Интеллектуальные экспертные системы
Принципы построения и организации интеллектуальных систем. Главное достоинство и назначение экспертных систем. Способность экспертной системы моделировать человека эксперта. Наиболее широко применяемые программные средства искусственного интеллекта.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 04.03.2020 |
Размер файла | 103,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Естественные системы различаются по своей сложности и уровню организации. Понятие об организации системы предполагает определенное согласование состояний и деятельности ее подсистем и составляющих элементов. Это согласование достигается передачей сигналов (сообщений) по внутрисистемным связям, а для поддержания высокого уровня организованности необходимо постоянное общение с окружающим миром. Еще более необходима передача сообщений по внутрисистемным и межсистемным связям для формирования и выдачи командных сигналов при осуществлении актов управления.
Основным свойством естественных ИС является их способность к адаптации при изменении условий функционирования. Способность к адаптации путем самоорганизации основывается как на множественности элементов системы и разветвленности связей между ними, способствующих возникновению целостности, так и на наличии гибкого взаимодействия между элементами по типу обратных связей. Существенным признаком самоорганизации является обособление интеллектуальных систем от окружающей среды.
Функциональной особенностью обособленной ИС является активное взаимодействие ее со средой. Особенности ее структурной организации определяют направление и объем процессов взаимодействия системы со средой. Наличие чрезвычайно разнообразных обратных связей на всех уровнях влияет на интенсивность процессов взаимодействия. Отрицательные обратные связи обеспечивают стабильность функций системы, постоянство ее параметров, устойчивость к внешним воздействиям, Положительные обратные связи играют роль усилителей процессов и имеют особое значение для развития, накопления изменений. Наличие отрицательных и положительных обратных связей приводит к возможности развития по некоторому закону (программе) с использованием внешних ресурсов.
Сложная динамическая (устойчиво неравновесная) организация целенаправленной функционирующей системы требует непрерывного управления, без которого система не может существовать. Особенность этого управления состоит в том, что оно служит причиной ряда процессов в самой системе и прежде всего процессов внутреннего саморегулирования по законам организации системы.
Основными функциями самоорганизующейся системы являются функции информационного обеспечения (ФИО), материального и энергетического обеспечения (ФМЭО), перемещения (ФП) и адаптации (ФА). С точки зрения реализации НИ наибольший интерес представляет ФИО, которая является всеобъемлющей. Информация необходима для контроля внутреннего состояния системы, распознавания ситуаций, решения задачи обеспечения функционирования, выявления закономерностей и обучения. Для последующего использования получаемая информация должна разделяться и откладываться в соответствующие системы памяти (оперативные и долговременные).
Функцию информационного обеспечения реализуют органы контроля окружающей среды, навигации и анализа объектов. Обработка сигналов этих органов информации осуществляется особым управляющим узлом (УУ) (устройством), в котором производится анализ полученных данных, их обработка и обобщение, оценка ситуации и принятие решения. Одновременно ведется обогащение памяти, накопление опыта, обучение и отработка логических методов обработки информации. Муромцев Д.И. Введение в технологию экспертных систем. СПб: СПб ГУ ИТМО, 2012. - 891 с.
3. Методы приобретения знаний
Динамические свойства ИС могут быть описаны в пространстве состояний. Интеллектуальные операторы, реализующие восприятие, представление, формирование понятия, суждения и умозаключения в процессе познания, являются формальным средством обработки сведений и знаний, а также принятия решения. Все эти аспекты должны быть положены в основу построения ДЭС, функционирующих в реальном времени и реальном мире.
Динамическая экспертная система есть некоторое комплексное образование, способное оценивать состояние системы и среды, сопоставлять параметры желаемого и реального результатов действия, принимать решение и вырабатывать управление, способствующее достижению цели. Для этого ДЭС должна обладать запасом знаний и располагать методами решения задач.
3.1 Категории знаний
1) концептуальное (на уровне понятий) знание - это знание, воплощенное в словах человеческой речи или, конкретнее, - в научно-технических терминах и, естественно, в стоящих за этими терминами классах и свойствах объектов окружающей среды. Сюда же входят связи, отношения и зависимости между понятиями и их свойствами, причем связи абстрактные, также выраженные словами и терминами. Концептуальное знание - это сфера, главным образом, фундаментальных наук, если учитывать, что понятие есть высший продукт высшего продукта материи - мозга;
2) фактуальное, предметное знание - это совокупность сведений о качественных и количественных характеристиках конкретных объектов. Именно с этой категорией знания связываются термины «информация» и «данные», хотя такое употребление этих терминов несколько принижает их значение. Любое знание несет информацию и может быть представлено в виде данных; фактуальное знание - это то, с чем всегда имели дело вычислительные машины и с чем они больше всего имеют дело до сих пор. Современную форму накопления данных принято называть базами данных. Конечно, для организации баз данных, для поиска в них нужной информации надо опираться на концептуальное знание;
3) алгоритмическое, процедурное знание - это то, что принято называть словами «умение», «технология» и др. В вычислительном деле алгоритмическое знание реализуется в виде алгоритмов, программ и подпрограмм, но не всяких, а таких, которые могут передаваться из рук в руки и использоваться без участия авторов. Такая реализация алгоритмического знания называется программным продуктом. Наиболее распространенные формы программного продукта - пакеты прикладных программ, программные системы и другие, ориентированные на конкретную область применения ДЭС.
Организация и использование пакетов прикладных программ базируется на концептуальном знании. Ясно, что концептуальное знание является более высокой, определяющей категорией знания, хотя, с точки зрения практики, другие категории могут казаться более важными. Именно поэтому, вероятно, концептуальное знание редко воплощается в форме, доступной для обработки на вычислительных машинах. А если воплощается, то чаще всего неполно и односторонне. Носителем концептуального знания остается в большинстве случаев человек. Это тормозит автоматизацию многих процессов. Представления концептуального знания, а точнее, системы, реализующие все три категории знания, но выделяющие концептуальное знание на первый план и работающие на основе его интенсивного использования, называются базами знаний.
4. Виды интеллектуальных систем
4.1 Экспертные системы
Экспертная система (ЭС, expertsystem) -- компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. ЭС начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х получили коммерческое подкрепление.
В информатике экспертные системы рассматриваются совместно с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний -- как совокупность фактов и правил логического вывода в выбранной предметной области деятельности.
Похожие действия выполняет программа-мастер (wizard). Мастера применяются как в системных программах так и в прикладных для интерактивного общения с пользователем (например, при установке ПО). Главное отличие мастеров от ЭС -- отсутствие базы знаний; все действия жестко запрограммированы. Это просто набор форм для заполнения пользователем.
Другие подобные программы -- поисковые или справочные (энциклопедические) системы. По запросу пользователя они предоставляют наиболее подходящие (релевантные) разделы базы статей (представления об объектах областей знаний, их виртуальную модель).
4.2 Гибридные интеллектуальные системы
Под гибридной интеллектуальной системой принято понимать систему, в которой для решения задачи используется более одного метода имитации интеллектуальной деятельности человека. Таким образом ГИС -- это совокупность: аналитических моделей, экспертных систем, искусственных нейронных сетей, нечетких систем генетических алгоритмов, имитационных статистических моделей.
4.3 Интеллектуально - информационные системы
Интеллектуальная информационная система (ИИС, англ. intelligentsystem) -- разновидность интеллектуальной системы один из видов информационных систем, иногда ИИС называют системой, основанных на знаниях. ИИС представляет собой комплекс программных, лингвистических и логико-математических средств для реализации основной задачи: осуществление поддержки деятельности человека и поиска информации в режиме продвинутого диалога на естественном языке Муромцев Д.И. Введение в технологию экспертных систем. СПб: СПб ГУ ИТМО, 2012. - 891 с.
Глава 2.Экспертные системы, их особенности. Применение экспертных систем
2.1 Определение экспертных систем. Главное достоинство и назначение экспертных систем
Экспертные системы (ЭС)- это яркое и быстро прогрессирующее направление в области искусственного интеллекта (ИИ). Причиной повышенного интереса, который ЭС вызывают к себе на протяжении всего своего существования, является возможность их применения к решению задач из самых различных областей человеческой деятельности. Пожалуй, не найдется такой проблемной области, в которой не было бы создано ни одной ЭС или по крайней мере, такие попытки не предпринимались бы.
ЭС - это набор программ или программное обеспечение, которое выполняет функции эксперта при решении какой-либо задачи в области его компетенции. ЭС, как и эксперт-человек, в процессе своей работы оперирует со знаниями. Знания о предметной области, необходимые для работы ЭС, определенным образом формализованы и представлены в памяти ЭВМ в виде базы знаний, которая может изменяться и дополняться в процессе развития системы.
ЭС выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Они ориентированы на решение задач, обычно требующих проведения экспертизы человеком-специалистом. В отличие от машинных программ, использующий процедурный анализ, ЭС решают задачи в узкой предметной области (конкретной области экспертизы) на основе дедуктивных рассуждений. Такие системы часто оказываются способными найти решение задач, которые неструктурированны и плохо определены. Они справляются с отсутствием структурированности путем привлечения эвристик, т. е. правил, взятых “с потолка”, что может быть полезным в тех системах, когда недостаток необходимых знаний или времени исключает возможность проведения полного анализа.
Главное достоинство ЭС - возможность накапливать знания, сохранять их длительное время, обновлять и тем самым обеспечивать относительную независимость конкретной организации от наличия в ней квалифицированных специалистов. Накопление знаний позволяет повышать квалификацию специалистов, работающих на предприятии, используя наилучшие, проверенные решения.
Практическое применение искусственного интеллекта на машиностроительных предприятиях и в экономике основано на ЭС, позволяющих повысить качество и сохранить время принятия решений, а также способствующих росту эффективности работы и повышению квалификации специалистов.
Основными отличиями ЭС от других программных продуктов являются использование не только данных, но и знаний, а также специального механизма вывода решений и новых знаний на основе имеющихся. Знания в ЭС представляются в такой форме, которая может быть легко обработана на ЭВМ. В ЭС известен алгоритм обработки знаний, а не алгоритм решения задачи. Поэтому применение алгоритма обработки знаний может привести к получению такого результата при решении конкретной задачи, который не был предусмотрен. Более того, алгоритм обработки знаний заранее неизвестен и строится по ходу решения задачи на основании эвристических правил. Решение задачи в ЭС сопровождается понятными пользователю объяснениями, качество получаемых решений обычно не хуже, а иногда и лучше достигаемого специалистами. В системах, основанных на знаниях, правила (или эвристики), по которым решаются проблемы в конкретной предметной области, хранятся в базе знаний. Проблемы ставятся перед системой в виде совокупности фактов, описывающих некоторую ситуацию, и система с помощью базы знаний пытается вывести заключение из этих фактов
В любой момент времени в системе существуют три типа знаний:
- Структурированные знания - статические знания о предметной области. После того как эти знания выявлены, они уже не изменяются.
- Структурированные динамические знания - изменяемые знания о предметной области. Они обновляются по мере выявления новой информации.
- Рабочие знания- знания, применяемые для решения конкретной задачи или проведения консультации.
Все перечисленные выше знания хранятся в базе знаний. Для ее построения требуется провести опрос специалистов, являющихся экспертами в конкретной предметной области, а затем систематизировать, организовать и снабдить эти знания указателями, чтобы впоследствии их можно было легко извлечь из базы знаний.
Области применения систем, основанных на знаниях, могут быть сгруппированы в несколько основных классов: медицинская диагностика, контроль и управление, диагностика неисправностей в механических и электрических устройствах, обучение.
а) Медицинская диагностика.
Диагностические системы используются для установления связи между нарушениями деятельности организма и их возможными причинами. Наиболее известна диагностическая система MYCIN, которая предназначена для диагностики и наблюдения за состоянием больного при менингите и бактериальных инфекциях.
б) Прогнозирование.
Прогнозирующие системы предсказывают возможные результаты или события на основе данных о текущем состоянии объекта. Программная система “Завоевание Уолл-стрита” может проанализировать конъюнктуру рынка и с помощью статистических методов алгоритмов разработать для вас план капиталовложений на перспективу.
в) Планирование.
Планирующие системы предназначены для достижения конкретных целей при решении задач с большим числом переменных. Дамасская фирма Informat впервые в торговой практике предоставляет в распоряжении покупателей 13 рабочих станций, установленных в холле своего офиса, на которых проводятся бесплатные 15-минутные консультации с целью помочь покупателям выбрать компьютер, в наибольшей степени отвечающий их потребностям и бюджету. Кроме того, компания Boeing применяет ЭС для проектирования космических станций, а также для выявления причин отказов самолетных двигателей и ремонта вертолетов.
г) Интерпретация.
Интерпретирующие системы обладают способностью получать определенные заключения на основе результатов наблюдения. Система PROSPECTOR, одна из наиболее известных систем интерпретирующего типа, объединяет знания девяти экспертов. Используя сочетания девяти методов экспертизы, системе удалось обнаружить залежи руды стоимостью в миллион долларов, причем наличие этих залежей не предполагал ни один из девяти экспертов. Другая интерпретирующая система- HASP/SIAP. Она определяет местоположение и типы судов в тихом океане по данным акустических систем слежения.
д) Контроль и управление.
Системы, основанные на знаниях, могут применяться в качестве интеллектуальных систем контроля и принимать решения, анализируя данные, поступающие от нескольких источников. Такие системы уже работают на атомных электростанциях, управляют воздушным движением и осуществляют медицинский контроль. Они могут быть также полезны при регулировании финансовой деятельности предприятия и оказывать помощь при выработке решений в критических ситуациях.
е) Диагностика неисправностей в механических и электрических устройствах.
В этой сфере системы, основанные на знаниях, незаменимы как при ремонте механических и электрических машин (автомобилей, дизельных локомотивов и т.д.), так и при устранении неисправностей и ошибок в аппаратном и программном обеспечении компьютеров.
ж) Обучение.
Системы, основанные на знаниях, могут входить составной частью в компьютерные системы обучения. Система получает информацию о деятельности некоторого объекта (например, студента) и анализирует его поведение. База знаний изменяется в соответствии с поведением объекта.
Большинство ЭС включают знания, по содержанию которых их можно отнести одновременно к нескольким типам. Например, обучающая система может также обладать знаниями, позволяющими выполнять диагностику и планирование. Она определяет способности обучаемого по основным направлениям курса, а затем с учетом полученных данных составляет учебный план. Управляющая система может применяться для целей контроля, диагностики, прогнозирования и планирования.
Даже лучшие из существующих ЭС, которые эффективно функционируют как на больших, так и на мини-ЭВМ, имеют определенные ограничения по сравнению с человеком-экспертом.
1. Большинство ЭС не вполне пригодны для применения конечным пользователем. Если вы не имеете некоторого опыта работы с такими системами, то у вас могут возникнуть серьезные трудности. Многие системы оказываются доступными только тем экспертам, которые создавали из базы знаний.
2. Вопросно-ответный режим, обычно принятый в таких системах, замедляет получение решений. Например, без системы MYCIN врач может (а часто и должен) принять решение значительно быстрее, чем с ее помощью.
3. Навыки системы не возрастают после сеанса экспертизы.
4. Все еще остается проблемой приведение знаний, полученных от эксперта, к виду, обеспечивающему их эффективную машинную реализацию.
5. ЭС не способны обучаться, не обладают здравым смыслом. Домашние кошки способны обучаться даже без специальной дрессировки, ребенок в состоянии легко уяснить, что он станет мокрым, если опрокинет на себя стакан с водой, однако если начать выливать кофе на клавиатуру компьютера, у него не хватит “ума” отодвинуть ее.
6. ЭС неприменимы в больших предметных областях. Их использование ограничивается предметными областями, в которых эксперт может принять решение за время от нескольких минут до нескольких часов.
7. В тех областях, где отсутствуют эксперты (например, в астрологии), применение ЭС оказывается невозможным.
8. Имеет смысл привлекать ЭС только для решения когнитивных задач. Теннис, езда на велосипеде не могут являться предметной областью для ЭС, однако такие системы можно использовать при формировании футбольных команд.
9. Человек-эксперт при решении задач обычно обращается к своей интуиции или здравому смыслу, если отсутствуют формальные методы решения или аналоги таких задач.
Системы, основанные на знаниях, оказываются неэффективными при необходимости проведения скрупулезного анализа, когда число “решений” зависит от тысяч различных возможностей и многих переменных, которые изменяются во времени. В таких случаях лучше использовать базы данных с интерфейсом на естественном языке.
Наиболее известные ЭС, разработанные в 60-70-х годах, стали в своих областях уже классическими. По происхождению, предметным областям и по преемственности применяемых идей, методов и инструментальных программных средств их можно разделить на несколько семейств.
1. META-DENDRAL.Система DENDRAL позволяет определить наиболее вероятную структуру химического соединения по экспериментальным данным (масс- спектрографии, данным ядерном магнитного резонанса и др.).M-D автоматизирует процесс приобретения знаний для DENDRAL. Она генерирует правила построения фрагментов химических структур.
2. MYCIN-EMYCIN-TEIREIAS-PUFF-NEOMYCIN. Это семейство медицинских ЭС и сервисных программных средств для их построения.
3. PROSPECTOR-KAS. PROSPECTOR- предназначена для поиска (предсказания) месторождений на основе геологических анализов. KAS- система приобретения знаний для PROSPECTOR.
4. CASNET-EXPERT. Система CASNET- медицинская ЭС для диагностики выдачи рекомендаций по лечению глазных заболеваний. На ее основе разработан язык инженерии знаний EXPERT, с помощью которой создан ряд других медицинских диагностических систем.
5. HEARSAY-HEARSAY-2-HEARSAY-3-AGE. Первые две системы этого ряда являются развитием интеллектуальной системы распознавания слитной человеческой речи, слова которой берутся из заданного словаря. Эти системы отличаются оригинальной структурой, основанной на использовании доски объявлений - глобальной базы данных, содержащей текущие результаты работы системы. В дальнейшем на основе этих систем были созданы инструментальные системы HEARSAY-3 и AGE (Attempt to Generalize- попытка общения) для построения ЭС.
6. Системы AM (Artifical Mathematician- искусственный математик) и EURISCO были разработаны в Станфордском университете доктором Д. Ленатом для исследовательских и учебных целей. Ленат считает, что эффективность любой ЭС определяется закладываемыми в нее знаниями. По его мнению, чтобы система была способна к обучению, в нее должно быть введено около миллиона сведений общего характера. Это примерно соответствует объему информации, каким располагает четырехлетний ребенок со средними способностями. Ленат также считает, что путь создания узкоспециализированных ЭС с уменьшенным объемом знаний ведет к тупику.
В систему AM первоначально было заложено около 100 правил вывода и более 200 эвристических алгоритмов обучения, позволяющих строить произвольные математические теории и представления. Сначала результаты работы системы были весьма многообещающими. Дальнейшее развитие системы замедлилось и было отмечено, что несмотря на проявленные на первых порах “математические способности”, система не может синтезировать новых эвристических правил, т.е. ее возможности определяются только теми эвристиками, что были в нее изначально заложены. Муромцев Д.И. Введение в технологию экспертных систем. СПб: СПб ГУ ИТМО, 2012. - 891 с.
Чтобы проводить экспертизу, компьютерная программа должна быть способна решать задачи посредством логического вывода и получать при этом достаточно надежные результаты. Программа должна иметь доступ к системе фактов, называемой базой знаний.
Программа также должна во время консультации выводить заключения из информации, имеющейся в базе знаний. Некоторые экспертные системы могут также использовать новую информацию, добавляемую во время консультации. Экспертную систему, таким образом, можно представлять состоящей из трех частей:
1. База знаний (БЗ).
2. Механизм вывода (МВ).
3. Система пользовательского интерфейса (СПИ).
База знаний - центральная часть экспертной системы. Она содержит правила, описывающие отношения или явления, методы и знания для решения задач из области применения системы. Можно представлять базу знаний состоящей из фактических знаний и знаний, которые используются для вывода других знаний. Утверждение "Джон Ф. Кеннеди был 35-м президентом Соединенных Штатов" - пример фактического знания. "Если у вас болит голова, то примите две таблетки цитрамона" - пример знания для вывода. Сама база знаний обычно располагается на диске или другом носителе.
Механизм вывода содержит принципы и правила работы. Механизм вывода "знает", как использовать базу знаний так, чтобы можно было получать разумно согласующиеся заключения (выводы) из информации, находящейся в ней.
Когда экспертной системе задается вопрос, механизм вывода выбирает способ применения правил базы знаний для решения задачи, поставленной в вопросе. Фактически, механизм вывода запускает экспертную систему в работу, определяя какие правила нужно вызвать и организуя к ним доступ в базу знаний. Механизм вывода выполняет правила, определяет когда найдено приемлемое решение и передает результаты программе интерфейса с пользователем.
Когда вопрос должен быть предварительно обработан, то доступ к базе знаний осуществляется через интерфейс с пользователем. Интерфейс - это часть экспертной системы, которая взаимодействует с пользователем.
Система интерфейса с пользователем принимает информацию от пользователя и передает ему информацию. Просто говоря, система интерфейса должна убедиться, что, после того как пользователь описал задачу, вся необходимая информация получена. Интерфейс, основываясь на виде и природе информации, введенной пользователем, передает необходимую информацию механизму вывода. Когда механизм вывода возвращает знания, выведенные из базы знаний, интерфейс передает их обратно пользователю в удобной форме. Интерфейс с пользователем и механизм вывода могут рассматриваться как "приложение" к базе знаний. Они вместе составляют оболочку экспертной системы. Для базы знаний, которая содержит обширную и разнообразную информацию, могут быть разработаны и реализованы несколько разных оболочек.
Хорошо разработанные оболочки экспертных систем обычно содержат механизм для добавления и обновления информации в базе знаний.
Как видим, экспертная система состоит из трех основных частей. Взаимосвязь между частями может быть сложной, зависящей от природы и организации знаний, а также от методов и целей вывода.
Представление знаний - это множество соглашений по синтаксису и семантике, согласно которым описываются объекты. Хорошее правило при проектировании представления знаний - это организация знаний в такой форме, которая позволяет легко осуществлять доступ с помощью естественных и простых механизмов. "Чем проще, тем лучше" - правило, которое нужно помнить, при работе с представлением знаний.
Экспертные системы часто создаются "инженером по знаниям"(или проектировщиками экспертных систем), которые работают с человеком-экспертом, чтобы закодировать знания эксперта в базе знаний.
Первый способ - это классификация и помещение фактов и чисел (фрагментов фактического знания) в правила Турбо-Пролога.
Это представление подходит для использования в экспертных системах, базирующихся на правилах. Другой способ - это организация фактов и числовой информации в утверждениях, которые образуют базу знаний на утверждениях.
Представление знаний в утверждениях подходит для использования в экспертных системах, базирующихся на логике.
Система пользовательского интерфейса обеспечивает взаимодействие между экспертной системой и пользователем. Это взаимодействие обычно включает несколько функций:
1. Обработка данных, полученных с клавиатуры, и высвечивание вводимых и выводимых данных на экране.
2. Поддержка диалога между пользователем и системой.
3. Распознавание ситуации непонимания между пользователем и системой.
4. Обеспечение "дружественности" по отношению к пользователю.
Система интерфейса с пользователем должна эффективно обрабатывать ввод и вывод. Для этого необходимо обрабатывать вводимые и выводимые данные быстро, в ясной и выразительной форме. Необходимо также включить возможность работы с дополнительными средствами такими, как печатающие устройства, магнитные диски и дополнительные файлы данных.
Кроме того, система интерфейса должна поддерживать соответствующий диалог между пользователем и системой. Диалог - это общая форма консультации с экспертной системой.
Консультация должна завершаться ясным утверждением, выдаваемым системой, и объяснением последовательности вывода, приведшей к этому утверждению.
Система пользовательского интерфейса должна также распознавать непонимание, между пользователем и системой, возникшее либо из-за ошибки, либо на принципиальной основе. Система должна реагировать соответствующим образом на эту ситуацию. Например, не должно произойти сбоя системы, если пользователь вводит 1, когда ожидается "да" или "нет", или когда пользователь задает бессмысленный вопрос.
Способность экспертной системы моделировать человека эксперта может меняться от простых познавательных процессов до включения новых знаний или новых способов решения задачи. Система интерфеса должна информировать пользователя о методике работы системы и ее развитии, если такое развитие предусмотрено в системе.
Наконец, система пользовательского интерфейса должна быть "дружелюбной" к пользователю. Например, последовательность меню, показывающая задачи, которые пользователь может выбрать, является необходимой чертой экспертной системы.
Пользователь также должен иметь возможность взаимодействовать с экспертной системой естественным образом. В идеале пользователь должен иметь возможность использовать естественный язык Муромцев Д.И. Введение в технологию экспертных систем. СПб: СПб ГУ ИТМО, 2012. - 891 с.
2.2 Функции экспертных систем
Приобретение знаний - это передача возможного опыта решения проблемы от некоторого источника знаний и преобразование его в вид, который позволяет использовать эти знания в программе.
Передача познания выполняется в ходе достаточно многих твердых и обширных интервью между экспертом в разработке ЭС (мы назовем далее ее инженера по знаниям), и эксперт в определенной области данных, способной достаточно точно, чтобы сформулировать опыт, доступный для этого. По существующим оценкам такой метод возможно генерировать от двух до пяти “элементов познания” (например, правила влияния) в день. Конечно, это очень низкая скорость именно поэтому много исследователей - историков рассматривает функцию сбора познания как один из основных "критических параметров" техники экспертных систем.
Причин такой низкой производительности предостаточно. Перечислим только некоторые из них:
Специалисты в узкой области, как правило, говорят на собственном жаргоне, который трудно преобразовать на нормальный "человеческий" язык. Но смысл вульгарного "слова" полностью не очевиден, именно поэтому дополнительные вопросы для спецификации его логического или математического значения требуются многие. Например, эксперты в военной стратегии говорят об “агрессивной демонстрации” с внешней военной мощью, но таким образом не могут объяснить, чем такая "агрессивная" демонстрация отличается от демонстрации, которые делают не, переносят угрозы;
Факты и принципы, базовые много специфических областей познания эксперта, не может быть точно сформулирован с точки зрения математической теории или решительной модели, какие свойства - четкое углубление. Так, эксперт в финансовой области может знать, что достоверные события могут стать причиной роста или понижения цитат в фондовой бирже, но он чего-либо Вам не говорит точно о механизмах, которые приводят к такому результату, или о количественной оценке влияния этих факторов. Статистические модели могут помочь сделать общий долгосрочный прогноз, но, как правило, такие методы не работают относительно блюд определенных движений на кратковременных антрактах;
Решить проблему в определенной области, эксперту недостаточно просто, чтобы обладать общим количеством познания фактов и принципов этой области. Например, квалифицированный эксперт знает, какой вид информация, которую требуется выделить для оператора этого или того мнения, различные источники информации и поскольку возможно разделить соревнование на простом, который может быть решен более или менее независимо, то, сколько достоверны. Открывать в ходе интервью такое познание, которое является основанным на личном опыте и ужасно признании формализации, намного более трудным, чем получить простой список любых фактов или общих принципов;
Четный в очень узкой области, исполнимой программе персонажем, очень часто необходимо поместить квалифицированный анализ в достаточно обширное окружение, которое не включает также много вещей, стандартных эксперту, отдельно понятому, но для чуждого вида ни в коем случае те, которые не.
Представление знаний - еще одна функция экспертной системы. Теория представления знаний - это отдельная область исследований, тесно связанная с философией формализма и психологией. Предмет исследования в этой области - методы ассоциативного запоминающего устройства информации, подобной тому, что существует в мозге персонажа. В результате основное внимание уделяют логической, вместо биологической стороне процесса, понижая подробные сведения материальных преобразований.
Исследования в области представления знаний, разработанного в направлениях раскрытия принципов работы хранения персонажа, создания теорий экстракции сходимости от хранения, распознавания и восстановления. Некоторые из достигнутых результатов, которые приводят создание компьютерных программ, которые смоделировали различные методы привязки понятий (концептов). Были компьютерные приложения, которые могли обнаружить до некоторой степени необходимые "элементы" познания на определенном этапе решения о некоторой проблеме. Должным образом психологическая надежность этих теорий, утянутых в фон, и основное, помещает с точки зрения искусственного интеллекта проблематика, занял их возможность служить инструментом для работы с новой информацией и строениями управления.
В области представления экспертных систем методов познания формального описания массивов полезной информации с целью их последующей обработки посредством символического интереса расчетов. Формальное описание означает оптимизировать в рамках любого языка, обладающего достаточно точно формализованным синтаксисом создания прессования и того же самого уровня семантикой, координируя смысл прессования с его формой.
Символические расчеты означают производительность нечисленных операций, в которых символах и символьных строениях для представления могут быть созданы различный концептов и соотношения промежуточный.
В области языков представления искусственного интеллекта - машинные языки, ориентированные на устройство описаний объектов и идей, в противовесе к статическим наборам последовательных команд или хранению простых элементов данных, разрабатываются. Основные критерии доступа к представлению познания - логическое соответствие, эвристическая емкость и естественность, органичность нотации.1. Л.С. Болотова. Системы искусственного интеллекта. Теоретические основы и формальные модели представления знаний: Учеб.пособие/ МИРЭА.- М., 2001. - 78 с.
Логическое соответствие означает, что представление должно обладать возможностью распознать все различия, которые помещаются в начальный аромат. Например, невозможно представить идею, что у каждой медицины есть любая сторона, нежелательный эффект, если только будет невозможно привести различие между миссией определенного лекарственного препарата и его побочным эффектом (например, аспирин ухудшает язву желудка). В более общем смысле прессование, передающее этот результат, звучит так: “каждая медицина обладает нежелательным, побочный эффект, определенный для этого приготовления”.
Эвристическая емкость означает, что наряду с наличием показательного языка представления должны быть некоторые средства использования представлений, созданных и интерпретируемых так, чтобы было возможно решить проблему с их справкой. Часто кажется, что язык, обладающий большей показательная возможность с точки зрения количества семантических различий, более добавляется в управлении описания корреляций в ходе решения проблемы. Возможность к прессованию во многих из найденных формализмов может казаться достаточно ограниченной по сравнению с английским языком или четной стандартной логикой. Часто уровень эвристической емкости рассматривает результат, то есть на этом, насколько легко это, кажется, выводит необходимое познание в отношении особой ситуации. Быть гарантированным, что познание больше всех подходов для решения об определенной проблеме, - это одно из качеств, которое отличает действительно специалиста, эксперта в определенной области, от новичка или просто начитанного человека.
Естественность нотации нужно рассмотреть как определенное достоинство системы как большая часть приложений, созданных на основе ЭС, накопления потребностей большого объема познания, и решить такую задачу достаточно трудно, если договоры на языке представления являются слишком трудными. Любой эксперт говорит, что в других равных характеристиках, что система, с которой легче работать лучше. Прессование, которым формально описывается познание, должно быть когда бы ни было возможно простым для написания, и их смысл - четкий четный к тому, кто не знает, как компьютер интерпретирует это прессование. Например, декларативный код программы может служить, который сам по себе дает достаточно точное представление о процессе его производительности, четной к тому, у кого нет никакого представления о подробных данных реализации отдельных инструкций компьютер.
Есть много договоров, соответствующего познания для того, чтобы кодировать на уровне языка. Среди них мы отмечаем порождающие правила (порождающие правила), покрытые сетчатым узором объекты (структурированные объекты) и логические программы (логические программы). В большой части ЭС это используется один или несколько из перечислимых формализмов, и параметры в милости и против любого из них до настоящего времени представляют сюжет для свежих обсуждений среди теоретиков.
Управление процессом поиска решения.
При разработке ЭС пристальное внимание должен быть дан и тому, как доступ обеспечивается для познания и поскольку они используются поиском решения. Познание того, какое познание необходимо в этом или что особая ситуация, и возможность избавиться от них - важная часть процесса функционирования ЭС. Такое познание, полученное имя метазнаний, то есть познание познания. Решение о нетривиальных проблемах требует также определенный уровень планирования и управления по выбору, что вопрос должен быть установлен, что тест выполнить и так далее.
Использование различной стратегии поиска доступного познания, делает достаточно существенное воздействие на характеристики эффективности программы. Они, которые определяет стратегия, какой метод программа находит решение проблемы в некотором пространстве вариантов. Как правило, не происходит так, чтобы данные, с которыми программа работы с базой данных выделяет, позволили "выходить" точно на области в этом пространстве, в котором имеет смысл искать ответ.
Большинство представлений знаний могут быть использованы в разных режимах управления.
Разъяснение принятого решения.
Вопрос на том, как помочь потребителю понять структурные конъюнкции некоторого трудного компонента программы, он соединяется с довольно новой областью взаимодействия человека и машины, которая появилась на пересечении таких областей, как искусственный интеллект, промышленная техника, физиология и эргономика. Для сегодня содействия этой области исследователей - историков, которые зацепляются ЭС, составы в разработке методов представления информации о свойстве программы в ходе схемы расположения игроков цепочки логических выводов поиском решения.
Представление информации о свойстве ЭС важно для многих причин:
- Потребители, работающие с системой, нуждайтесь в подтверждении этого в каждом конкретном случае вывод, в который прибывала программа, в ядре корректно;
- Инженеры, имеющие дело со схемой расположения игроков БЗ, должны быть убеждены, что познание, сформулированное ими, применяется правильно, включая в случае, когда есть прототип;
- В области данных это является требуемым для экспертов, чтобы проследить цепочку доказательства и метод использования той сходимости, которые от их слов были введены в БЗ. Это позволяет судить, насколько правильно они применяются в текущем состоянии дел;
- К компаниям-производителям телевизионных программ, которые сопровождают, устраните неисправности и обновите систему, необходимо иметь инструмент в инструкции, позволяя блестеть в “ее внутренней части” на уровень выше, чем вызов отдельных процедур языка;
- Администратор системы, используя опытную технику, кто несет ответственность за следствия решения, принятого программой, также нуждается в подтверждении, что эти решения выравниваются по ширине достаточно.
Прозрачность системы - возможность системы объяснить метод принятия решений. Как прозрачность системы понято, к тому, насколько просто штат, чтобы очистить это программа и почему делает. Отсутствие достаточной прозрачности поведения системы не позволяет эксперту влиять на свою производительность или давать уведомление, поскольку возможно повысить это. Трассировка и оценка поведения системы - задача, достаточно трудная и, необходима для ее совместных усилий решения эксперта и эксперта в информатике.
Экспертные системы, выполненные в виде отдельных программ, на некотором алгоритмическом языке, база знаний которых является непосредственно частью этой программы. Как правило, такие системы предназначены для решения задач в одной фиксированной предметной области. При построении таких систем применяются как традиционные процедурные языки PASCAL, C и др., так и специализированные языки искусственного интеллекта LISP, PROLOG.
*Оболочки экспертных систем - программный продукт, обладающий средствами представления знаний для определенных предметных областей. Задача пользователя заключается не в непосредственном программировании, а в формализации и вводе знаний с использованием предоставленных оболочкой возможностей. Недостатком этих систем можно считать невозможность охвата одной системой всех существующих предметных областей. Примером могут служить ИНТЕРЭКСПЕРТ, РС+, VP-Expert.
*Генераторы экспертных систем - мощные программные продукты, предназначенные для получения оболочек, ориентированных на то или иное представление знаний в зависимости от рассматриваемой предметной области. Примеры этой разновидности - системы KEE, ART и др..
Системы EXSYS и GURU относятся к системам дедуктивного продукционного типа, причем система GURU (в ее современной версии, ориентированной на рабочие станции) по сути является инструментальной средой, поддерживающей различные режимы конструирования прикладных ЭС и обладающей достаточно развитыми средствами обработки фактора неопределенности. Эта система ориентирована на различные классы пользователей в зависимости от их подготовки в области искусственного интеллекта и программирования, имеет развитый интерфейс с современными СУБД и электронными таблицами, средства сбора статистики и т. д. Система может работать на различных вычислительных платформах под управлением различных операционных систем, а также имеет поддержку сетевой конфигурации. Л.С. Болотова. Системы искусственного интеллекта. Теоретические основы и формальные модели представления знаний: Учеб.пособие/ МИРЭА.- М., 2001. - 78 с.
Экспертная система Exsys представляет собой интеллектуальную систему, которая может быть использована для разработки базы знаний в любой предметной области. При этом знания представляются в виде продукционных правил. В систему включены средства отладки и тестирования программы, редактирования для модификации знаний и данных.
В списке наиболее распространенных в настоящее время за рубежом экспертных систем и их оболочек можно выделить следующие наименования: INSIGT, LOGIAN, NEXPERT, RULE MASTER, KDS, PICON, KNOWLEDGE CRAFT, KESII, S1, TIMM и др.
В качестве критериев, по которым можно судить о возможности создания экспертной системы следует отметить следующие:
1. Необходимость символьных рассуждений, очевидно, нет смысла разрабатывать экспертную систему для численных расчетов, например, для преобразований Фурье, интегрирования, решения систем алгебраических уравнений и др.
2. Наличие экспертов, компетентных в избранном круге вопросов, которые согласны сотрудничать при создании ЭС.
3. Поставленная проблема должна быть достаточно важной и актуальной. Это могут быть проблемы, требующие высокого уровня экспертизы, либо простые, но трудоемкие многократно повторяющиеся проверки. Нет смысла тратить время на решение проблем, которые возникают редко и могут быть разрешены человеком с обычной квалификацией.
4. Необходимо четко ограничивать круг решаемых задач, т.е. предметная область выбирается достаточно "узкой", чтобы избежать "комбинаторного взрыва" объема информации необходимой для компетентного решения поставленной задачи.
5. Необходима согласованность мнений экспертов о том, как следует решать поставленные задачи, какие факты необходимо использовать и каковы общие правила вынесения суждений. В противном случае невозможно расширить базу знаний за пределы опыта одного человека и осуществить сплав экспертных знаний из нескольких областей.
6. Должно быть достаточно исходных данных для проверки работоспособности экспертной системы в выбранной предметной области, чтобы разработчики смогли убедиться в достижимости некоторого заданного уровня ее функционирования.
8. Должна обеспечиваться возможность постепенного наращивания системы. База знаний должна легко расширяться и корректироваться, так как правила часто меняются с появлением новых фактов.
Ценность использования ЭС проявляется в следующих аспектах:
a) В сборе, оперативном уточнении, кодировании и распространении экспертных знаний.
b) В эффективном решении проблем, сложность которых превышает человеческие возможности и для которых требуются экспертные знания нескольких областей.
c) В сохранении наиболее уязвимой ценности коллектива - коллективной памяти.
Создание баз знаний открывает широкие возможности, которые обусловлены безошибочностью и тщательностью, присущими ЭВМ и синтезом знаний экспертов. Если база знаний объединяет информацию по нескольким дисциплинам, то такой "сплав" знаний приобретает дополнительную ценность.
Экспертная система позволяет решить проблему сохранения экспертных знаний, связанную с утратой наиболее квалифицированных экспертов в результате их продвижения по службе, смерти, перехода на другую работу или выхода на пенсию, а также позволит сделать знания легко доступными для тех, кто займет места ушедших экспертов.
Экспертная система VP-Expert представляет собой "пустую" оболочку, хорошо зарекомендовавшую и получившую достаточно широкое распространение. ее применение возможно на IBM совместимых персональных компьютерах с операционной системой MS DOS, имеющих не менее 256. К оперативной памяти и адаптеры графических дисплеев подобные CGA, EGA или HERKULES. Важной особенностью оболочки, существенно расширяющей ее возможности, является совместимость с файлами созданными dBASE II, dBASE III и dBASE III+.
MatLab
Зарождение системы MATLAB относится к концу 70-х годов, когда первая версия этой системы была использована в Университете Нью Мехико и Станфордском университете для преподавания курсов теории матриц, линейной алгебры и численного анализа. В это время активно разрабатывались пакеты прикладных программ по линейной алгебре LINPACK и EISPACK на языке FORTRAN, и авторы системы MATLAB искали способы использовать эти пакеты, не программируя на языке FORTRAN.
Сейчас возможности системы значительно превосходят возможности первоначальной версии матричной лаборатории Matrix Laboratory. Нынешний MATLAB - это высокоэффективный язык инженерных и научных вычислений. Он поддерживает математические вычисления, визуализацию научной графики и программирование с использованием легко осваиваемого операционного окружения, когда задачи и их решения могут быть представлены в нотации, близкой к математической. Наиболее известные области применения системы MATLAB:
математика и вычисления;
разработка алгоритмов;
вычислительный эксперимент, имитационное моделирование, макетирование;
анализ данных, исследование и визуализация результатов;
научная и инженерная графика;
разработка приложений, включая графический интерфейс пользователя.
MATLAB - это интерактивная система, основным объектом которой является массив, для которого не требуется указывать размерность явно. Это позволяет решать многие вычислительные задачи, связанные с векторно-матричными формулировками, существенно сокращая время, которое понадобилось бы для программирования на скалярных языках типа C или FORTRAN.
Версия MATLAB 7 - это последнее достижение разработчиков; она содержит существенные изменения и улучшения в каждом разделе, начиная от встроенных математических функций и новых конструкций программирования и заканчивая новыми структурами данных, объектно-ориентированным подходом, новыми средствами визуализации и графическим интерфейсом пользователя.
Фирма The MathWorks, Inc. поддерживает тесные связи с университетским миром и предлагает для образовательных версий значительные скидки. В настоящее время студенческая версия Student Edition of MATLAB ничем не отличается от коммерческой версии, но имеет невысокую цену и предназначена для студентов, работающих на персональном компьютере дома или в общежитии.
Одно из назначений математики - служить языком общения между учеными и инженерами. Матрицы, дифференциальные уравнения, массивы данных, графики - это общие объекты и конструкции, используемые как в прикладной математике, так и в системе MATLAB. Именно эта фундаментальная основа обеспечивает системе MATLAB непревзойденную мощь и доступность. Стоит прислушаться к следующему афористичному мнению: "Причина, по которой MATLAB столь полезен для обработки сигналов, состоит в том, что он не проектировался специально для этой цели, а создавался для математиков".
Система MATLAB - это одновременно и операционная среда и язык программирования. Одна из наиболее сильных сторон системы состоит в том, что на языке MATLAB могут быть написаны программы для многократного использования. Пользователь может сам написать специализированные функции и программы, которые оформляются в виде М-файлов. По мере увеличения количества созданных программ возникают проблемы их классификации и тогда можно попытаться собрать родственные функции в специальные папки. Это приводит к концепции пакетов прикладных программ (ППП), которые представляют собой коллекции М-файлов для решения определенной задачи или проблемы.
В действительности ППП - это нечто большее, чем просто набор полезных функций. Часто это результат работы многих исследователей по всему миру, которые объединяются в зависимости от области применения - теория управления, обработка сигналов, идентификация и т. п. Именно поэтому пакеты прикладных программ - MATLAB Application Toolboxes, входящие в состав семейства продуктов MATLAB, позволяют находиться на уровне самых современных мировых достижений.
PROLOG
Пролог (Prolog) -- язык логического программирования, основанный на логике дизъюнктов Хорна, представляющей собой подмножество логики предикатов первого порядка.
Разработка языка Prolog началась в 1970 г. Аланом Кулмероэ и Филиппом Русселом. Будучи декларативным языком программирования, Пролог воспринимает в качестве программы некоторое описание задачи, и сам производит поиск решения, пользуясь механизмом бэктрекинга и унификацией. Целью разработки языка Prolog было предоставить возможность задания спецификаций решения и позволить компьютеру вывести из них последовательность выполнения для этого решения, а не задание алгоритма решения задачи, как в большинстве языков.
...Подобные документы
Определение экспертных систем, их достоинство и назначение. Классификация экспертных систем и их отличие от традиционных программ. Структура, этапы разработки и области применения. Классификация инструментальных средств и технология разработки систем.
курсовая работа [78,0 K], добавлен 03.06.2009История развития искусственного интеллекта. Экспертные системы: их типы, назначение и особенности, знания и их представление. Структура идеальной и инструменты построения экспертных систем. Управление системой продукции. Семантические сети и фреймы.
реферат [85,7 K], добавлен 20.12.2011Понятие искусственного интеллекта как свойства автоматических систем брать на себя отдельные функции интеллекта человека. Экспертные системы в области медицины. Различные подходы к построению систем искусственного интеллекта. Создание нейронных сетей.
презентация [3,0 M], добавлен 28.05.2015Экспертные системы как наиболее значительное практическое достижение в области искусственного интеллекта, их современная известность и применение. Назначение систем и обоснование их важности, структура и обязательные элементы, требования к системам.
контрольная работа [144,6 K], добавлен 02.09.2009Технология экспертных систем на основе искусственного интеллекта: разработка и внедрение компьютерных программ, способных имитировать, воспроизводить области деятельности человека, требующих мышления, определенного мастерства и накопленного опыта.
курсовая работа [264,8 K], добавлен 22.12.2008Экспертные системы как направление исследований в области искусственного интеллекта по созданию вычислительных систем, умеющих принимать решения, схожие с решениями экспертов в заданной предметной области. Принципы построения алгоритма и его оценка.
курсовая работа [517,2 K], добавлен 12.06.2015Понятие и содержание экспертных систем, принципы взаимосвязи элементов: интерфейса пользователя, собственно пользователя, эксперта, средств объяснения, рабочей памяти и машины логического вывода. Классификация, преимущества, недостатки экспертных систем.
реферат [33,9 K], добавлен 25.02.2013Сущность, виды, направления использования и основные понятия экспертных систем. Понятие и характеристика основных элементов структуры экспертной системы. Основные виды классификаций экспертных систем: по решаемой задаче и по связи с реальным временем.
доклад [104,5 K], добавлен 09.06.2010Экспертная система - компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Структура, режимы функционирования, классификация экспертных систем, этапы разработки. Базы знаний интеллектуальных систем.
реферат [32,2 K], добавлен 04.10.2009Понятие искусственного интеллекта. Представление знаний и разработка систем, основанных на знаниях. Распознавание образов и машинный перевод. Нейрокомпьютеры и сети. Экспертные системы, их структура,классификация и инструментальные средства построения.
курсовая работа [922,1 K], добавлен 12.01.2009Назначение и архитектура экспертных систем, их применение в сфере образования. Экспертные системы тестирования, принципы их функционирования. Инструментальные средства создания приложения и разработка программы тестирования. Описание программы, листинг.
дипломная работа [706,4 K], добавлен 07.05.2012Решение неформализованных задач экспертными системами. Системы искусственного интеллекта, эвристический поиск решения. Особенности работы экспертных систем. Знания о процессе решения задач, используемые интерпретатором. Системы обнаружения неисправности.
презентация [100,1 K], добавлен 12.02.2014Информация, как сырье и как товар: абсолютная, относительная и аналитическая информация. Автоматизированные системы распознавания образов. Система искусственного интеллекта. Признаки и этапы жизненного цикла интеллектуальных информационных систем.
шпаргалка [60,4 K], добавлен 10.06.2009Инструментальные средства проектирования интеллектуальных систем. Анализ традиционных языков программирования и представления знаний. Использование интегрированной инструментальной среды G2 для создания интеллектуальных систем реального времени.
контрольная работа [548,3 K], добавлен 18.05.2019Программные системы искусственного интеллекта, экспертные системы как их разновидность. Автоматизированное формирование баз знаний в формате CLIPS на основе анализа баз данных СУБД Cache. Программные средства и технологии. Описание программной системы.
дипломная работа [5,1 M], добавлен 25.05.2012Этапы разработки экспертных систем. Требования к организации-разработчику. Правильный выбор подходящей проблемы, работа с экспертом. Разработка прототипной системы. Развитие прототипа до промышленной экспертной системы. Особенности оценки системы.
презентация [169,1 K], добавлен 14.08.2013Решение прикладных задач с использованием искусственного интеллекта. Преимущества и недостатки экспертных систем по сравнению с использованием специалистов, области их применения. Представление знаний и моделирование отношений семантическими сетями.
реферат [260,9 K], добавлен 25.06.2015Понятие искусственного интеллекта и интеллектуальной системы. Этапы развития интеллектуальных систем. Модели представления знаний, процедурный (алгоритмический) и декларативный способы их формализации. Построение концептуальной модели предметной области.
презентация [80,5 K], добавлен 29.10.2013Участники и инструментальные средства создания экспертной системы. Классификация, преимущества, сферы применения экспертных систем. Разработка блок-схемы алгоритма и программы на языке Турбо Паскаль для решения задачи по теме "Двумерные массивы".
курсовая работа [1,0 M], добавлен 18.01.2014Сущность и назначение экспертной системы, ее основные элементы и предъявляемые требования, обоснование важности и области применения. Методика получения объяснений в результате действия экспертной системы, их виды. Построение модели гибкого интерфейса.
курсовая работа [202,4 K], добавлен 10.11.2009