Методы автоматизированной обработки изображений при решении задачи магнитной дефектоскопии // Кибернетика и программирование. - 2015. - 4. - C. 49 - 61. DOI: 10.7256/2306-4196.2015.4.16320. URL: http://www.e-notabene.ru/kp/article_16320.html

Размещено на Allbest.ru

...

Подобные документы

  • Изучение и программная реализация в среде Matlab методов обработки, анализа, фильтрации, сегментации и улучшения качества рентгеновских медицинских изображений. Цифровые рентгенографические системы. Разработка статически обоснованных алгоритмов.

    курсовая работа [4,7 M], добавлен 20.01.2016

  • Задачи цифровой обработки изображений. Методы пороговой сегментации. Создание программы представления рисунка в виде матрицы и применения к нему пороговой обработки. Разработка интерфейса программы загрузки и фильтрации изображения с выбранным порогом.

    курсовая работа [2,0 M], добавлен 12.11.2012

  • Изучение современных методик компьютерной обработки биомедицинских изображений с целью улучшения изображений для их наилучшего визуального восприятия врачом-диагностом и эффективного сжатия изображений – для надежного хранения и быстрой передачи данных.

    курсовая работа [2,3 M], добавлен 15.04.2019

  • Обработка изображений на современных вычислительных устройствах. Устройство и представление различных форматов изображений. Исследование алгоритмов обработки изображений на базе различных архитектур. Сжатие изображений на основе сверточных нейросетей.

    дипломная работа [6,1 M], добавлен 03.06.2022

  • Цифровые рентгенографические системы. Методы автоматического анализа изображений в среде MatLab. Анализ рентгеновского изображения. Фильтрация, сегментация, улучшение изображений. Аппаратурные возможности предварительной нормализации изображений.

    курсовая работа [890,9 K], добавлен 07.12.2013

  • Анализ существующих методов масштабирования изображений. Повышение скорости обработки и изменения картинок. Алгоритм масштабирования с использованием параллелизма. Отбор пикселей для правильного расчета градиента. Выбор метода интерполяции изображения.

    курсовая работа [5,8 M], добавлен 17.06.2017

  • Выбор методов обработки и сегментации изображений. Математические основы примененных фильтров. Гистограмма яркости изображения. Программная реализация комплексного метода обработки изображений. Тестирование разработанного программного обеспечения.

    курсовая работа [1,3 M], добавлен 18.01.2017

  • Высокопроизводительные вычисления в обработке данных дистанционного зондирования Земли. Классификация аэрокосмических изображений. Способы удаленного доступа к суперкомпьютеру. Сжатие без потерь и с потерями. Программное обеспечение системы сжатия.

    дипломная работа [2,6 M], добавлен 28.09.2011

  • Описание математических методов представления и обработки графических изображений. Описание разработанного программного дополнения. Описание функций и их атрибутов. Представление и обработка графических изображений. Результаты тестирования программы.

    курсовая работа [1,7 M], добавлен 27.01.2015

  • Проблема улучшения качества отпечатков пальца с целью повышения эффективности работы алгоритмов биометрической аутентификации. Обзор алгоритмов обработки изображений отпечатков пальцев. Анализ алгоритма, основанного на использовании преобразования Габора.

    дипломная работа [4,5 M], добавлен 16.07.2014

  • Разработка программы на языке С++ для решения дифференциального уравнения Лапласа в прямоугольной области методом сеток. Численное решение задачи Дирихле для уравнения Лапласа, построение сетки и итерационного процесса. Листинг и результат программы.

    курсовая работа [307,5 K], добавлен 30.04.2012

  • Общий алгоритм сравнения двух изображений. Метод максимальных площадей. Метод гистограмм. Подготовка изображения к распознаванию. Моделирование многомерной функции. Распределение векторов. Деформируемые модели. Реализация программного обеспечения.

    дипломная работа [384,2 K], добавлен 29.09.2008

  • История появления и основные понятия графического дизайна. Выявление главных преимуществ и недостатков недеструктивной обработки изображений. Сравнение деструктивной и недеструктивной обработки изображений. Сущность и особенности двухмерной графики.

    реферат [5,2 M], добавлен 05.05.2023

  • Обнаружение деталей и их границ изображения. Применение ранговых алгоритмов. Использование алгоритмов адаптивного квантования мод в режиме пофрагментной обработки. Обобщенная линейная фильтрация изображений. Восстановление отсутствующих участков.

    курсовая работа [1,8 M], добавлен 17.06.2013

  • Типы изображений (черно-белые, полутоновые, цветные) и их форматы. Устройства, создающие цифровые изображения, и их параметры. Применение и характеристики методов сжатия изображений. Поиск по содержимому в базах данных изображений. Структуры баз данных.

    презентация [360,4 K], добавлен 11.10.2013

  • Обзор существующего программного обеспечения для автоматизации выделения границ на изображении. Разработка математической модели обработки изображений и выделения контуров в оттенках серого и программного обеспечения для алгоритмов обработки изображений.

    дипломная работа [1,7 M], добавлен 27.03.2013

  • Компьютерная графика как область информатики, изучающая методы и свойства обработки изображений с помощью программно-аппаратных средств, ее классификация и разновидности. Шаги для получения трехмерного изображения, необходимое программное обеспечение.

    презентация [2,1 M], добавлен 26.06.2013

  • Общая характеристика систем синтезированного обзора (видения). Разработка программного стенда, предназначенного для построения синтезированных 3D изображений местности по цифровой карте, загруженной из файла имитации полета летательного аппарата.

    дипломная работа [8,7 M], добавлен 29.06.2012

  • Яркость точек и гистограммы изображения. Изменение яркости и контрастности. Метод ранговой фильтрации с оценкой середины диапазона. Наложение шумов на изображение. Преобразование изображения в негатив. Получение матрицы яркостей и построение гистограмм.

    курсовая работа [1,5 M], добавлен 11.12.2012

  • Обзор цифровых процессоров для видеонаблюдения. Конструктивное исполнение процессоров. Программное и аппаратное обеспечение. Система команд цифрового процессора. Содержание программного кода. Пояснения к программному коду. Иллюстрация работы эмулятора.

    курсовая работа [1,2 M], добавлен 13.02.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.