Материнские платы: технологии производства, принципы работы, перспективы развития
Основные технологические принципы изготовления печатных плат. Схема процесса аддитивной технологии с использованием фоторези. Наличие северного и южного мостов как классическая, общепринятая схема построения чипсета, на котором базируется системная плата.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 07.04.2020 |
Размер файла | 44,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Специальность__09.02.03 Программирование в компьютерных системах
Курсовая работа
по дисциплине Технические средства информатизации
на тему
Материнские платы: технологии производства, принципы работы, перспективы развития
Выполнил: студент(ка) группы ПКС-118
Нестеров Дмитрий Сергеевич
Введение
Важнейшим узлом ПК является системная плата (main board), иначе называемая материнской платой (motherboard). Системная плата есть не во всех компьютерах. В некоторых ПК элементы, обычно устанавливаемые на системной плате, расположены на отдельных платах расширения, вставленных в разъемы системной платы - слоты расширения. В компьютерах такого типа плата с разъемами называется объединительной платой (backplane), а системные блоки подобной конструкции называются объединительными системными блоками. Объединительная плата может быть пассивной и активной. На пассивной плате устанавливаются разъемы шины и, возможно, электрические схемы для обработки буферов и дисковых накопителей. Все остальные компоненты располагаются на одной или нескольких платах расширения, вставляемых в разъемы объединительной платы. Иногда вся схема размешается на одной плате расширения, которую называют системной, или материнской картой (mothercard). Такая системная карта является, в сущности, системной платой, вставляемой в разъем пассивной объединительной платы. Системы такого типа редко встречаются из-за дороговизны высокопроизводительных системных карт. Конструкции с объединительной платой популярны в промышленности, где их часто монтируют в стойках. Такой же конструкцией отличаются некоторые мощные файл-серверы. На активной объединительной плате установлен котроллер шины. Обычно на ней содержатся и другие компоненты. В большинстве компьютеров на активной объединительной плате располагаются практически все узлы обычной системной платы, кроме процессорного модуля. Процессорный модуль - это плата, на которой установлены центральный процессор и все связанные с ним узлы, например схема синхронизации, кэш и т. д. Конструкция с процессорным модулем позволяет легко перевести систему на другой процессор, сменив всего одну плату. Фактически речь идет о модульной системной плате с заменяемой секцией процессора. В большинстве современных ПК объединительная плата активна и имеет отдельный процессорный модуль. К сожалению, из-за отсутствия стандарта на способ взаимодействия процессорного модуля с остальными узлами системы каждая фирма выпускает свои платы, которые можно приобрести только у производителя конкретного компьютера. Такое сужение рынка приводит к тому, что эти платы дороже большинства полных системных плат (с процессором) других производителей. Без сoмнений, незаслуженно малое внимание уделяется такой основополагающей составляющей основе компьютера, как материнской плате. По большей части это проблема слабого понимания большинства рядовых потребителей того, что собой представляется эта весьма непростая деталь.
На что обращает внимание при покупке компьютера покупатель среднего класса? На частоту процессора и объем видеокарты в первую очередь. На размер оперативной памяти и винчестера во вторую очередь. Мало кто заглядывает дальше этого, а интересующихся частотными и прочими характеристиками материнских плат - вообще очень мало. А ведь если процессор - это мозг каждого компьютера, то и материнская плата тоже не менее важный функциональный компонент ПК, соединяющий все остальные устройства между собой. Целью этого реферата является восполнение пробелов в знании в этой неоднозначной и запутанной области.
1.Определение материнской платы
Материнская плата -- это многослойная печатная плата, являющаяся основой ЭВМ, определяющая ее архитектуру, производительность и осуществляющая связь между всеми подключенными к ней элементами и координацию их работы. Подходя в плотную к вопросу что такое материнская плата, можно ответить так - это основная системная плата компьютера, имеющая разъёмы для установки дополнительных плат расширения и служащая механической основой всей электронной схемы компьютера. Благодаря материнской плате обеспечивается полное взаимодействие компонентов компьютерной системы.
Значение системной платы недооценить просто невозможно, все составляющие системного блока компьютера взаимодействуют между собой благодаря именно материнской плате, так данные с жёсткого диска не когда не смогут быть обработаны в процессоре до того, как попадут в оперативную память, а графическому адаптеру будет нечего получит от компьютерной системы и впоследствии передать монитору. Самые обыкновенные устройства ввода информации, такие как мышь и клавиатура, также обмениваются информацией через разъёмы на материнской плате.
2. Технологии производства материнской платы
2.1 Основные методы
Основные технологические принципы изготовления печатных плат:
субтрактивный;
аддитивный;
полуадцитивный ,
сочетающий преимущества субтрактивного и аддитивного методов; комбинированный.
2.2 Характеристики основных методов
Субтрактивный метод наиболее освоен и распространен для простых и очень сложных конструкций печатных плат. Собственно, с него исторически начиналась индустрия печатных плат. В качестве исходного материала используются фольгированные (в основном медью) изоляционные материалы. После переноса рисунка печатных проводников в виде стойкой к растворам травления пленки на фольгированную основу, незащищенные ею места химически стравливаются. Защитную пленку наносят методами полиграфии: фотолитографией, трафаретной печати и др. При использовании фотолитографии, защитная пленка формируется из фоторезиста материала, очувстляемого через фотокопию печатного рисунка -- фотошаблон. При трафаретной печати используют специальную, химически стойкую краску, называемую трафаретной.
Субтрактивный метод, в чистом виде, реализуется в производстве односторонних печатных плат, где присутствуют только процессы селективной защиты рисунка проводников и стравливания металла фольгированных диэлектриков с незащищенных мест. Схема стандартного субтрактивного (химического) метода изготовления односторонних печатных плат:
вырубка заготовки;
сверление отверстий;
подготовка поверхности фольги (дезоксидация),
устранение заусенцев;
трафаретное нанесение кислотостойкой краски,
закрывающей участки фольги, неподлежащих вытравливанию;
травление открытых участков фольги;
сушка платы; нанесение паяльной маски;
горячее облуживание открытых монтажных участков припоем;
нанесение маркировки; крнтроль.
Преимущества:
возможность полной автоматизации процесса изготовления;
высокая производительность;
низкая себестоимость.
Недостатки:
низкая плотность компоновки связей;
использование фольгированных материалов;
наличие экологических проблем из-за образования больших объемов отработанных травильных растворов.
Вместо химического травления, изоляционные зазоры между проводниками можно формировать механическим удалением при помощи режущего инструмента. Для изготовления односторонних печатных плат можно обойтись всего одним станком с ЧПУ, позволяющим по программе сверлить сквозные отверстия и скрайбировать зазоры. Скрайбирование обычно ведется коническими фрезами с углом при вершине 60 или 30 градусов (в ряде случаев -- менее 18 градусов). Для получения стабильной ширины контурной канавки необходимо строго контролировать глубину врезания фрезы в заготовку. Неплоскостность подложки, неравномерный прижим заготовки к рабочему столу могут привести к разбросу ширины реза. Именно поэтому свер-лильно-фрезерные станки должны иметь специальные прижимные головки, принудительно выравнивающие заготовки плат в плоскость стола станка. Метод отличается коротким технологическим циклом изготовления, малой капиталоемкостью, не создает экологических проблем. Он очень удобен для изготовления полноценных экспериментальных образцов монтажных подложек. Но образцы плат получаются дороже (большой расход фрез), чем изготовленные химическим методом. Поэтому и из-за большого ритма выпуска (плата изготавливается более, чем 4 часа) этот метод не годится для серийного производства.
Чтобы избежать необходимости химических процессов металлизации отверстий, при изготовлении печатных плат методами скрайбирования и фрезеровки используют примитивные методы соединения двух сторон. При скрайбировании контура проводников фрезы неизбежно вспарывают стеклоткань диэлектрика, что повышает его восприимчивость к загрязнениям. Поэтому такие платы требуют повышенного внимания к последующим процессам защиты поверхности от воздействия внешних сред паяльной маской или специальной пропиткой, не мещающей пайке, или лакировкой после монтажа.
Ультрафиолетовые лазеры (эксимерные и Nd:YAGwnvi Nd:LIF-na-зеры) способны испарять медь фольги и минимально травмировать диэлектрическую подложку. Это позволяет использовать их для гравирования контуров проводников. Современное оборудование, предназначенное для этой цели, сочетает в себе две лазерных головки: СО^-лазер и УФ-лазер, которые попеременно сверлят сквозные и глухие отверстия и гравируют пробельные места плат. Лазерные методы прямого формирования рисунка высокопроизводительны, воспроизводят рисунок с разрешением проводник/зазор = 0,05/0.05 мм. Но пока это оборудование слишком дорого для повсеместного использования. Эти методы предполагают использование нефольгированных диэлектрических оснований, на которые тем или другим способом, избирательно (там, где нужно) наносят токопроводящий рисунок.
Разновидности метода определяются способами металлизации. Токопроводящие элементы рисунка можно создать:
химическим восстановлением металлов на катализированных участках диэлектрического основания (толстослойная химическая металлизация -- ТХМ);
переносом рисунка, предварительно сформированного на металлическом листе, на диэлектрическую подложку (метод переноса);
нанесением токопроводящих красок или паст или другим способом печати;
восстановительным вжиганием металлических паст в поверхность термостойкого диэлектрического основания из керамики и ей подобных материалов;
вакуумным или ионно-плазменным напылением; выштамповыванием проводников.
Избирательность осаждения металла можно обеспечить:
фотолитографией (через фотошаблон) фоторезиста, закрывающего в нужных местах участки поверхности основания, неподлежащие металлизации (для метола толстослойной химической металлизации - ТХМ);
избирательным фотоочувствлением (через фотошаблон или сканирующим лучом) катализатора, предварительно нанесенного на всю поверхность основания (для фотоаддитивного метода ТХМ);
трафаретной печатью (для паст и красок); масочные защиты (для вакуумной и ионогшазменной металлизации).
Схема процесса фотоаддитивной технологии (как пример одного из вариантов аддитивного метода):
вырубка заготовки;
сверление отверстий под металлизацию;
нанесение фотоактивируемого катализатора на все поверхности заготовки и в отверстия;
активация катализатора высокоэнергетической экспозицией через фотошаблон-негатив;
толстослойное химическое меднение активированных участков печатной платы (печатных проводников и отверстий);
отмывка платы от остатков технологических растворов активированного катализатора;
глубокая сушка печатной платы;
нанесение паяльной маски;
нанесение маркировки;
обрезка платы по контуру;
электрическое тестирование;
приемка платы -- сертификация.
Преимущества:
использование нефольгированных материалов;
возможность воспроизведения тонкого рисунка.
Недостатки:
длительный контакт открытого диэлектрика с технологическими растворами металлизации, ухудшающими характеристики электрической изоляции без дополнительных мер по отмывке;
длительность процесса толстослойного химического меднения.
Схема процесса аддитивной технологии с использованием фоторезиста:
вырубка заготовки;
сверление отверстий под металлизацию;
нанесение катализатора на всю поверхности заготовки и отверстий;
нанесение и экспозиция фоторезиста через фотошаблон-позитив;
проявление фоторезиста с обнажением участков поверхности платы с нанесенным катализатором;
толстослойная химическая металлизация отверстий и проводников;
нанесение маркировки;
обрезка платы по контуру;
электрическое тестирование; *
приемка платы -- сертификация.
Преимущества:
использование нефольгированных материалов;
изоляционные участки платы защищены фоторезистом -- изоляции не загрязняется технологическими растворами;
фоторезист может оставаться на плате в качестве защитного покрытия.
Недостатки:
длительный процесс толстослойной химической металлизации;
необходимость использования фоторезиста, стойкого к длительному воздействию растворов химического меднения с щелочной реакцией.
Главные проблемы этого метода: создание в проводниках нужной проводимости, желательно соизмеримой с основным металлом; возможность воспроизведения рисунка с хорошим разрешением; обеспечение паяемости. Проблемы проводимости могут быть решены, при условии максимального удаления связующего, разделяющего металлические частицы, из объема краски или пасты. Наилучшим образом, это достигается при высоких температурах обработки. Но для этого требуются нагревостойкие диэлектрические основания, типа стекла (си-талл), керамики (стеатит). Нанесение проводников на органические основания менее успешны из-за их ограниченной нагревостойкости и связанными с этим трудностями в удалении связующего для сближения металлических частиц. Поэтому на органических подложках удается достичь 20% проводимости от чистого металла. Вообще, чем выше температура обжига, тем лучше условия для обеспечения большей проводимости, силы сцепления с подложкой, пая-емости. Наиболее удовлетворительные результаты получены с составами на основе серебра и связующего из мелкодисперсного низкоплавкого стекла (фритты).
Схема полуаддитивного процесса:
вырубка заготовки;
сверление отверстий под металлизацию;
нанесение тонкого проводящего подслоя (чаще -- тонкослойная химическая металлизация медью толщиной до 1 мкм);
усиление тонкого слоя металлизации -- гальваническая затяжка (до 6 мкм);
нанесение и экспонирование фоторезиста через фотошаблон-позитив;
основная гальваническая металлизация (до 25 мкм в отверстиях);
гальваническое нанесение металлорезиста (олова, олова-свинца, олова-никеля, олова-кобальта, серебра, золота, никеля или др.);
удаление экспонированного фоторезиста; вытравливание тонкой металлизации (гальванической затяжки) с пробельных участков;
стравливание металлорезиста на основе олова для последующего нанесения паяльной маски;
гальваническое осаждение контактных покрытий на концевые ламели;
отмывка платы от остатков технологических растворов;
глубокая сушка печатной платы;
нанесение паяльной маски;
нанесение финишных покрытий на монтажные элементы под пайку;
нанесение маркировки;
обрезка платы по контуру;
электрическое тестирование;
приемка платы -- сертификация.
Преимущества:
использование нефольгированных материалов;
хорошее воспроизведение тонких проводников.
Недостатки:
недостаточная адгезия металлизации к диэлектрической подложке;
контакт открытой поверхности диэлектрика с растворами металлизации приводит к его загрязнению и требует дополнительных усилий для обеспечения требуемых электроизоляционных свойств.
Полуаддитивные методы придуманы, чтобы избавиться от длительных и неустойчивых процессов ТХМ, заменив их на высокопроизводительные надежные электрохимические (гальванические) методы металлизации. Но для электрохимических методов металлизации электроизоляционных оснований нужен токопроводящий подслой. Его создают любым способом, удовлетворяющим требованиям по проводимости и прочности сцепления с подложкой: химическим осаждением тонкого слоя (до 1 мкм) металла. Процесс тонкослойной металлизации длится не более 15 мин и не требует высокой технологической надежности; вакуумным напылением металла, в том числе магнетронным; процессами газотермической металлизации; процессами термолиза металлоорганических соединений. Уместно заметить, что для полуаддитивн ых методов неприемлемы процессы прямой металлизации, так как их использование связано с большим расходом катализатора, и возникают проблемы удаления проводящего подслоя из пробельных мест. Комбинированные методы объединяют в себе все приемы изготовления печатных плат, необходимые для изготовления печатных проводников и металлизированных отверстий. Поэтому они называются комбинированными. В зависимости от последовательности операций формирования печатных проводников и металлизированных отверстий различают комбинированный позитивный метод (используются фотошаблоны -- позитивы) и комбинированный негативный (используются фотошаблоны -- негативы). Производство материнских плат начинается с поверхностного монтажа -- «приклеивания» различных чипов на печатные платы PCB (от printed circuit boards). Только что напечатанная плата готова к дальнейшему испытанию :) Проходя по конвейерной ленте, на плату наносятся различные чипы. Кстати, чипы доставляются в Gigabyte различными компаниями в виде лент. А вот олицетворение прогресса -- автомат поверхностного монтажа High Speed Mounter -- точно и быстро (~10 шт./с) монтирует на плату разные элементы. Но несмотря на точность всех операций без проверки не обойтись -- вдруг техника чего не того наделала. Впрочем, визуальный контроль осуществлять будет, кх-м, тоже техника :) После прохождения линии с установочными автоматами платы поступают в печь (заметили название?), где они разогреваются (~200° C) и установленные на плату элементы припаиваются. Теперь начался трудоёмкий процесс. После застывания клея, платы на отсутствие дефектов проверяют контролёры (~99% женщин) вручную. После проверки «на глаз» начинается серия автоматизированных тестов на работоспособность плат. Ещё одна, заключительная, автоматизированная проверка правильности расположения элементов -- после данной процедуры плата пойдёт на другой этаж, где будет происходить окончательный процесс сборки. Опять какие-то детали дополняют женские руки… Кстати, вы заметили, что рабочие места расположены далеко друг от друга? Да, общаться здесь нельзя :( Всё, теперь материнская плата похожа на привычный нам товар: А этот мужчина присоединяет к плате различные коннекторы:. Осталось совсем чуть-чуть… Для принятия товарного вида нужно лишь отшлифовать плату, чтобы никто не поранился……и «прикрутить» к плате радиатор: Плата уже готова и её осталось проверить… в последний раз: Да, материнская плата прошла проверку. Теперь ей придают товарный вид (упаковывают, комплектуют шлейфами, дисками с драйверами и т.д.): Ну а дальше эти самые материнские платы попадают в наши руки… :)
3. Форм-факторы материнских плат
В целом можно выделить следующие типы материнских плат: Устаревшими являются форматы: Baby-AT; полноразмерная плата AT; LPX. Современные и массово применяемые форматы: ATX; Mini-ATX; microATX. Внедряемые форматы: Mini-ITX и Nano-ITX; Pico-ITX FlexATX; NLX; WTX, CEB; BTX, MicroBTX и PicoBTX. Плата AT по своим габаритам соответствует системной плате оригинального компьютера IBM AT. Это большая плата размером приблизительно 30,5х33 см., разъемы слотов которые должны совпадать с отверстиями в корпусе. Такая плата помещается только в полноразмерный корпус AT. Поскольку их невозможно установить в самых распространенных сейчас корпусах Baby-AT и Mini-Tower, производство таких плат практически прекратилось. Другой популярной платой является плата LPX (и Mini-LPX). Хотя такие системные платы сами по себе уже не выпускаются, их конструкции используются другими производителями. Они применяются в широко распространенных сейчас корпусах с уменьшенной высотой и Slimline. Платы LPX во многом отличаются от остальных. Например, слоты расширения смонтированы на отдельной выносной плате, которая вставляется в системную плату. Новая конструкция АТХ была разработана сравнительно недавно. В ней сочетаются наилучшие черты стандартов Baby-AT и LPX и заложены многие дополнительные усовершенствования. По существу, АТХ - это "лежащая на боку" плата Baby-AT с измененным разъемом и местоположением источника питания. Главное, что необходимо знать о конструкции АТХ, - это то, что она физически несовместима ни с конструкцией Baby-AT, ни с конструкцией LPX. Другими словами, для системной платы АТХ нужны особый корпус и источник питания.
Системная плата АТХ, по сути, представляет собой конструкцию Baby-AT, повернутую на бок. Слоты расширения параллельны более короткой стороне и не мешают гнездам процессора, памяти или разъемам ввода-вывода. Кроме полноразмерной схемы АТХ, фирма Intel описала конструкцию Mini-ATX, которая будет размещаться в таком же корпусе. Отверстия в корпусе располагаются так же, как в Baby-AT. В будущем, возможно, будут разработаны корпуса, поддерживающие конструкции и АТХ, и Baby-AT. Для источников питания потребуется сменный разъем, но основная конструкция источника питания АТХ аналогична конструкции стандартного источника питания Slimline. В будущем, благодаря своим преимуществам, конструкция АТХ распространится более широко, но пока из-за проблем, связанных с совместимостью с предыдущими компьютерами, ей пока что трудно "побить" конструкцию Baby-AT, и сегодня на рынке гораздо больше системных плат, корпусов и источников питания для Baby-AT, чем для их АТХ-версий. Стандарт LPX, вероятно, по-прежнему будет использоваться в дешевых компьютерах, например таких, которые продаются в розницу в супермаркетах электроники. Конструкции компьютеров разных фирм с платами LPX иногда различаются, поэтому могут возникнуть проблемы, связанные с взаимозаменяемостью плат и корпусов. Лучше не приобретайте компьютер LPX, если вы намерены его модернизировать, потому что найти подходящую плату будет довольно сложно. И, кроме того, выбор плат расширения и дисковых накопителей для такого компьютера весьма ограничен. Последней разработкой в области системных плат для настольных ПК стала технология NLX, и, возможно, именно она окажется ведущей технологией ближайшего будущего. Платы этого стандарта, на первый взгляд, напоминают платы LPX, но на самом деле они значительно усовершенствованы. Если на платы LPX нельзя установить самые новые процессоры из-за их более крупных размеров и повышенного тепловыделения, то в разработке NLX эти проблемы прекрасно разрешены. Вот каковы основные преимущества этого нового стандарта, перед остальными. Системная плата NLX и платы ввода-вывода (располагающиеся, как и в конструкции LPX, параллельно системной) теперь легко вставляются и вынимаются, при этом другие платы, в том числе и расположенные вертикально, остаются нетронутыми. Легче добраться и до самого процессора, который охлаждается теперь гораздо лучше, чем в системах с тесно расположенными компонентами. Поддержка плат расширения различного размера позволяет выпускать системы различных модификаций. Стандарт NLX обеспечивает максимальную гибкость систем и самое оптимальное использование свободного пространства. Даже самые длинные платы ввода-вывода устанавливаются без труда и не задевают при этом никаких других системных компонентов, что было настоящей проблемой для компьютеров типа Baby-AT. Форм-фактор материнской платы. Форм-фактор определяет габариты, установочные отверстия, разъемы питания материнской платы, а также требования к системе охлаждения.
4. Принципы работы
На материнской плате есть 2 моста и 1 шина Северный мост - это часть системной логики материнской платы, обеспечивающая работу основных узлов компьютера - центрального процессора, оперативной памяти, видеокарты. Именно он управляет работой шины процессора, контроллера ОЗУ и шины PCI Express, к которой подсоединяется видеокарта. В некоторых случаях северный мост может содержать интегрированный графический процессор. Южный мост - обеспечивает подключение к системе менее скоростных устройств, не требующих высокой пропускной способности - жёсткого диска, сетевых плат, аудиоплаты и т.д., а также шин PCI, USB и др., в которые устанавливаются разного рода дополнительные устройства. Наличие северного и южного мостов - классическая, общепринятая схема построения чипсета, на котором базируется системная плата. Но существуют также схемы, отличающиеся от традиционных схем. Это касается в первую очередь компьютеров на базе современных процессоров, содержащих в себе элементы, в большей или меньшей степени выполняющие функции северного моста (чаще всего - контроллер оперативной памяти, интегрированное графическое ядро). На системных платах для таких процессоров северный мост существенно упрощен.
материнский плата фоторезь
5. Перспективы развития
5.1 Процессор
Развитие технологий и применение новых материалов делает процессоры быстрее и экономичнее. В будущем Intel даже предполагает отказаться от свинца.Размещено на http://www.allbest.ru//
«Это самый значительный прорыв в микропроцессорных технологиях за последние 40 лет», -- Гордон Мур не скупился на слова, говоря о 45-нанометровых чипах Intel, уже готовых к производству. Меняются сами основы технологии производства процессоров. Новые материалы должны помочь избежать проблем, возникающих при уменьшении размеров CPU, таких как увеличение энергопотребления и нагрева. Intel усердно готовит мир к 45-нанометровой революции. Новые чипсеты Intel P35 и X38, Nvidia 780i уже поддерживают процессоры, произведенные по новой технологии, однако сами CPU в продаже пока отсутствуют.
AMD, как и остальные производители чипов -- Fujitsu, IBM, Sony, -- не спешит внедрять новую перспективную технологию, так как AMD заявила, что новые технологии будет внедрять по необходимости. Процессор последнего поколения на базе микроархитектуры Haswell состоит из примерно 1,4 млрд транзисторов -- для сравнения, десять лет назад на Pentium 4 было всего 100 млн. Другие крупные производители чипов, такие как компании Samsung, TSMC или Globalfoundries, тоже следуют этому ритму в меру своих возможностей. Однако чем больше транзисторов функционирует под термокрышкой процессора, тем сильнее они нагреваются. Участки микросхемы, которые в данный момент не работают, ученые называют «темным кремнием». При этом термобюджет этих неактивных блоков передается на работу других блоков.
5.2 Информационная шина
В качестве основных частей материнская плата имеет разъём процессора, микросхемы чипсета, загрузочного ПЗУ, контроллеров шин и интерфейсов ввода-вывода и периферийных устройств. ОЗУ в виде модулей памяти устанавливаются в специально предназначенные разъёмы; в слоты расширения устанавливаются карты расширения. Я думаю что информационная шина всё будет увеличиваться до больших размеров и будет содержать много информации, а потом все дальше будет увеличиваться . я это так считаю. И надеюсь что это будет так. частота шины -- 33,33 или 66,66 МГц, передача синхронная; разрядность шины -- 32 или 64 бита, шина мультиплексированная (адрес и данные передаются по одним и тем же линиям);пиковая пропускная способность для 32-разрядного варианта, работающего на частоте 33,33 МГц -- 133 Мбайт/с; адресное пространство памяти -- 32 бита (4 байта); адресное пространство портов ввода-вывода-- 32 бита (4 байта); конфигурационное адресное пространство (для одной функции) -- 256 байт; напряжение -- 3,3 или 5 В. PCI-устройства с точки зрения пользователя самонастраиваемы (Plug and Play). После старта компьютера системное программное обеспечение обследует конфигурационное пространство PCI каждого устройства, подключённого к шине, и распределяет ресурсы.
Каждое устройство может затребовать до шести диапазонов в адресном пространстве памяти PCI или в адресном пространстве ввода-вывода PCI.
Кроме того, устройства могут иметь ПЗУ, содержащее исполняемый код для процессоров x86 или PA-RISC, Open Firmware (системное ПО компьютеров на базе SPARC и PowerPC) или драйвер EFI.
Настройка прерываний осуществляется также системным программным обеспечением (в отличие от шины ISA, где настройка прерываний осуществлялась переключателями на карте). Запрос на прерывание на шине PCI передаётся с помощью изменения уровня сигнала на одной из линий IRQ, поэтому имеется возможность работы нескольких устройств с одной линией запроса прерывания; обычно системное ПО пытается выделить каждому устройству отдельное прерывание для увеличения производительности.
6. Основные элементы платы
6.1 Северный мост
Общее направление в дизайне процессоров шло к реализации все большего количества функций меньшим набором компонентов. Это позволяло снижать общую стоимость материнских плат и улучшало производительность. Так, контроллер памяти, отвечавший за общение ЦПУ с оперативной памятью, был перемещен на кристалл процессора в процессорах AMD начиная с AMD64 (2004 г.), и в процессорах Intel начиная с архитектуры Nehalem (ноябрь 2008 г.). Благодаря переносу северного моста внутрь процессора уменьшились задержки при обращении процессора к памяти, а также количество активных компонентов системной (материнской) платы, из-за чего упростилось её проектирование.В микроархитектуре Intel Sandy Bridge (2011 г.) северный мост был полностью заменен «системным агентом» (system agent), который фактически выполнял все функции северного моста и при этом был интегрирован в кристалл процессора, находясь на одной подложке вместе с ядрами процессора, контроллером памяти и графическим процессором. Эта схема впервые была использована в микроархитектуре Westmere (2010 г.) и получила дальнейшее развитие в Sandy Bridge. В верхней части блок схемы вы видите ЦПУ - это центральный процессор. Он с помощью шины подключен к северному мосту, который в свою очередь подключен к слоту графического адаптера (PCI Express или AGP), к шине памяти и к южному мосту. Таким образом, северный мост отвечает за связь центрального процессора с графическим адаптером, памятью и южным мостом. Также от северного моста зависят параметры работы системной шины, оперативной памяти и видео адаптера. Контроллер назван «северным» благодаря («географическому») расположению в верхней части системной (материнской) платы, расположен обычно под процессором и представляет собой квадратный или прямоугольный микрочип.
В терминологии Intel обозначается как MCH - контроллер-концентратор памяти (англ. Memory Controller Hub[2]). При использовании встроенного в северный мост видеоадаптера называется GMCH
6.2 Южный мост
Южный мост отвечает взаимодействие с внешними устройствами и остальные функции материнской платы. Он включает в себя контроллеры PCI Express, PCI, SATA, PATA RAID, USB, Ethernet, Firewire и т.д. Также южный мост отвечает за управление питанием, энергонезависимую память BIOS и прерывания. Взаимодействие южного моста с процессором происходит через северный мост. Опционально южный мост также может включать в себя контроллер Ethernet, RAID-контроллеры, контроллеры USB, контроллеры FireWire и аудиокодек. Реже южный мост включает в себя поддержку клавиатуры, мыши и последовательных портов, но обычно эти устройства подключаются с помощью другого устройства -- Super I/O (контроллера ввода-вывода).Поддержка шины PCI включает в себя традиционную спецификацию PCI, но может также обеспечивать поддержку шины PCI-X и PCI Express. Хотя поддержка шины ISA используется достаточно редко, она осталась, что интересно, неотъемлемой частью современного южного моста. Шина SM используется для связи с другими устройствами на материнской плате (например, для управления вентиляторами). Контроллер DMA позволяет устройствам на шине ISA или LPC получать прямой доступ к оперативной памяти, обходясь без помощи центрального процессора . Контроллер прерываний обеспечивает механизм информирования ПО, исполняющегося на ЦПУ, о событиях в периферийных устройствах. IDE-интерфейс позволяет «увидеть» системе жёсткие диски. Шина LPC обеспечивает передачу данных и управление Super I/O (это такие устройства, как клавиатура, мышь, параллельный, последовательный порт, инфракрасный порт и НГМД-контроллер) и BIOS ROM (флэш).APM или ACPI-функции позволяют перевести компьютер в «спящий режим» или выключить его. Системная память CMOS, поддерживаемая питанием от батареи, позволяет создать ограниченную по объёму область памяти для хранения системных настроек (настроек BIOS).
Вывод
В качестве вывода нам бы хотелось привести основные критерии оценки качества материнских плат. Ниже перечисляются компоненты и критерии, которыми можно руководствоваться при оценке любого IBM-совместимого компьютера. При рассмотрении конкретного компьютера не следует рассчитывать, что он будет удовлетворять буквально всем этим требованиям, но несколько первых пунктов наиболее критичны. * Процессор. Системная плата для Pentium должна, как минимум, поддерживать трехвольтовые процессоры Pentium второго поколения, устанавливаемые в гнездо типа 5 или 7, в отличие от процессоров Pentium первого поколения, устанавливаемых в гнездо типа 4. Системные платы Pentium с гнездом типа 7 (Socket 7) также поддерживают процессоры технологии ММХ, включая процессор Кб фирмы AMD. Более новые процессоры Pentium Pro и Pentium II работают на уникальных сис¬темных платах, не совместимых с другими системными платами Pentium. * Установочное гнездо процессора. На системной плате Pentium должно быть установлено гнездо ZIF (Zero Insertion Force - с минимальным усилием вставки), соответствующее стандарту гнезд типа 7 (321-контактные) фирмы Intel. Гнездо 7 с присоединенным модулем регулятора напряжения (Voltage Regulator Module - VRM) расширит возможность выбора среди следующих версий процессоров Pentium с более высоким быстродействием. Системные платы Pentium Pro (Р6) должны иметь гнездо типа 8. Перед тем как приобрести дорогую многопроцессорную плату, убедитесь, что ваша операционная система сможет использовать ее возможности. Например, пока Windows 95 не сможет реально использовать более одного процессора. Windows NT, OS/2 и некоторые другие возможно будут работать с этими системами значительно быстрее. * Быстродействие системной платы. На системной плате Pentium или Pentium Pro должен быть установлен переключатель тактовой частоты для работы на частоте 60 или 66 МГц для обеспечения максимальной производительности и совместимости. Для настройки частоты современных процессоров Pentium или Pentium Pro используется множитель тактовой частоты системной платы. Например, Pentium 75 работает на системной плате с тактовой частотой 50 МГц, процессоры Pentium 60, 90, 120, 150, 180 работают на системной плате с базовой частотой 60 МГц, a Pentium 66, 100, 133, 166 и 200 - с частотой 66 МГц. Процессоры Pentium Pro 150, 180 и 200 работают на системных платах с частотами 50, 60 и 66МГц соответственно. Все остальные компоненты (особенно кэш-память) должны быть работоспособными и при максимальной тактовой частоте платы. * Кэш-память. На всех системных платах для процессоров Pentium должно быть установлено 256- 512 Кбайт кэш-памяти уровня 2. Большинство процессоров Pentium Pro имеет встроенный кэш уровня 2 на 256 или 512 Кбайт, но они могут иметь дополнительную микросхему кэш-памяти этого уровня на системной плате для достижения еще большей производительности. Кэш уровня 2 дол¬жен быть двунаправленным (т.е. кэшироваться должны как операции считывания, так и операции записи) и выполненным на достаточно быстродействующих микросхемах (15 нс или выше), чтобы поддерживать максимальную тактовую частоту системной платы (66 МГц). Для плат с Pentium необходим кэш Synchronous SRAM (Static RAM), который еще называют Pipelined Burst SRAM. * Модули памяти SIMM. В идеале системные платы с процессором 486 должны использовать 72-контактные модули SIMM с одним банком памяти на каждый модуль. Допускается установка 30-контактных модулей SIMM (для того чтобы можно было использовать модули памяти от старых системных плат). На системных платах с процессорами Pentium и Pentium Pro должны быть установлены 72-контактные модули SIMM или 168-контактные модули DIMM. Благодаря 64-разрядной конструкции этих плат 72-контактные модули SIMM должны быть установлены парами, а модули DIMM - по одному на 64-разрядный банк. Обратите особое внимание на общий объем памяти, ко¬торый поддерживает данная системная плата: 16 Мбайт - это минимум, необходимый для работы современных приложений, однако реально вам понадобится гораздо больше. Системные платы Pentium поддерживают как минимум 128 Мбайт, а многие платы Pentium II - больше 1 Гбайт. Сис¬темная плата должна содержать минимум 4 разъема памяти (72-контактных, 168-контактных или их комбинацию), а вообще, чем больше, тем лучше. Для обеспечения максимальной производительно¬сти необходимы системы, которые поддерживают модули SDRAM (Synchronous DRAM) и EDO (Extended Data Out) типа SIMM/DIMM. Быстродействие микросхем памяти должно быть не больше 70 нс. В системах, выполняющих максимально точные операции, следует использовать модули с возможностью контроля четности (Parity SIMM), а системная плата должна полностью обеспечивать контроль четности или поддерживать режим ЕСС (Error Correcting Code - код коррекции ошибок). Заметьте, что популярный набор микросхем (чипсет) Intel Triton Pentium (82430FX) вообще не под-держивает память с контролем четности. Другие наборы микросхем для Pentium, такие как Neptune (82430NX) и Triton II (82430НХ), действительно поддерживают контроль четности. Triton II даже поддерживает режим ЕСС при использовании стандартных модулей Parity SIMM. Все современные наборы микросхем для Pentium Pro также поддерживают контроль четности памяти, и поэтому идеально подходят для использования в файл-серверах или других компьютерах в сочетании с модуля¬ми Parity SIMM или DIMM. * Тип шины. Системные платы с Pentium и Pentium Pro должны иметь три или четыре слота шины ISA и три или четыре слота локальной шины PCI. Обратите внимание на расположение слотов, чтобы убедиться, что вставленные в них платы расширения не блокируют доступ к разъемам памяти и в тоже время не заблокированы другими компонентами. * BIOS. В системных платах должна использоваться стандартная программа BIOS (базовая система ввода-вывода) фирмы AMI, Phoenix, Microid Research или Award. Для упрощения модернизации BIOS должна быть записана в микросхемах Flash-ROM или EEPROM и поддерживать технологию Plug-and-Play, Enhanced IDE или Fast АТА, а также дисководы на 2,88 Мбайт. В BIOS должна пре¬дусматриваться система расширенного управления питанием АРМ (Advanced Power Management). * Конструкция. Наиболее универсальной является конструкция типа Baby-AT. Ее можно устанавливать в корпуса различной конструкции и модифицировать в большинстве компьютеров. Для достижения более высокой производительности и универсальности во многих системных платах и компьютерах используется новая конструкция АТХ. Кроме этого, Intel разработала конструкцию NLX, которая является усовершенствованной конструкцией АТХ. * Встроенные интерфейсы. Системная плата должна иметь как можно больше встроенных контролле¬ров и интерфейсов (кроме видеоадаптера). На ней должны быть установлены контроллер дисковода на 2,88 Мбайт, разъем Enhanced IDE (также называемый Fast АТА) локальной шины (PCI или VL-Bus), два встроенных высокоскоростных последовательных порта (с микросхемами UART типа 16550А) и высокоскоростной параллельный порт (ЕРР или ЕСР). Также желателен встроенный разъем для подключения мыши типа PS/2, хотя для этого можно использовать любой последовательный порт. Некоторые новые системы (особенно конструкций АТХ и NLX) могут включать встроенный порт USB (Universal Serial Bus). В ближайшем будущем порты USB станут необходимым элементом мультимедийных систем. Встроенный порт SCSI является еще одним преимуществом, при условии, что он соответствует стандарту улучшенного программного интерфейса ASPI (Advanced SCSI Programming Interface). На плате может быть установлен встроенный сетевой адаптер, но, как правило, отдельная плата адаптера, подключаемая к шине ISA, лучше поддерживается стандартными сетевыми драйверами и легче модернизируется. В некоторых ситуациях плюсом можно назвать наличие встроенного видеоадаптера. Оптимальным является видеоадаптер, подключаемый к локальной шине. То же самое можно сказать о встроенных звуковых платах. Обычно они поддерживают основные функции и совместимость с платой Sound Blaster, но часто не имеют других характеристик, свойственных подключаемым звуковым платам. * Технология Plug-and-Play (РпР). Системная плата должна поддерживать стандарт Plug-and-Play фирмы Intel. Это обеспечивает автоматическую конфигурацию адаптеров PCI, а также ISA-адаптеров стандарта Plug-and-Play. * Управление питанием. Системная плата должна полностью поддерживать все возможности процессоров модификации SL Enhanced с системой расширенного управления питанием АРМ (Advanced Power Management) и способы управления системой SMM (System Management Mode), которые позволяют переводить различные узлы компьютера на различные уровни готовности и энергопотребления. * Наборы микросхем системной платы. В системных платах Pentium и Pentium ММХ должны использоваться высокопроизводительные наборы микросхем (чипсеты), которые обеспечивают контроль четности, например Intel Triton II (430НХ). Популярный оригинальный чипсет Intel Triton (430FX), а также более новые 430ТХ и 430VX не поддерживают память с контролем четности, и его не следует применять в компьютерах для выполнения приложений, использующих точные операции (если используется системная плата Pentium), лучше применять чипсет Triton II (430НХ) или эквивалентные, которые поддерживают код коррекции ошибок памяти ЕСС (Error Correcting Code), построенной на модулях с действительным контролем четности.
Размещено на Allbest.ru
...Подобные документы
Исследование основных компонентов, установленных на материнской плате. Изучение особенностей реализации северного и южного мостов. Характеристика физических параметров системной платы. Назначение и функционирование компьютерных шин. Hub-архитектура.
презентация [3,2 M], добавлен 11.12.2013Классификация ЭВМ по назначению и функциональным возможностям. Чипсеты современных компьютеров. Схематическое изображение традиционного чипсета материнской платы. Чипсеты VIA для процессоров Intel. Взаимодействие микросхем северного и южного мостов.
курсовая работа [1,7 M], добавлен 05.04.2013Схематичное изображение системной платы, её основные компоненты. Структурная схема материнской платы. Фирмы-производители чипсетов, северный и южный мост. Примеры системный плат: Asus Socket-939 nForce4 A8N SLI Deluxe, Formoza FVNF, F865PE Cistus.
презентация [2,0 M], добавлен 10.08.2013Назначение, классификация, структура технологического процесса изготовления плат и способа соединения деталей на ней. Технологический процесс сборки персонального компьютера. Информационный обзор технологии пайки и изготовления плат для компьютера.
курсовая работа [3,9 M], добавлен 13.02.2016Принципы работы с программами автоматизированного проектирования принципиальных схем и плат DipTrace, SCHEMATIC, PCB Layout, SchemEdit и ComEdit: интерфейс, работа с файлами и библиотеками, вставка компонента, редактирование, печать, параметры страницы.
методичка [4,1 M], добавлен 18.02.2012Варианты компоновки установки сборки печатных плат. Функциональная схема устройства управления. Перечень исполнительных механизмов. Выбор типа привода. Циклограмма работы трассы. Сеть Петри с конфликтными ситуациями. Программа функционирования модели.
курсовая работа [256,6 K], добавлен 21.02.2011Материнская (системная) плата — сложная многослойная печатная плата, основа построения вычислительной системы (компьютера). Классификация материнских плат по форм-фактору. Контактный разъем блока питания. Поддержка современных процессорных технологий.
презентация [925,8 K], добавлен 03.12.2014Специфика создания баз данных, в которой хранится информация о производственных ресурсах для производства печатных плат. Характеристика, использование и работа с DBDesigner 4.0.5.6, PostgreSQL. Особенности написания запросов к базам данных на языке SQL.
курсовая работа [147,9 K], добавлен 13.08.2012Определение оптимального варианта конструкции ЭВМ с учетом последовательности операций. Расчет запусков на технологические операции на основе линейных стохастических сетей. Решение задачи оптимизации структуры на примере изготовления печатных плат.
курсовая работа [1,1 M], добавлен 25.10.2012Системная плата как главный компонент электронно-вычислительной машины. Компоненты материнской платы: чипсет, центральный процессор, оперативная память, кэш, BIOS, системна шина, контроллеры и адаптеры. Форм-факторы системных плат и их спецификации.
курсовая работа [3,8 M], добавлен 17.11.2013Беспроводные технологии и классификация беспроводных сетей, принципы их построения. Концепция и основные положения Bluetooth - первой технологии, позволяющей организовать беспроводную персональную сеть передачи данных, принцип его работы и использование.
курсовая работа [1011,7 K], добавлен 11.12.2014Архитектура системных плат на основе чипсетов Intel 6 Series и Intel P67 Express. Технологии, используемые в Intel 6 Series: Smart Response, Intel Quick Sync Video, Технология Hyper-Threading, Технология Intel vPro. Ошибка в чипсетах Intel 6-й серии.
реферат [3,3 M], добавлен 11.12.2012Проблема диагностики материнских плат ПЭВМ. Чипсеты для процессоров. Технологии и интерфейсы материнской платы. Разработка стенда по диагностике, расчет его себестоимости. Техника безопасности при работе со стендом по диагностике материнских плат ПЭВМ.
дипломная работа [5,9 M], добавлен 27.11.2013История развития Запорожского авиационного колледжа; специальности, по которым готовят специалистов. Рассмотрение принципов работы микропроцессорной системы зажигания, построения ее датчиков и катушек. Основы проектирования многослойных печатных плат.
отчет по практике [4,6 M], добавлен 05.03.2014Процессоры Duron на ядре Spitfire (Model 3), Morgan (Model 7), Applebred (Model 8), Mobile Duron Camaro. Схема материнской платы EP-8KHAL+. Микросхема "Северный мост". Звуковой чип ALC201A. Конфигурация системной памяти. Регулятор заглушки шины RT9173.
курсовая работа [3,6 M], добавлен 26.03.2013Магистрально-модульное устройство компьютера. Особенности материнских плат, их назначение и типы. Способы передачи данных. Внешний осмотр на предмет вздутых конденсаторов, отломанных креплений, гнутых ног у сокетов и любых физических повреждений.
курсовая работа [6,3 M], добавлен 24.11.2013Прослушивание и локализация шумов, возникающих в двигателях автомобилей. Использование системы Altium Designer Summer 09. Формирование принципиальной электрической схемы. Порядок проектирования печатных плат. Создание библиотеки электрорадиоэлемента.
курсовая работа [2,2 M], добавлен 11.07.2012Базы данных для учета и контроля оборудования по производству печатных плат. Требования к системе, анализ предметной области. Информационные потребности пользователя. Логическая структура программы, алгоритм ее работы. Руководство системного программиста.
курсовая работа [786,5 K], добавлен 24.02.2015Основные принципы организации сетей абонентского доступа на базе PLC-технологии. Угрозы локальным сетям, политика безопасности при использовании технологии PLC. Анализ функционирования PLC здания инженерно-внедренческого центра ООО "НПП "Интепс Ком".
дипломная работа [3,0 M], добавлен 25.11.2012Изучение понятия и свойств алгоритма. Определение сущности технологии Robson. Исполнитель, а также блок-схема алгоритма или его графическое представление, в котором он изображается в виде последовательности связанных между собой функциональных блоков.
реферат [155,9 K], добавлен 19.10.2013