Применение современных CAD-систем при выполнении выпускных квалификационных работ технических направлений подготовки
Применение современных систем инженерного геометрического моделирования при выполнении студентами выпускных квалификационных работ по техническим направлениям подготовки. Анализ систем компьютерной поддержки конструирования различных производителей.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 21.06.2020 |
Размер файла | 549,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Применение современных CAD-систем при выполнении выпускных квалификационных работ технических направлений подготовки
Аннотация: В статье показан процесс применения современных систем инженерного геометрического моделирования при выполнении студентами выпускных квалификационных работ по техническим направлениям подготовки. При этом системы компьютерной поддержки конструирования различных производителей успешно решают поставленные перед ними задачи.
Выпуск: №4 / 2018 (октябрь-декабрь)
УДК: 004.925.84:378.14.015.62
Автор(ы): Борисов Виталий Иванович
кандидат технических наук, доцент, кафедра механизации переработки сельскохозяйственной продукции, институт механики и энергетики, Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский Мордовский государственный университет им. Н. П. Огарёва»
Борисова Наталья Васильевна
магистрант, институт механики и энергетики, Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский Мордовский государственный университет им. Н. П. Огарёва»
Страна: Россия
Библиографическое описание статьи для цитирования: Борисов В. И. Применение современных CAD-систем при выполнении выпускных квалификационных работ технических направлений подготовки [Электронный ресурс] / В. И. Борисов, Н. В. Борисова // Научное обозрение : электрон. журн. - 2018. - № 4. - 1 электрон. опт. диск (CD-ROM). - Систем. требования: Pentium III, процессор с тактовой частотой 800 МГц ; 128 Мб ; 10 Мб ; Windows XP/Vista/7/8/10 ; Acrobat 6 х.
В последнее время неоспоримым фактом является важность и эффективность проектирования, изготовления, совершенствования и модернизации любых технологических операций и продуктов с применением компьютерных систем [1]. Автоматизированные компьютерные системы повышают эффективность, значительно изменяя содержательную сторону многих этапов любых технологических процессов, оказывают существенное влияние на способы проектирования, технологию, совершенствование и организацию производства. Особенно это актуально в области применения систем автоматического проектирования (САПР) и, в частности, компьютерного геометрического моделирования [1, 2].
В настоящее время под термином «САПР» подразумевается комплексная автоматизированная система, состоящая из CAD/CAM/CAE/CAPP/PDM-подсистем [1]. Самыми распространенными и интегрированными в любой процесс производства являются CAD-системы, предназначенные, прежде всего, для решения конструкторских задач и автоматизации оформления проектно-конструкторской документации. Современные универсальные CAD-системы [2] позволяют выполнять как 2D, так и 3D-геометрическое моделирование деталей и сборок и разрабатывать на основе геометрических моделей полный комплект технической документации: чертежи, спецификации, ведомости и т.д. В настоящее время существует ряд специализированных программных CAD-продуктов для компьютерного геометрического моделирования [2], из которых наиболее распространенными являются КОМПАС-3D, SolidWorks, AutoCAD, T--FLEX, SolidEdge, NX и др.
Объемные геометрические модели или 3D-модели в настоящее время являются основой развития компьютерного моделирования в производстве [2]. Создание и использование геометрических моделей деталей и сборок значительно расширяет и упрощает деятельность по автоматизации проектно-конструкторских работ и технологической подготовки производства.
Основная цель создания компьютерных геометрических моделей - это представить изделие в виде реалистически виртуальной модели с возможностью последующей имитации всех этапов ее жизненного цикла. Таким образом, использование CAD-систем позволяет прорабатывать компоновку изделия, проверять увязку габаритных, установочных и присоединительных размеров, оптимизировать ее конструкцию и технологию сборки.
В рамках учебного процесса компьютерное геометрическое моделирование используется при освоении прикладных программ, то есть как объект изучения. Однако при правильном внедрении подсистем САПР, в частности указанных выше CAD-систем, для обучения студентов информационным технологиям проявляется дополнительный «предметный» обучающий эффект от применения компьютерного моделирования, который необходимо развивать и целенаправленно использовать для развития профессиональных способностей.
Непосредственным примером проявления обучающего эффекта от применения систем геометрического моделирования в ходе учебного процесса является итоговая выпускная квалификационная работа технических направлений подготовки, которая имеет своей целью систематизацию, обобщение и закрепление теоретических знаний, практических умений и профессиональных компетенций выпускника, позволяющие выпускнику решать профессиональные задачи.
С целью наглядного представления использования современных систем геометрического моделирования (CAD-систем) в учебном процессе в данной статье показаны примеры их применения при выполнении итоговых выпускных работ в форме бакалаврских работ направления подготовки «Агроинженерия» Мордовского государственного университета им. Н.П. Огарева в 2018 году.
Повышению эффективности и производительности процесса измельчения зерна посвящена работа «Модернизация конструкции вальцового станка для производства муки», в которой произведено усовершенствование конструкции вальцового станка ВМП по следующим характеристикам: усовершенствован механизм привала-отвала и механизм настройки вальцов на параллельность, что позволило точно регулировать расстояние между мелющими вальцами; повышен уровень автоматизации управления вальцовым станком; усовершенствована межвальцовая передача.
Суть модернизации заключалась в замене существующего полуавтоматического механизма привала-отвала станка ВМП на новый автоматический механизм компании Buhler.
Для точного геометрического позиционирования модернизированного механизма привала-отвала мелющих вальцов станка и отработки их взаимодействия с элементами приводов станка посредством использования CAD-системы AutoCAD создана полномасштабная 3D-модель (рис. 1, а, б) вальцового станка ВМП, на основе которой сгенерированы чертежи вальцового станка и механизма привала-отвала мелющих вальцов (рис. 1, в).
Рис. 1. Вальцовый станок ВМП: а) 3D-модель основных узлов, б) 3D-модель системы привала-отвала, в) сборочный чертеж системы привала-отвала
Использование наиболее распространенной на территории Российской Федерации отечественной, мощной и универсальной системы трехмерного проектирования КОМПАС-3D позволило в работе на тему «Разработка конструкции смесителя комбикормов периодического действия» создать новую конструкцию смесителя комбикормов. Необходимость разработки новой конструкции обусловлена тем, что существующие смесители хотя и обеспечивают требуемую однородность смеси, но имеют высокую удельную энергоемкость. Поэтому создание нового эффективного и простого по конструкции и надежного в эксплуатации бункерного смесителя, является актуальной задачей.
На основе анализа существующих конструкций была разработана и обоснована конструктивно-технологическая схема универсального смесителя комбикормов с неподвижным прямоугольным бункером с одним горизонтально расположенным валом, с установленными на нем восьмью рабочими органами в виде разнонаправленных лопаток принудительного действия.
Для точного геометрического позиционирования основных узлов и механизмов смесителя и отработки их взаимодействия посредством использования системы КОМПАС-3D создана полномасштабная 3D-модель смесителя (рис. 2, а, б), на основе которой сгенерированы чертежи смесителя и мешалки смесителя (рис. 2, в).
Произведены расчеты основных конструктивных параметров смесителя.
В результате получена конструкция смесителя комбикормов периодического действия со следующим техническими характеристиками: производительность - 1500 кг/ч; рабочий объем - 0,4 м3, коэффициент загрузки - 0,75, частота вращения - 0…112 об/мин, мощность электродвигателя - 1,5 кВт.
В работе «Разработка конструкции тестомесильной машины периодического действия» представлен процесс усовершенствования тестоприготовительного оборудования путем его проектирования, которое имеет первостепенное значение в области повышения эффективности производства и роста производительности. Проектирование оборудования позволит значительно интенсифицировать технологические процессы, сократить продолжительность производственных циклов и снизить потери сырья.
Было установлено, что существующие тестомесильные машины периодического действия не удовлетворяют технологическим и эксплуатационным требованиям, таким как качество замеса, удобство обслуживания, низкое энергопотребление и стоимость обслуживания. Следовательно, разработка тестомесильной машины периодического действия с улучшенными технологическими и эксплуатационными показателями является актуальной.
Для реализации процесса разработки тестомесильной машины периодического действия автор провел критический обзор существующих моделей, а именно изучил их функциональные схемы и конструкции. Затем было произведено технико-экономическое обоснование разработки конструкции тестомесильной машины периодического действия.
Рис. 2. Смеситель комбикормов периодического действия: а) 3D-модель смесителя, б) 3D-модель рабочего органа (мешалки), в) сборочный чертеж смесителя
В данном проекте на базе анализа конструкций была разработана и обоснована конструктивно-технологическая схема тестомесильной машины периодического действия с подкатной дежой и двумя приводами. Один привод осуществляет передачу крутящего момента рабочему органу (мешалке). Второй привод осуществляет передачу вращения деже, что интенсифицирует процесс замеса теста.
Для точного геометрического позиционирования основных узлов и механизмов тестомесильной машины и отработки их взаимодействия посредством использования CAD-систем КОМПАС-3D и SolidWorks создана полномасштабная 3D-модель тестомесильной машины (рис. 3, а, б), на основе которой сгенерированы чертежи тестомесильной машины (рис. 2, в). Основные узлы, редуктора, гидроцилиндры, приводы, а также электродвигатели выбирались исходя из имеющихся в базе названных выше CAD-систем параметрических библиотек, что значительно ускорило темпы проектирования.
Произведены расчеты основных конструктивных параметров тестомесильной машины.
В результате получена конструкция тестомесильной машины периодического действия со следующим техническими характеристиками: производительность - 492 кг/ч; рабочий объем - 0,14 м3, частота вращения рабочего органа - 100 об/мин, суммарная мощность двух электродвигателей - 5,5 кВт.
Рис. 3. Тестомесильная машина периодического действия: (а) общий вид, б) разрез 3D-модели, в) спроектированный сборочный чертеж
В заключение следует отметить, что использование систем геометрического моделирования или компьютерной поддержки конструирования при выполнении выпускных квалификационных работ технических направлений подготовки существенно упрощает выполнение данных проектов, позволяя получить при этом необходимые профессиональные знания, умения и навыки, которые будут особенно востребованы, в настоящее время, потенциальными работодателями. Проекты, выполненные при помощи данных систем, являются более презентабельными, информативными и «выигрышными» по сравнению с теми работами, где такие системы не используются.
Список использованных источников
инженерный геометрический моделирование
1. Что такое CAD, CAM, CAE-технологии? // ProCae.ru: сайт инженерных решений. URL: http://www.procae.ru/articles/15-other/10-wgat-is-it.html (дата обращения: 10.10.2018).
2. Обзор популярных систем автоматизированного проектирования (CAD): официальный сайт компании «ПОИНТ». URL: https://www.pointcad.ru/novosti/obzor-sistem-avtomatizirovannogo-proektirovaniya (дата обращения: 11.10.2018).
Размещено на Allbest.ru
...Подобные документы
Обоснование необходимости формирования информационной компетенции как важного компонента современного обучения. Преимущества использования Интернета в процессе написания студентами квалификационных работ. Применение специальных программ и инструментов.
доклад [13,3 K], добавлен 15.05.2014Классификации архитектур вычислительных систем. Организация компьютерных систем. Устройство центрального процессора. Принципы разработки современных компьютеров. Эволюция микропроцессорных систем. Увеличение числа и состава функциональных устройств.
дипломная работа [1,4 M], добавлен 29.01.2009Эволюция технического обеспечения. Основные требования, применение и характеристики современных технических средств автоматизированных информационных систем. Комплексные технологии обработки и хранения информации. Создание базы данных учета и продажи.
курсовая работа [127,1 K], добавлен 01.12.2010Понятие геоинформационных систем, их применение на автомобильном транспорте. Принципы построения навигационных и сотовых систем связи. Отраслевые решения в программном обеспечении автотранспорта; реализация современных информационно-поисковых систем.
учебное пособие [4,5 M], добавлен 02.02.2014Классификация видеокамер по техническим характеристикам. Анализ современных программно-аппаратных комплексов систем видеонаблюдения. Назначение и технические характеристики системы видеонаблюдения "Globoss". Анализ плат видеоввода с аппаратным сжатием.
дипломная работа [8,4 M], добавлен 29.06.2011Анализ существующих систем контроля и управления доступом различных фирм-производителей. Анализ технических и эксплуатационных характеристик различных систем, разработка системы контроля и управления доступом. Предложение плана реализации системы.
дипломная работа [2,7 M], добавлен 07.06.2011Применение современных микроконтроллеров как одного из перспективных аппаратно-программных средств информационных систем. Общие принципы построения микроконтроллеров, их типовая структура. Разработка программы расчета задержек на языке ассемблер.
курсовая работа [719,2 K], добавлен 22.04.2019Применение вычислительной техники в учебном процессе. Разработка математической модели. Выбор программного обеспечения. Определение требований к техническим средствам. Формы представления входных, выходных данных. Расчет технико-экономических показателей.
курсовая работа [1,3 M], добавлен 25.12.2013Особенности моделирования биологических систем с использованием программы "AnyLogic". Влияние различных факторов на популяции жертв и хищников. Принципы имитационного моделирования и его общий алгоритм с помощью ЭВМ. Анализ результатов моделирования.
курсовая работа [922,2 K], добавлен 30.01.2016Общая характеристика преимуществ взаимодействующих процессов: модульность, ускорение вычислений. Знакомство с основами современных операционных систем. Анализ особенностей использования общего почтового ящика, рассмотрение способов создания и удаления.
презентация [1,6 M], добавлен 24.01.2014Создание нового проекта и просмотр критического пути. Назначение ресурсов и оформление графика работ. Автоматическое и ручное выравнивание загрузки ресурсов. Отслеживание графика работ и его перепланирование. Контроль трудовых и финансовых затрат.
методичка [3,3 M], добавлен 22.11.2009Изучение современных принципов, подходов и методов моделирования сложно формализуемых объектов. Решение задач структурной и параметрической идентификации. Характеристики вычислительных систем как сложных систем массового обслуживания. Теория потоков.
курс лекций [2,3 M], добавлен 18.02.2012Архитектурное построение современных информационных систем. Типовые функциональные компоненты информационной системы. Изучение способов подключения внешних библиотек к проекту в среде Netbeans. Добавление библиотеки, которая не входит в сборку среды.
контрольная работа [1,6 M], добавлен 07.12.2013Черты современных информационных технологий. Подбор косметических средств по индивидуальной рецептуре на основании данных системы видео-сканирования кожи лица. Перечень работ, в выполнении которых принималось участие. Отправка заказов через интернет.
отчет по практике [1,6 M], добавлен 21.07.2012Изучение особенностей операционной системы, набора программ, контролирующих работу прикладных программ и системных приложений. Описания архитектуры и программного обеспечения современных операционных систем. Достоинства языка программирования Ассемблер.
презентация [1,3 M], добавлен 22.04.2014Анализ современных информационно-поисковых систем автоматизации производства. Основные виды, требования и параметры технологического оборудования для сборочно-монтажных работ. Разработка физической модели базы данных технологического оборудования.
дипломная работа [1,5 M], добавлен 02.09.2014Структурно-информационный анализ методов моделирования динамических систем. Математическое моделирование. Численные методы решения систем дифференциальных уравнений. Разработка структуры програмного комплекса для анализа динамики механических систем.
дипломная работа [1,1 M], добавлен 14.05.2010Краткая история развития поисковых систем. Обзор мировых и российских поисковых систем: Google, Yahoo, Baidu, Yandex, Rambler, Апорт, Mail.ru. Текстовый процессор Microsoft Word. Табличный редактор Excel. Организация рабочего места оператора ЭВМ.
курсовая работа [66,3 K], добавлен 20.12.2008Характеристика информационных систем управления предприятием. Виды информационных систем управления предприятием, их применение. Специфика систем управления торговым предприятием класса ERP и применение данной системы в деятельности торговой компании.
дипломная работа [1,8 M], добавлен 15.09.2012Понятие и классификация систем передачи данных. Характеристика беспроводных систем передачи данных. Особенности проводных систем передачи данных: оптико-волоконных и волоконно-коаксиальных систем, витой пары, проводов. Оценка производителей аппаратуры.
курсовая работа [993,0 K], добавлен 04.03.2010