Характеристика и виды искусственных нейронных сетей

Перцептрон - математическая модель обработки информации человеческим мозгом. Нейронная сеть - громадный распределенный параллельный процессор, состоящий из элементарных единиц обработки данных, накапливающих и анализирующих экспериментальные знания.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 02.11.2020
Размер файла 160,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Характеристика и виды искусственных нейронных сетей

Кочура С.М.

Введение

В последние десятилетия в мире бурно развивается новая прикладная область математики, специализирующаяся на искусственных нейронных сетях (ИНС). Актуальность исследований в этом направлении подтверждается массой различных применений нейросетей. Это автоматизация процессов распознавания образов, адаптивное управление, аппроксимация функционалов, прогнозирование, создание экспертных систем, организация ассоциативной памяти и многие другие приложения. С помощью нейросетей можно, например, предсказывать показатели биржевого рынка, выполнять распознавание оптических или звуковых сигналов, создавать самообучающиеся системы, способные управлять автомашиной при парковке или синтезировать речь по тексту.

Исследования по искусственным нейронным сетям связаны с тем, что способ обработки информации человеческим мозгом в корне отличается от методов, применяемых обычными цифровыми компьютерами. Мозг представляет собой чрезвычайно сложный, нелинейный, параллельный компьютер. Он обладает способностью организовывать свои структурные компоненты, называемые нейронами, так, чтобы они могли выполнять конкретные задачи во много раз быстрее, чем могут позволить самые быстродействующие современные компьютеры.

ИНС работает намного медленнее чем нейросеть живых существ, ее мощность пока находится на уровне мухи. Мозг человека добился отличной работоспособности спустя 50 000 лет эволюции, а нейросети существуют не более 65 лет. Современные технологии сильно шагнули вперед и нет никаких сомнений, что через 10-15 лет нейрокомпьютеры вплотную приблизятся по своим возможностям к человеческому мозгу благодаря стремительному развитию нейросетей и искусственного интеллекта в целом.

1. История создания ИНС

На заре развития электронно-вычислительной техники в середине XX века среди ученых и конструкторов еще не существовало единого мнения он том, как должна быть реализована и по какому принципу работать типовая электронно-вычислительная машина.В период с 1943 по 1950 год были представлены миру первые две основополагающие ученые работы. Одна из них - статья 1943 года от двух выдающихся ученых Уорена Маккалока и Уолтера Питтса освещала математическую модель нейронной сети [1], а в 1949 году канадский нейропсихолог Дональд Хебб выпустил книгу "Организация поведения", в которой было подробное описание процесса самообучения ИНС [7].

Позднее, в 1957 году известный американский ученый Фрэнк Розенблатт изобрел перцептрон - математическую (компьютерную) модель обработки информации человеческим мозгом. Данная разработка уже в те годы умела прогнозировать погоду и распознавать образы.

В 1974 году Пол Вербос разработал алгоритм обратного распространения ошибки, который используется и по сей день для обучения ИНС. Начиная с 1985 года Джон Хопфилд предлагает миру свое виденье устройства и работы нейросети, которая способна решать некоторые виды задач.

Технология последовательных вычислений подошла к пределу своих технических возможностей, и в настоящее время остро стоит проблема развития методов параллельного программирования и создания параллельных компьютеров. Так что, может быть, нейросети являются только очередным шагом в этом направлении.

2. Основные понятия

нейронный сеть перцептрон процессор

Если вспомнить уроки биологии - каждое существо в нашем мире имеет нервную систему, а более продвинутые жители Земли еще и мозг. Биологические нейронные сети и есть мозг. Органы чувств передают информацию о раздражителе нейронным сетям, а те в свою очередь обрабатывают ее, благодаря чему мы чувствуем тепло и холод, ветер, влагу, можем распознать образы, запомнить информацию и т.д.

Нейронная сеть - это громадный распределенный параллельный процессор, состоящий из элементарных единиц обработки информации, накапливающих экспериментальные знания и предоставляющих их для последующей обработки. Нейронная сеть сходна с мозгом с двух точек зрения.

Знания поступают в нейронную сеть из окружающей среды и используются в процессе обучения.

Для накопления знаний применяются связи между нейронами, называемые синаптическими весами.

Процедура, используемая для процесса обучения, называется алгоритмом обучения. Эта процедура выстраивает в определенном порядке синаптические веса нейронной сети для обеспечения необходимой структуры взаимосвязей нейронов.

3. Устройство нейронных сетей

Искусственным нейроном называется простой элемент, сначала вычисляющий взвешенную сумму V входных величин хi:

Здесь N - размерность пространства входных сигналов. Затем полученная сумма сравнивается с пороговой величиной W0, вслед за чем вступает в действие нелинейная функция активации f. Коэффициенты {Wi} во взвешенной сумме обычно называют синаптическими коэффициентами или весами. Саму же взвешенную сумму V мы будем называть потенциалом нейрона i. Выходной сигнал тогда имеет вид f(V). Величину порогового барьера можно рассматривать как еще один весовой коэффициент при постоянном входном сигнале. В этом случае мы говорим о расширенном входном пространстве: нейрон с N-мерным входом имеет N+1 весовой коэффициент. Если ввести в уравнение пороговую величину W0, то оно перепишется так:

В зависимости от способа преобразования сигнала и характера активации возникают различные виды нейронных структур. Существуют детерминированные нейроны, когда активизирующая функция однозначно вычисляет выход по входу, и вероятностные нейроны, состояние которых в момент t есть случайная функция потенциала и состояния в момент t-1. Далее речь пойдёт о детерминированных нейронах[2].

4. Функции активации

В искусственных нейронах могут быть различные функции активации, но и в используемых программах, и в известной литературе указаны только следующие виды функций:

*Линейная: выходной сигнал нейрона равен его потенциалу,

*Пороговая: нейрон выбирает решение из двух вариантов: активен /неактивен,

* Многопороговая: выходной сигнал может принимать одно из q значений,определяемых (q-1) порогом внутри предельных значений.

* Сигмоидная: рассматриваются два вида сигмоидных функций:

с выходными значениями в промежутке [0,1] и

с выходными значениями в промежутке [-1,1]. Коэффициент b определяет крутизну сигмоида. Поскольку сигмоидная функция является гладким отображением (-?,?) на (-1,1), то крутизну можно учесть через величины весов и порогов, и без ограничения общности можно полагать ее равной единице [5].

5. Преимущества нейросети

Задачи, для решения которых используются нейронные сети, во многом совпадает с задачами, решаемыми традиционными статистическими методами. Поэтому укажем преимущества нейросетей перед несколькими классическими методами статистики.

По сравнению с линейными методами статистики (линейная регрессия, авторегрессия, линейный дискриминант), нейронные сети позволяют эффективно строить нелинейные зависимости, более точно описывающие наборы данных. Из нелинейных методов классической статистики распространен, пожалуй, только байесовский классификатор, строящий квадратичную разделяющую поверхность ? нейронная сеть же может построить поверхность более высокого порядка. Высокая нелинейность разделяющей поверхности наивного байесовского классификатора (он не использует ковариационные матрицы классов, как классический байес, а анализирует локальные плотности вероятности) требует значительного суммарного числа примеров для возможности оценивания вероятностей при каждом сочетании интервалов значений переменных ? нейронная сеть же обучается на всей выборке данных, не фрагментируя её, что повышает адекватность настройки нейронной сети.

При построении нелинейных моделей (например, полиномиальных) в статистических программах обычно требуется ручное введение-описание модели в символьном виде с точностью до значений параметров: при N=10 независимых переменных полином второй степени будет содержать N*(N-1)/2=45 коэффициентов при попарных произведениях переменных, 10 при самих переменных, 10 при квадратах значений переменных, т.е. 65 (66 с учетом неоднородного слагаемого) коэффициентов. При двадцати переменных в выражение войдет уже 231 слагаемое. Вводить такие длинные формулы долго, велик риск опечатки. Нейронная сеть же создается путем указания вида структуры, числа слоев и числа нейронов в каждом слое, что гораздо быстрее. А алгоритмы построения растущих нейросетей и вовсе не требуют первоначального задания размера нейронной сети. Альтернативой нейронной сети при построении сложных нелинейных моделей является только метод группового учета аргументов.

Для сжатия и визуализации данных в статистике разработан метод линейных главных компонент. Нейросети-автоассоциаторы позволяют эффективнее сжимать данные за счет построения нелинейных отображений и визуализировать данные в пространстве меньшего числа нелинейных главных компонент.

По сравнению с методами непараметрической статистики, нейронная сеть с радиальными базисными функциями позволяет сокращать число ядер, оптимизировать координаты и размытость каждого ядра. Это позволяет при сохранении парадигмы локальной ядерной аппроксимации ускорять дальнейший процесс принятия решения.

При обучении нейронной сети вместо критерия качества в виде наименьших квадратов можно использовать робастные критерии, дополнительно вести оптимизацию и других свойств нейронной сети (например, добавляя критерии регуляризации решения или оптимизации структуры нейронной сети). Алгоритмы обучения нейронной сети при этом остаются неизменными.

Необходимость решения прямой и обратной задач обычно требует построения двух моделей. При использовании же нейронных сетей можно обойтись одной сетью, обученной решать прямую задачу.

6. Недостатки нейронных сети

Казалось бы, ИНС -- это идеальное решение всех существующих проблем, но это совсем не так, поскольку недостатки у нейросетей также есть. ИНС не есть панацея -- это лишь отличный дополнительный функционал для решения тех или иных задач.

1) Приблизительный ответ

Нейронные сети не способны выдавать точный ответ. Они могут дать правильный ответ, который будет отличаться от неверного всего на несколько процентов и с этим ничего не поделаешь.

2) Многошаговые решения

ИНС не способна шаг за шагом решить задачу, поскольку каждый нейрон является независимым и решает свою часть задачи так, как пожелает нужным. Грубо говоря, ему все равно, что там решил нейрон-сосед.

3) Вычислительные процессы

Нейросети не могут решать вычислительные задачи из-за двух вышеописанных недостатков. Допустим, необходимо решить какое-нибудь уравнение. Мы знаем, что решать его необходимо в последовательном режиме, а ИНС, увы, этого не умеет. [2]

Рис. 1. ИНС не может решить какое-либо сложное математическое неравенство по причине необходимости сложного последовательного выполнения.

7. Виды искусственных нейронных сетей

Любая нейросеть состоит из двух основных слоёв - принимающего (он же и распределительный) сигналы и обрабатывающего. Однако, если нейронная сеть состоит только лишь из этих двух слоев - то она однослойная, если слоев больше, то многослойная.

Однослойная ИНС - входящие сигналы сразу передаются с входного слоя на выходной, который обрабатывает их и выдает готовый результат. На изображении распределяющий слой изображен кружочками, а обрабатывающий - квадратиками [10].

Рис. 2. Пример однослойной ИНС

Многослойная ИНС - сеть, которая состоит из входного, скрытого и обрабатывающего слоев. Сигнал с распределяющего слоя частично обрабатывается скрытым слоем, после чего передается на последний слой нейронов, вычисляющий конечный результат [10].

Рис. 3. Пример многослойной ИНС

Заключение

Развитие нейронных сетей вызвало немало энтузиазма и критики. Некоторые сравнительные исследования оказались оптимистичными, другие - пессимистичными. Для многих задач, таких как распознавание образов, пока не создано доминирующих подходов. Нужно пытаться понять возможности, предпосылки и область применения различных подходов и максимально использовать их дополнительные преимущества для дальнейшего развития интеллектуальных систем.

Множество надежд в отношении нейронных сетей сегодня связывают именно с аппаратными реализациями, но пока время их массового выхода на рынок, видимо, еще не пришло. Они или выпускаются в составе специализированных устройств, или достаточно дороги, а зачастую и то и другое. На их разработку тратится значительное время, за которое программные реализации на самых последних компьютерах оказываются лишь на порядок менее производительными, что делает использование нейро-процессоров нерентабельным. Но все это только вопрос времени -- нейронным сетям предстоит пройти тот же путь, по которому еще совсем недавно развивались компьютеры, увеличивая свои возможности и производительность, захватывая новые сферы применения по мере возникновения новых задач и развития технической основы для их разработки.

Сегодня нейронные сети используются для работы в относительно узких областях, и неизвестно, доверят ли им когда-нибудь решение вопросов, которые требуют понимания социального контекста. Между тем нейронные сети уверенно продолжают проникать в нашу жизнь, и примеров тому немало.

Литература

1) Мак-Каллок У.С., Питтс В. Логическое исчисление идей, относящихся к нервной активности от 27 ноября 2007 на Wayback Machine // Автоматы / Под ред. К.Э.Шеннона и Дж. Маккарти. - М.: Издательство иностр. лит-ры., 1956. - С.363-384. (Перевод английской статьи 1943 г.)

2) Минский М., Пейперт С. Перцептроны/ Минский М. Мир, 2001. 234 с.

3) Русский орфографический словарь Российской академии наук.

Отв. ред. В. В. Лопатин. © Электронная версия, «ГРАМОТА.РУ», 2001--2007)

4) С. Короткий, "Нейронные сети: Основные положения. СПб, 2002.357 с.

5) Фролов А.А., Муравьев И.П. Информационные характеристики нейронных сетей. М.: Наука, 2005, 160 с.

6) www.aiportal.ru - Статья про преимущества нейронных сетей

7) www.habr.com/ru/post/102305/ - Форум IT-специалистов «HABR.com»

8) www.habr.com/ru/post/74326/ - Применение нейросетей в распознавании изображений

9) www.geektimes.ru/post/83781/ - Краткий обзор популярных нейронных сетей

10) ru.wikipedia.org - Статья о нейронных сетях

Размещено на Allbest.ru

...

Подобные документы

  • Понятие и свойства искусственных нейронных сетей, их функциональное сходство с человеческим мозгом, принцип их работы, области использования. Экспертная система и надежность нейронных сетей. Модель искусственного нейрона с активационной функцией.

    реферат [158,2 K], добавлен 16.03.2011

  • Режимы компьютерной обработки данных. Централизованный, децентрализованный, распределенный и интегрированный способы обработки данных. Средства обработки информации. Типы ведения диалога, пользовательский интерфейс. Табличный процессор MS Excel.

    курсовая работа [256,9 K], добавлен 25.04.2013

  • Простейшая сеть, состоящая из группы нейронов, образующих слой. Свойства нейрокомпьютеров (компьютеров на основе нейронных сетей), привлекательных с точки зрения их практического использования. Модели нейронных сетей. Персептрон и сеть Кохонена.

    реферат [162,9 K], добавлен 30.09.2013

  • Модели нейронных сетей и их реализации. Последовательный и параллельный методы резолюции как средства логического вывода. Зависимость между логическим следованием и логическим выводом. Применение технологии CUDA и реализация параллельного алгоритма.

    дипломная работа [1,5 M], добавлен 22.09.2016

  • Описание технологического процесса напуска бумаги. Конструкция бумагоделательной машины. Обоснование применения нейронных сетей в управлении формованием бумажного полотна. Математическая модель нейрона. Моделирование двух структур нейронных сетей.

    курсовая работа [1,5 M], добавлен 15.10.2012

  • Механизм работы нервной системы и мозга человека. Схема биологического нейрона и его математическая модель. Принцип работы искусственной нейронной сети, этапы ее построения и обучения. Применение нейронных сетей в интеллектуальных системах управления.

    презентация [98,6 K], добавлен 16.10.2013

  • Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.

    дипломная работа [814,6 K], добавлен 29.09.2014

  • Способы применения технологий нейронных сетей в системах обнаружения вторжений. Экспертные системы обнаружения сетевых атак. Искусственные сети, генетические алгоритмы. Преимущества и недостатки систем обнаружения вторжений на основе нейронных сетей.

    контрольная работа [135,5 K], добавлен 30.11.2015

  • Компьютер как электронный прибор, предназначенный для автоматизации создания, хранения, обработки и транспортировки данных. Общая характеристика основных составных частей персонального компьютера: процессор, память. Анализ схемы обработки информации.

    контрольная работа [882,0 K], добавлен 02.05.2013

  • Особенности нейронных сетей как параллельных вычислительных структур, ассоциируемых с работой человеческого мозга. История искусственных нейронных сетей как универсального инструмента для решения широкого класса задач. Программное обеспечение их работы.

    презентация [582,1 K], добавлен 25.06.2013

  • Преимущества распределенных система обработки данных. Классификация интегрированных технологий. Модели реализации технологии "клиент-сервер". Мониторы обработки транзакций. Глобальные вычислительные и информационные сети. Виды доступа к глобальным сетям.

    презентация [2,1 M], добавлен 20.11.2013

  • Рост активности в области теории и технической реализации искусственных нейронных сетей. Основные архитектуры нейронных сетей, их общие и функциональные свойства и наиболее распространенные алгоритмы обучения. Решение проблемы мертвых нейронов.

    реферат [347,6 K], добавлен 17.12.2011

  • Виды режимов обработки данных в ЕАИС: мультипрограммный, пакетный, оперативный, телеобработки и обработки в реальном масштабе времени. Основной эффект от объединения ЭВМ и терминалов в вычислительную сеть. Иерархические уровни обмена данными в сети.

    реферат [17,4 K], добавлен 10.08.2017

  • Психодиагностика и нейронные сети. Математические модели и алгоритмы психодиагностики. Решение нейросетями задач психодиагностики. Интуитивное предсказание нейросетями взаимоотношений. Полутораслойный предиктор с произвольными преобразователями.

    диссертация [643,7 K], добавлен 02.10.2008

  • Сущность и функции искусственных нейронных сетей (ИНС), их классификация. Структурные элементы искусственного нейрона. Различия между ИНС и машинами с архитектурой фон Неймана. Построение и обучение данных сетей, области и перспективы их применения.

    презентация [1,4 M], добавлен 14.10.2013

  • Применение нейрокомпьютеров на российском финансовом рынке. Прогнозирование временных рядов на основе нейросетевых методов обработки. Определение курсов облигаций и акций предприятий. Применение нейронных сетей к задачам анализа биржевой деятельности.

    курсовая работа [527,2 K], добавлен 28.05.2009

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа [1,8 M], добавлен 08.02.2017

  • Нейронные сети как средство анализа процесса продаж мобильных телефонов. Автоматизированные решения на основе технологии нейронных сетей. Разработка программы прогнозирования оптово-розничных продаж мобильных телефонов на основе нейронных сетей.

    дипломная работа [4,6 M], добавлен 22.09.2011

  • Сущность и понятие кластеризации, ее цель, задачи, алгоритмы; использование искусственных нейронных сетей для кластеризации данных. Сеть Кохонена, самоорганизующиеся нейронные сети: структура, архитектура; моделирование кластеризации данных в MATLAB NNT.

    дипломная работа [3,1 M], добавлен 21.03.2011

  • Структурная схема компьютера. Основные характеристики процессора - устройства, предназначенного для обработки информации и управления процессом обработки. Способы хранения информации. Описание, назначение и принципы работы устройств ввода и вывода данных.

    презентация [862,1 K], добавлен 20.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.