Программа распознавания лиц для идентификации личности на основе алгоритмов машинного обучения

Изучение современных алгоритмов обнаружения и распознавания лиц на изображении для разработки приложения микро-сервиса для распознавания личности на основе фотографии лица с использованием алгоритмов машинного обучения. Описание процесса разработки.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 04.12.2019
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Список используемых источников

S. Ren, K. He, R. Girshick, J. Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks // arXiv preprint arXiv: 1506.01497. - 2015.

J. Redmon, S. Divvala, R. Girshick, A. Farhadi. You Only Look Once: Unified, Real-Time Object Detection // arXiv preprint arXiv: 1506.02640. - 2015.

K. Zhang, Z. Zhang, Z. Li, Y. Qiao. Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks // arXiv preprint arXiv: 1604.02878. - 2016.

P. Viola, M.J. Jones. Rapid object detection using a boosted cascade of simple features // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). - 2001. - С. 511-518.

L. R. Cerna, G. Camara-Chavez, D. Menotti. Face Detection: Histogram of Oriented Gradients and Bag of Feature Method. - 2013.

C. Szegedy. Going Deeper with Convolutions / W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich // arXiv preprint arXiv: 1409.4842. - 2014.

K. He, X. Zhang, S. Ren, J. Sun. Deep Residual Learning for Image Recognition // arXiv preprint arXiv: 1512.03385. - 2015.

S. Chopra, R. Hadsell, Y. LeCun. Learning a similarity metric discriminatively, with application to face verification // IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). - 2005. - С. 539-546.

C. Wu, R. Manmatha, A. J. Smola, P. Krдhenbьhl. Sampling Matters in Deep Embedding Learning // arXiv preprint arXiv: 1706.07567. - 2017.

F. Schroff, D. Kalenichenko, J. Philbin. FaceNet: A Unified Embedding for Face Recognition and Clustering // arXiv preprint arXiv: 1503.03832. - 2015.

F. N. Iandola. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, K. Keutzer. - 2016.

M. Sandler. MobileNetV2: Inverted Residuals and Linear Bottlenecks / A. Howard, M. Zhu, A. Zhmoginov, L. Chen // arXiv preprint arXiv: 1801.04381. - 2018.

X. Gastaldi. Shake-Shake regularization // arXiv preprint arXiv: 1705.07485. - 2017.

S. M. Pizer, E. P. Amburn, J. D. Austin. Adaptive Histogram Equalization and Its Variations. Computer Vision, Graphics, and Image Processing 39. - 1987. - С. 355-368.

Размещено на Allbest.ru

...

Подобные документы

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа [1,8 M], добавлен 08.02.2017

  • Обзор существующих алгоритмов для обнаружения лиц. Выравнивание лица с помощью разнообразных фильтров. Использование каскадного классификатора Хаара для поиска лиц на изображении. Распознавание лиц людей с использованием локальных бинарных шаблонов.

    дипломная работа [332,4 K], добавлен 30.09.2016

  • Разработка алгоритма и программы для распознавания пола по фотографии с использованием искусственной нейронной сети. Создание алгоритмов: математического, работы с приложением, установки весов, реализации функции активации и обучения нейронной сети.

    курсовая работа [1,0 M], добавлен 05.01.2013

  • Оптико-электронная система идентификации объектов подвижного состава железнодорожного транспорта. Автоматический комплекс распознавания автомобильных номеров. Принципы и этапы работы систем оптического распознавания. Особенности реализации алгоритмов.

    дипломная работа [887,3 K], добавлен 26.11.2013

  • Обзор математических методов распознавания. Общая архитектура программы преобразования автомобильного номерного знака. Детальное описание алгоритмов: бинаризация изображения, удаление обрамления, сегментация символов и распознавание шаблонным методом.

    курсовая работа [4,8 M], добавлен 22.06.2011

  • Первое систематическое изучение искусственных нейронных сетей. Описание элементарного перцептрона. Программная реализация модели распознавания графических образов на основе перцептрона. Интерфейс программы, основные окна. Составление алгоритма приложения.

    реферат [100,5 K], добавлен 18.01.2014

  • Словесный, графический, табличный, программный способы представления алгоритма. Основные конструкции в любом алгоритмическом языке. Теория обнаружения, различения и оценивания сигналов. Радиолокационные системы обнаружения. Система распознавания образов.

    презентация [4,8 M], добавлен 09.06.2015

  • Обзор основных алгоритмов и методов распознавания лиц. Архитектура средств динамического отслеживания лиц в видеопоследовательности. Результаты тестирования на больших объемах видеоданных. Разработка алгоритмов и методов динамического отслеживания лиц.

    дипломная работа [5,9 M], добавлен 20.07.2014

  • Анализ физических предпосылок селекции движущихся малоразмерных наземных целей по спектральным параметрам. Разработка алгоритмов обнаружения МНЦ и повышения эффективности их распознавания в интересах радиолокационных станций разведки и целеуказания.

    дипломная работа [830,3 K], добавлен 28.04.2009

  • Методы предобработки изображений текстовых символов. Статистические распределения точек. Интегральные преобразования и структурный анализ. Реализация алгоритма распознавания букв. Анализ алгоритмов оптического распознавания символов. Сравнение с эталоном.

    курсовая работа [2,1 M], добавлен 20.09.2014

  • Понятие и особенности построения алгоритмов распознавания образов. Различные подходы к типологии методов распознавания. Изучение основных способов представления знаний. Характеристика интенсиональных и экстенсиональных методов, оценка их качества.

    презентация [31,6 K], добавлен 06.01.2014

  • Анализ существующих проблем и обзор библиотеки обработки изображений и алгоритмов общего назначения OpenCV. Особенности разработки и детальный анализ требований к программе. Основная логика ее работы и реализация. Трекинг лица и объекта по цвету.

    дипломная работа [1,3 M], добавлен 26.06.2017

  • Популярность алгоритмов машинного обучения для компьютерных игр. Основные техники обучения с подкреплением в динамической среде (компьютерная игра "Snake") с экспериментальным сравнением алгоритмов. Обучение с подкреплением как тип обучения без учителя.

    курсовая работа [1020,6 K], добавлен 30.11.2016

  • Анализ существующих алгоритмов распознавания режимов работы газотурбинного двигателя. Метод группового учета аргументов, метод Байеса. Применение технологий системного моделирования на этапе проектирования интеллектуальной системы распознавания режимов.

    курсовая работа [1,4 M], добавлен 11.04.2012

  • Подсистема анализа изображения отпечатка пальца в составе системы идентификации личности по отпечаткам пальцев на основе папиллярного узора для дальнейшего распознавания личности. Характеристика функциональных возможностей системы и код програмы.

    дипломная работа [3,1 M], добавлен 01.07.2008

  • Понятие системы распознавания образов. Классификация систем распознавания. Разработка системы распознавания формы микрообъектов. Алгоритм для создания системы распознавания микрообъектов на кристаллограмме, особенности его реализации в программной среде.

    курсовая работа [16,2 M], добавлен 21.06.2014

  • Основные понятия теории распознавания образов и ее значение. Сущность математической теории распознавания образов. Основные задачи, возникающие при разработке систем распознавания образов. Классификация систем распознавания образов реального времени.

    курсовая работа [462,2 K], добавлен 15.01.2014

  • Необходимость в системах распознавания символов. Виды сканеров и их характеристики. Оптимальное разрешение при сканировании. Программы распознавания текста. Получение электронного документа. FineReader - система оптического распознавания текстов.

    презентация [469,2 K], добавлен 15.03.2015

  • Анализ систем распознавания поведения лабораторных мышей. Классификация движений на основе построенных дескрипторов. Существующие методы обнаружения движения, разработка соответствующего программного обеспечения и оценка его эффективности, функции.

    дипломная работа [1,1 M], добавлен 16.09.2017

  • Нормальный алгоритм Маркова. Тезис Маркова и машина Тьюринга. Гипотеза теории алгоритмов. Алгоритмически неразрешимые проблемы. Задача эквивалентности двух слов в ассоциативном исчислении. Задача распознавания выводимости. Линейная оценка сложности.

    методичка [57,0 K], добавлен 06.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.