Применение алгоритма RSA при шифровании потоков данных

Проблемы теоретико-числовых алгоритмов. Алгоритм нахождения делителей многочлена в кольце. Алгоритм, доказывающий непростоту числа. Проверка большого числа на простоту. Практическая реализация алгоритма. Форма нахождения простых чисел и генерации ключей.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 26.02.2020
Размер файла 185,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

4.2 Анализ результатов

Результатом работы созданной программы являются зашифрованные и расшифрованные сообщения.

Для тестирования программы использовался пример приведенный в [11] , , и . Также и .

5. Выводы

Перейдем к обсуждению выводов после детального просмотра специфики метода, реализованного программного продукта на основе построенного алгоритма, а также представленного анализа результатов по обработанному материалу.

5.1 Алгоритм

Использованный алгоритм RSA имеет ряд преимуществ:

1) алгоритм RSA является ассиметричным, т.е. он основывается на распространении открытых ключей в сети. Это позволяет нескольким пользователям обмениваться информацией, посылаемой по незащищенным каналам связи;

2) пользователь сам может менять как числа , , так и открытый и закрытый ключ по своему усмотрению, только потом он должен распространить открытый ключ в сети. Это позволяет добиваться пользователю нужной ему криптостойкости.

При всех этих преимуществах данный алгоритм имеет существенный недостаток - невысокая скорость работы. Алгоритм RSA работает более чем в тысячу раз медленнее симметричного алгоритма DES.

Из всего вышесказанного можно заключить, что данный алгоритм шифрования, хотя довольно медленный, но он ассиметричный и позволяет добиваться нужной криптостойкости, что делает его незаменимым при работе в незащищенных каналах связи.

5.2 Алгоритм и программа

Исходя из проработанных данных, по построенному алгоритму и созданному программному продукту сделаны следующие выводы:

1) построенный алгоритм, а соответственно и созданный на его базе программный продукт, полностью реализует базовые механизмы схемы RSA и, таким образом удовлетворяют основным поставленным задачам;

2) данный программный продукт построен по технологии клиент/сервер и предназначен сохранять конфиденциальность передачи информации в сети.

Таким образом, по выводам о построенном алгоритме и созданном программном продукте можно заключить, что он подходит для решения проблем шифрования информации, связанных с передачей данных по сети.

Заключение

В рамках данного дипломного проектирования перед студентом Малышевым А.А. была поставлена задача: на основе алгоритма RSA для шифрования блоков данных, построить алгоритм и реализовать программный продукт для шифрования потоков данных.

В результате выполнения дипломного проектирования был составлен принципиальный алгоритм для решения поставленной задачи. Далее он был детализован и реализован на ЭВМ. В конце, был проведён анализ полученных результатов, и сделаны необходимые выводы.

За основу построения алгоритма был принят алгоритм RSA для шифрования блоков данных, изучена соответствующая литература по алгоритму, и был построен алгоритм и реализован программный продукт в среде визуального программирования Delphi 5 под ОС типа Windows для IBM PC-совместимых компьютеров.

Созданный программный продукт позволяет решить поставленную задачу и, дополнительно, содержит в себе небольшую базу данных абонентов. Т.е. в результате выполнения программы исходное сообщение шифруется и передается по сети, где оно расшифровывается. Также можно указать о том, что программа имеет интуитивно понятный интерфейс, что дополнительно помогает пользователю с наибольшей результативностью использовать всю ресурсную базу.

В заключении, после анализа полученных результатов были сделаны выводы, согласно которым алгоритм работает и применим для поставленной задачи.

Список использованных источников

1. Ященко В. В. Основные понятия криптографии // Математическое просвещение. Сер. 3. №2. 1998. С. 53-70.

2. Виноградов И. М. Основы теории чисел. М.: Наука. 1972.

3. Карацуба А. А. Основы аналитической теории чисел. М.: Наука. 1983 г.

4. Кнут Д. Искусство программирования на ЭВМ. Т.2: Получисленные алгоритмы. М.: Мир. 1977.

5. Ахо А.. Хопкрофт Дж.. Ульман Дж. Построение и анализ вычислительных алгоритмов. М.: Мир. 1979.

6. Варновский Н. П. Криптография и теория сложности // Математическое просвещение. Сер. 3. №2. 1998. С. 71-86.

7. Василенко О. Н. Современные способы проверки простоты чисел // Кибернетический сборник, вып. 25. 1988. С. 162-188.

8. Прахар К. Распределение простых чисел. М.: Мир. 1967.

9.Боревич З.И. Шафаревич И.Р. Теория чисел. М.: Наука. 1964.

10. Кострикин А.И. Введение в алгебру. М.: Наука. 1977.

11. Брассар Дж. Современная криптология. Мир ПК. №3. 1997.

Приложение 1

Листинг программы

Модуль Key.pas

Function Prost(n:integer):Boolean;

var k:Boolean;

i:integer;

begin

k:=true;

if n<>2 then

for i:=2 to trunc(sqrt(n))+1 do

if (n/i)=trunc(n/i) then

begin

k:=False;

Break;

end;

Prost:=k;

end;

{________________________________________________________}

Function Evklid(Num1,Num2:integer):integer;

var r,q1,p1:array of integer;

i,n,k:integer;

begin

if Num1>=Num2 then

begin

SetLength(r,10);

r[0]:=Num1;

r[1]:=Num2;

end

else

begin

SetLength(r,10);

r[0]:=Num2;

r[1]:=Num1;

end;

i:=1;

while r[i]<>0 do

begin

inc(i);

r[i]:=r[i-2] mod r[i-1];

end;

n:=i-2;

SetLength(q1,n+1);

for i:=0 to n do

q1[i]:=r[i] div r[i+1];

SetLength(p1,n+2);

p1[0]:=1;

p1[1]:=q1[0];

k:=length(q1);

if k>1 then

for i:=2 to k do

p1[i]:=q1[i-1]*p1[i-1]+p1[i-2];

Result:=trunc(power(-1,k-1))*p1[k-1] mod Num2;

end;

{________________________________________________________}

Function HOD(Num1,Num2:integer):integer;

var r:array of integer;

i:integer;

begin

if Num1>=Num2 then

begin

SetLength(r,Num2);

r[0]:=Num1;

r[1]:=Num2;

end

else

begin

SetLength(r,Num1);

r[0]:=Num2;

r[1]:=Num1;

end;

i:=1;

While r[i]<>0 do

begin

inc(i);

r[i]:=r[i-2] mod r[i-1];

end;

Result:=r[i-1];

end;

{________________________________________________________}

Function ModDegree(Num,Degree,n:integer):integer;

var x:array of integer;

i:integer;

begin

SetLength(x,n);

x[1]:=Num mod n;

for i:=2 to Degree do

x[i]:=x[i-1]*Num mod n;

Result:=x[Degree];

end;

Приложение 2

Главная форма программы

Приложение 3

Форма базы данных абонентов

Приложение 4

Форма нахождения простых чисел и генерации ключей

Размещено на Allbest.ru

...

Подобные документы

  • Составление структурных программ для решения практических задач по теме "Целочисленная арифметика". Алгоритм нахождения делителей натурального числа, алгоритм проверки простое ли число, алгоритм Решета Эратосфена. Система программирования Free Pascal.

    разработка урока [27,1 K], добавлен 03.09.2014

  • Характеристика методов представления заданных чисел в двоичной, шестнадцатеричной, восьмеричной системе счисления. Представление указанного числа в четырехбайтовом IEEE формате. Разработка алгоритма обработки одномерных и двумерных числовых массивов.

    контрольная работа [138,9 K], добавлен 05.06.2010

  • Актуальность и предыстория проблемы построения систем связи с открытым ключом. Алгоритм кодирования, перевода из десятичного числа в двоичное, быстрого возведения числа в степень, поиска взаимно простых чисел. Дешифрование сообщения по криптоалгоритму.

    курсовая работа [140,3 K], добавлен 20.06.2017

  • Разложение функций по переменным. Совершенная дизъюнктивная нормальная форма. Разрешимoсть задач в классической теории алгоритмов и их трудоемкость. Память и время как количественная характеристика алгоритма (применительно к машине Тьюринга и ЭВМ).

    дипломная работа [59,9 K], добавлен 17.04.2009

  • Модификация алгоритма RPC таким образом, чтобы он не требовал входного параметра, но сохранил свою гибкость при решении задачи нахождения максимальной клики для разных графов. Метод ветвей и границ. Построение функции-классификатора. Листинг алгоритма.

    курсовая работа [197,8 K], добавлен 06.10.2016

  • Задачи, решаемые методом динамического программирования. Основные этапы нахождения деревянного алгоритма решения задачи. Выполнение алгоритма Прима. Построение Эйлерового цикла. Решение задач средствами Excel. Алгоритм основной программы - Derevo.

    курсовая работа [586,3 K], добавлен 04.04.2015

  • Создание алгоритма для построения синтаксического анализатора полиномов и его реализация в среде Visual Studio 2005 на языке программирования C#. Программное решение задачи поиска максимального числа единиц в бинарном представлении простых чисел.

    курсовая работа [723,5 K], добавлен 04.10.2010

  • Операторы генетического алгоритма. Пример простейшей программы. Процесс генерации и накопления информации о выживании и продолжении рода в ряде поколений популяции. Программа, реализующая простой генетический алгоритм для нахождения минимума функции.

    курсовая работа [39,3 K], добавлен 29.10.2012

  • Принцип работы алгоритма бинарного поиска в массиве. Способы исследования алгоритма "прямое включение". Формулы зависимости числа сравнений от элементов в массиве. Графики среднего числа сравнений и перемещений практических и теоретических измерений.

    курсовая работа [646,1 K], добавлен 07.01.2014

  • Анализ алгоритмов нахождения кратчайших маршрутов в графе без отрицательных циклов: Дейкстры, Беллмана-Форда и Флойда-Уоршалла. Разработка интерфейса программы на языке C++. Доказательство "правильности" работы алгоритма с помощью математической индукции.

    курсовая работа [1,5 M], добавлен 26.07.2013

  • Факторизация натурального числа. Метод квадратичного решета. Факторизация с помощью эллиптических кривых. Реализация алгоритмов натуральных чисел и оценка их эффективности. Применение алгоритмов факторизации натуральных чисел в программной среде Maple.

    курсовая работа [851,6 K], добавлен 25.06.2013

  • Описание и особенности некоторых алгоритмов архивации. Построение кода Хаффмана. Динамический алгоритм построения кода Хаффмана. Обратное восстановление текста. Способы двухступенчатого кодирования информации. Практическая реализация алгоритма LZ77.

    курсовая работа [51,7 K], добавлен 24.12.2012

  • Применения языка логического программирования Пролог и языка программирования Haskell для реализации алгоритма поиска оптимального каркаса графа. Алгоритм Прима, преимущество перед другими алгоритмами нахождения оптимального каркаса, близких к полным.

    курсовая работа [230,2 K], добавлен 13.06.2012

  • Этапы нахождения хроматического числа произвольного графа. Анализ примеров раскраски графа. Характеристика трудоемкости алгоритма раскраски вершин графа Мейниеля. Особенности графов, удовлетворяющих структуру графов Мейниеля, основные классы графов.

    курсовая работа [1,1 M], добавлен 26.06.2012

  • Свойства и виды алгоритмов. Составление программы, которая бы определила предыдущий и последующий символ для символа 'F' по таблице кодировки. Алгоритм нахождения максимального из двух значений. Программа замены местами в матрице элементов строк.

    курсовая работа [133,4 K], добавлен 16.05.2015

  • Обзор существующих подходов в генерации музыкальных произведений. Особенности создания стилизованных аудио произведений на основе современных нейросетевых алгоритмов. Выбор средств и библиотек разработки. Практические результаты работы алгоритма.

    дипломная работа [4,0 M], добавлен 13.10.2017

  • Методы доступа к сети. Алгоритм ALOHA, используемый для доступа к радиоканалу большого числа независимых узлов. Эффективность алгоритма CSMA/CD. Метод маркерного доступа. Ethernet – самый распространенный в настоящий момент стандарт локальных сетей.

    лекция [112,9 K], добавлен 25.10.2013

  • Изучение, освоение на примере симметричных шифров элементы практической криптографии. Использование расширенного алгоритма Евклида для нахождения обратного по модулю числа. Ознакомление с демо-версией программы симметричного шифрования с секретным ключом.

    лабораторная работа [97,5 K], добавлен 18.04.2015

  • Методы вычисления точных вероятностей в покере. Проектирование алгоритма нахождения вероятности выигрыша для нескольких игроков. Теоретический расчет вероятности выигрыша в игре. Программная оптимизация и упрощение алгоритмов вычисления вероятностей.

    курсовая работа [96,1 K], добавлен 17.06.2013

  • Определение понятия, видов и задач сортировки. Рассмотрение основ построения простых и улучшенных алгоритмов сортировки, анализ числа операций. Линейная и пирамидальная организация данных. Основные правила нижней оценки числа операций в алгоритмах.

    презентация [274,5 K], добавлен 19.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.