Метод переноса обучения через аугментации в задачах классификации текста
Существующие методы аугментации тренировочных данных в задаче классификации, их сравнительная характеристика и особенности применения. Порядок проведения экспериментов по аугментированию с помощью различных подходов. Их сравнение с методом EDA.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Информационные технологии |
Вид | дипломная работа |
Язык | русский |
Прислал(а) | Сорокин Семен Алксандрович |
Дата добавления | 20.08.2020 |
Размер файла | 1,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Программное обеспечение для получения исходных данных для обучения нейронных сетей и классификации товаров с их помощью. Алгоритм метода обратного распространения ошибки. Методика классификации товаров: составление алгоритма, программная реализация.
дипломная работа [2,2 M], добавлен 07.06.2012Виды машинного обучения, его основные задачи и методы. Подходы к классификации: логистическая регрессия, наивный байесовский классификатор, стохастический градиентный спуск, K-ближайший сосед, дерево решений, случайный лес, метод опорных векторов.
курсовая работа [436,9 K], добавлен 14.12.2022Пример дерева решений. Анализ древовидной структуры данных. Предикторные (зависимые) переменные как признаки, описывающие свойства анализируемых объектов. Решение задач классификации и численного прогнозирования с помощью деревьев классификации.
презентация [391,1 K], добавлен 09.10.2013Изучение принципа работы интернет-аукциона (на примере сайта molotok.ru). Способ получения информации с веб-ресурсов. Разработка программного обеспечения с целью создания исходных данных для обучения нейронных сетей и классификации товаров с их помощью.
дипломная работа [2,0 M], добавлен 29.06.2012Роль классификации документов в решении задач информационного поиска. Методы автоматической классификации документов и этапы построения классифицирующей системы: индексация документа, построение классификаторов на базе обучающих данных, оценка их работы.
курсовая работа [354,2 K], добавлен 13.01.2013Характеристика системы управления базами данных. Принципы классификации СУБД. NoSQL как ряд подходов, проектов, направленных на реализацию моделей баз данных. Методологические обоснования подхода NoSQL. Описание некоторых СУБД из данного движения.
реферат [18,1 K], добавлен 06.10.2011Создание системы предобработки данных; разработка системы классификации на базе методов и алгоритмов машинного обучения, их реализация в программной системе. Предобработка информации, инструкция пользователя, система классификации, машинный эксперимент.
дипломная работа [917,1 K], добавлен 31.01.2015Интеллектуальный анализ данных как метод поддержки принятия решений, основанный на анализе зависимостей между данными, его роль, цели и условия применения. Сущность основных задач интеллектуального анализа: классификации, регрессии, прогнозирования.
контрольная работа [25,8 K], добавлен 08.08.2013Программная реализация метода оптимальной классификации одномерного упорядоченного множества на основе "склеивания с ближайшим". Проверка работоспособности программы на основе алгоритмов классификации, вычислительные эксперименты по оценке эффективности.
курсовая работа [414,4 K], добавлен 24.05.2015Понятие и критерии классификации баз данных. Характеристика совокупностей элементов данных: массив, дерево, запись. Компоненты любой модели данных. Способы размещения значений элементов в физической записи. Методы доступа к данным: дерево, хеширование.
реферат [84,7 K], добавлен 22.11.2010Сравнение скорости выполнения запросов, построенных на таблицах с использованием типов char и varchar. Настройка окружения, создание баз данных, разработка приложения. Проведение экспериментов по видам запросов: на вставку данных, их обновление и выборку.
курсовая работа [666,8 K], добавлен 12.08.2011Изучение численных методов решения нелинейных уравнений, используемых в прикладных задачах. Нахождение корня уравнения методом простой итерации и методом касательных (на примере уравнения). Отделение корней графически. Программная реализация, алгоритм.
курсовая работа [1,7 M], добавлен 15.06.2013Порядок и основные этапы построения двоичных неравномерных эффективных кодов с помощью методики Хаффмена. Сравнительная характеристика полученных кодов. Кодирование текста построенными кодами. Разработка марковских процедур для кодирования слов.
лабораторная работа [520,7 K], добавлен 29.09.2011Особенности точных и итерационных методов решения нелинейных уравнений. Последовательность процесса нахождения корня уравнения. Разработка программы для проверки решения нелинейных функций с помощью метода дихотомии (половинного деления) и метода хорд.
курсовая работа [539,2 K], добавлен 15.06.2013Различные методы решения задачи классификации. Нейросетевые парадигмы, методы обучения нейронных сетей, возникающие при этом проблемы и пути их решения. Описание программной реализации классификатора, его функциональные возможности и результаты обучения.
дипломная работа [1,0 M], добавлен 28.12.2015Получение и обработка данных о веб-сайте. Иерархическая классификация, алгоритмы машинного обучения. Решающие деревья, плоские классификаторы. Метрики оценки качества. Полная точность (accuracy), кросс-валидация. Параллельные вычисления, хранение данных.
курсовая работа [276,8 K], добавлен 04.09.2016Изучение возможностей среды статистических вычислений R для классификации многомерных неоднородных ассиметричных данных с помощью Expectation-Maximization (EM) алгоритмов. Использование R для анализа модели смеси вероятностных распределений (FMM).
реферат [1,8 M], добавлен 09.12.2014Порядок настройки модуля "Управление проектами". Порядок ввода периодов планирования общесистемных каталогов. Настройки классификации направлений деятельности, классификации ресурсов общесистемных каталогов. Порядок ввода структуры хозяйственного плана.
методичка [611,3 K], добавлен 28.12.2008Методы машинного обучения в задачах рубрикации, положительные и отрицательные примеры. Отсечение по центрам тяжести и ближайшим соседям. Оптимальный линейный сепаратор Support Vector Machines. Особенности применения тезауруса. Расчет веса конъюнкции.
лекция [405,0 K], добавлен 01.09.2013Знакомство с возможностями среды статистических вычислений R для классификации многомерных неоднородных ассиметричных данных. EM алгоритм как общий метод для нахождения оценок максимального правдоподобия параметров моделей по данным с пропусками.
реферат [449,2 K], добавлен 14.12.2014