Звуковая система компьютера
Модуль записи и воспроизведения звуковой системы. Схема аналого-цифрового преобразования звукового сигнала, дискретизация по времени и квантование по уровню аналогового сигнала квантования амплитуды отсчета. Модуль микшера звуковой карты.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 30.05.2022 |
Размер файла | 362,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
ВОРОНЕЖСКИЙ ИНСТИТУТ ВЫСОКИХ ТЕХНОЛОГИЙ - АНОО ВО
Специальность/Направление Информатика и вычислительная техника
Отчет по лабораторной работе №1
по дисциплине _____Архитектура ЭВМ_____
Звуковая система компьютера
Выполнил: студентка группы ИВТ-з 201
Карими Саар Зияулхак
Руководитель: ____д.т.н., профессор____
Зеленин Юрий Григорьевич
Воронеж 2022
Звуковая система компьютера. Что такое звуковая система?
Звуковая система -это дополнительное оборудование персонального компьютера, позволяющее обрабатывать звук (выводить на акустические системы и/или записывать). На момент появления звуковые платы представляли собой отдельные карты расширения, устанавливаемые в соответствующий слот. В современных материнских платах представлены в виде интегрированного в материнскую плату аппаратного кодека (согласно спецификации,Intel AC'97 или Intel HD Audio).
Звуковая система ПК - это комплекс программно-аппаратных средств, выполняющих следующие функции:
· запись звуковых сигналов от внешних источников путём преобразования входных аналоговых звуковых сигналов в цифровые и последующего сохранения на жёстком диске;
· воспроизведение записанных звуковых данных с помощью внешних акустических систем или головных телефонов (наушников);
· воспроизведение звуковых компакт-дисков;
· микширование (смешивание) при записи или воспроизведении сигналов от нескольких источников;
· одновременная запись и воспроизведение звуковых сигналов (режим FullDuplex);
· обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня;
· обработка звукового сигнала в соответствии с алгоритмами объёмного (3-х мерного-3D-Sound) звучания;
· генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков;
· управление работой внешних электронных музыкальных инструментов через специальный интерфейс MIDI.
Конструктивно звуковая система ПК представляет собой звуковые карты, устанавливаемые в слот материнской платы, либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК.
Классическая звуковая система ПК содержит:
· модуль записи и воспроизведения звука;
· модуль синтезатора;
· модуль интерфейсов;
· модуль микшера;
· акустическую систему.
Первые четыре модуля, как правило, устанавливают на звуковой карте. Каждый из модулей может быть выполнен в виде микросхемы, либо входить в состав многофункциональной микросхемы.
Диаграмма Звуковая система пк
Рисунок 1 - Структура звуковой подсистемы ПК
Модуль записи и воспроизведения звуковой системы
Модуль записи/воспроизведения осуществляет аналогово-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных по каналам DMA (DirectMemoryAccess - канал прямого доступа к памяти). звуковая система микшер модуль записи
Запись звука - это сохранение информации о колебаниях звукового давления в момент записи. В настоящее время для записи и передачи информации о звуке используются аналоговые и цифровые сигналы. Другими словами, звуковой сигнал может быть представлен в аналоговой или цифровой форме.
На вход звуковой карты ПК в большинстве случаев звуковой сигнал подается в аналоговой форме. В связи с тем, что ПК оперирует только цифровыми сигналами, аналоговый сигнал должен быть преобразован в цифровой. Вместе с тем акустическая система, установленная на выходе звуковой карты ПК, воспринимает только аналоговые электрические сигналы, поэтому после обработки сигнала с помощью ПК необходимо обратное преобразование цифрового сигнала в аналоговый.
Аналого-цифровое преобразование представляет собой преобразование аналогового сигнала в цифровой и состоит из следующих основных этапов: дискретизации, квантования и кодирования.
Предварительно аналоговый звуковой сигнал поступает на аналоговый фильтр, который ограничивает полосу частот сигнала.
Дискретизация сигнала заключается в выборке отсчетов аналогового сигнала с заданной периодичностью и определяется частотой дискретизации. Причем частота дискретизации должна быть не менее удвоенной частоты наивысшей гармоники (частотной составляющей) исходного звукового сигнала.
Квантование по амплитуде представляет собой измерение мгновенных значений амплитуды дискретного по времени сигнала и преобразование его в дискретный по времени и амплитуде. На рисунке 2 показан процесс квантования по уровню аналогового сигнала, причем мгновенные значения амплитуды кодируются 3-разрядными числами.
Рисунок 2 - Схема аналого-цифрового преобразования звукового сигнала
Кодирование заключается в преобразовании в цифровой код квантованного сигнала. При этом точность измерения при квантовании зависит от количества разрядов кодового слова.
Рисунок 3 - Дискретизация по времени и квантование по уровню аналогового сигнала квантования амплитуды отсчета.
Аналого-цифровое преобразование осуществляется специальным электронным устройством - аналого-цифровым преобразователем (АЦП), в котором дискретные отсчеты сигнала преобразуются в последовательность чисел. Полученный поток цифровых данных, т.е. сигнал, включает как полезные, так и нежелательные высокочастотные помехи, для фильтрации которых полученные цифровые данные пропускаются через цифровой фильтр.
Цифроаналоговое преобразование в общем случае происходит в два этапа, как показано на рисунке 3. На первом этапе из потока цифровых данных с помощью цифроаналогового преобразователя (ЦАП) выделяют отсчеты сигнала, следующие с частотой дискретизации. На втором этапе из дискретных отсчетов путем сглаживания (интерполяции) формируется непрерывный аналоговый сигнал с помощью фильтра низкой частоты, который подавляет периодические составляющие спектра дискретного сигнала.
Для уменьшения объема цифровых данных, необходимых для представления звукового сигнала с заданным качеством, используют компрессию (сжатие), заключающуюся в уменьшении количества отсчетов и уровней квантования или числа бит, приходящихся на один отсчет.
Рисунок 4 - Схема цифроаналогового преобразования
Подобные методы кодирования звуковых данных с использованием специальных кодирующих устройств позволяют сократить объем потока информации почти до 20% первоначального. Выбор метода кодирования при записи аудиоинформации зависит от набора программ сжатия - кодеков (кодирование-декодирование), поставляемых вместе с программным обеспечением звуковой карты или входящих в состав операционной системы.
Выполняя функции аналого-цифрового и цифроаналогового преобразований сигнала, модуль записи и воспроизведения цифрового звука содержит АЦП, ЦАП и блок управления, которые обычно интегрированы в одну микросхему, также называемую кодеком. Основными характеристиками этого модуля являются: частота дискретизации; тип и разрядность АЦП и ЦАП; способ кодирования аудиоданных; возможность работы в режиме FullDuplex.
Частота дискретизации определяет максимальную частоту записываемого или воспроизводимого сигнала. Для записи и воспроизведения человеческой речи достаточно 6 - 8 кГц; музыки с невысоким качеством - 20 - 25 кГц; для обеспечения высококачественного звучания (аудиокомпакт-диска) частота дискретизации должна быть не менее 44 кГц. Практически все звуковые карты поддерживают запись и воспроизведение стереофонического звукового сигнала с частотой дискретизации 44,1 или 48 кГц.
Разрядность АЦП и ЦАП определяет разрядность представления цифрового сигнала (8, 16 или 18 бит).
FullDuplex (полный дуплекс) - режим передачи данных по каналу, в соответствии с которым звуковая система может одновременно принимать (записывать) и передавать (воспроизводить) аудиоданные. Однако не все звуковые карты поддерживают этот режим в полном объеме, поскольку не обеспечивают высокое качество звука при интенсивном обмене данными. Такие карты можно использовать для работы с голосовыми данными в Internet, например, при проведении телеконференций, когда высокое качество звука не требуется.
Модуль синтезатора
Модуль синтезатора позволяет генерировать практически любые звуки, в том числе звучание реальных музыкальных инструментов.
Рисунок 5 - Схема современного синтезатора
Звук создаётся следующим образом. Цифровое устройство генерирует так называемый сигнал возбуждения с заданной высотой звука, который должен иметь спектральные характеристики, близкие к характеристикам имитируемого музыкального инструмента. Далее сигнал поступает на фильтр, имитирующий амплитудно-частотную характеристику этого инструмента. На другой вход подаётся сигнал амплитудной огибающей того же инструмента. Затем совокупность сигналов обрабатывается с целью получения специальных звуковых эффектов (эхо и др.). Затем производят цифроаналоговое преобразование и фильтрацию сигнала с помощью фильтра низких частот (ФНЧ).
Синтезирование представляет собой процесс воссоздания структуры музыкального тона (ноты). Звуковой сигнал любого музыкального инструмента имеет несколько временных фаз. На рисунке 15, а показаны фазы звукового сигнала, возникающего при нажатии клавиши рояля. Для каждого музыкального инструмента вид сигнала будет своеобразным, но в нем можно выделить три фазы: атаку, поддержку и затухание. Совокупность этих фаз называется амплитудной огибающей, форма которой зависит от типа музыкального инструмента. Длительность атаки для разных музыкальных инструментов изменяется от единиц до нескольких десятков или даже до сотен миллисекунд. В фазе, называемой поддержкой, амплитуда сигнала почти не изменяется, а высота музыкального тона формируется во время поддержки. Последней фазе, затуханию, соответствует участок достаточно быстрого уменьшения амплитуды сигнала.
Основные характеристики модуля синтезатора:
ь метод синтеза звука: на основе частотной модуляции, на основе таблиц волн, на основе физического модулирования;
ь объём памяти;
ь возможность аппаратной обработки сигнала для создания звуковых эффектов;
ь полифония - максимальное число одновременно воспроизводимых элементов звука.
Синтез звука на основе таблицы волн (WaveTableSynthesis - WT-синтез) производится путем использования предварительно оцифрованных образцов звучания реальных музыкальных инструментов и других звуков, хранящихся в специальной ROM, выполненной в виде микросхемы памяти или интегрированной в микросхему памяти WT-генератора. WT-синтезатор обеспечивает генерацию звука с высоким качеством. Этот метод синтеза реализован в современных звуковых картах.
Объем памяти на звуковых картах с WT-синтезатором может увеличиваться за счет установки дополнительных элементов памяти (ROM) для хранения банков с инструментами.
Звуковые эффекты формируются с помощью специального эффект процессора, который может быть либо самостоятельным элементом (микросхемой), либо интегрироваться в состав WT-синтезатора. Для подавляющего большинства карт с WT-синтезом эффекты реверберации и хоруса стали стандартными. Синтез звука на основе физического моделирования предусматривает использование математических моделей звукообразования реальных музыкальных инструментов для генерации в цифровом виде и для дальнейшего преобразования в звуковой сигнал с помощью ЦАП. Звуковые карты, использующие метод физического моделирования, пока не получили широкого распространения, поскольку для их работы требуется мощный ПК.
Модуль интерфейсов
Модуль интерфейсов обеспечивает обмен данными между звуковой системой и другими внешними и внутренними устройствами.
Интерфейс PCI обеспечивает широкую полосу пропускания (например, версия 2.1 - более 260 Мбит/с), что позволяет передавать потоки звуковых данных параллельно. Использование шины PCI позволяет повысить качество звука, обеспечив отношение сигнал/шум свыше 90 дБ. Кроме того, шина PCI обеспечивает возможность кооперативной обработки звуковых данных, когда задачи обработки и передачи данных распределяются между звуковой системой и CPU.
MIDI (MusicalInstrumentDigitalInterface - цифровой интерфейс музыкальных инструментов) регламентируется специальным стандартом, содержащим спецификации на аппаратный интерфейс: типы каналов, кабели, порты, при помощи которых MIDI-устройства подключаются один к другому, а также описание порядка обмена данными - протокола обмена информацией между MIDI-устройствами. В частности, с помощью MIDI-команд можно управлять светотехнической аппаратурой, видеооборудованием в процессе выступления музыкальной группы на сцене. Устройства с MIDI-интерфейсом соединяются последовательно, образуя своеобразную MIDI-сеть, которая включает контроллер - управляющее устройство, в качестве которого может быть использован как ПК, так и музыкальный клавишный синтезатор, а также ведомые устройства (приемники), передающие информацию в контроллер по его запросу. Суммарная длина MIDI-цепочки не ограничена, но максимальная длина кабеля между двумя MIDI-устройствами не должна превышать 15 метров.
Подключение ПК в MIDI-сеть осуществляется с помощью специального MIDI-адаптера, который имеет три MIDI-порта: ввода, вывода и сквозной передачи данных, а также два разъема для подключения джойстиков.
В состав звуковой карты входит интерфейс для подключения приводов CD-ROM
Модуль микшера
Модуль микшера звуковой карты выполняет:
ь коммутацию (подключение/отключение) источников и приёмников звуковых сигналов, а также регулирование их уровня;
ь микширование нескольких звуковых сигналов и регулирование уровня результирующего сигнала.
Основные характеристики:
ь число микшируемых сигналов на канале воспроизведения;
ь регулирование уровня сигнала в каждом микшируемом канале;
ь регулирование уровня суммарного сигнала;
ь выходная мощность усилителя;
ь наличие разъёмов для подключения внешних и внутренних приёмников/источников звуковых сигналов.
Программное обеспечение управления микшером осуществляется либо средствами Windows, либо с помощью специального программного обеспечения.
Акустическая система (АС) непосредственно преобразует звуковой электрический сигнал в акустические колебания и является последним звеном звукопроизводящего тракта. В состав АС входят несколько звуковых колонок, каждая из которых может иметь один или несколько динамиков. Количество колонок в АС зависит от числа компонентов, составляющих звуковой сигнал и образующих отдельные звуковые каналы.
Основные характеристики:
ь полоса воспроизводимых частот;
ь чувствительность;
ь коэффициент гармоник;
ь мощность.
Совместимость звуковой системы с одним из стандартов звуковых карт означает, что звуковая система будет обеспечивать качественное воспроизведение звуковых сигналов. Проблемы совместимости особенно важны для DOS-приложений. Каждое из них содержит перечень звуковых карт, на работу с которыми DOS-приложение ориентировано.
Стандарт SoundBlaster поддерживают приложения в виде игр для DOS, в которых звуковое сопровождение запрограммировано с ориентацией на звуковые карты семейства SoundBlaster.
Стандарт WindowsSoundSystem (WSS) фирмы Microsoft включает звуковую карту и пакет программ, ориентированный в основном на бизнес-приложения.
Список литературы
1. Стандарты по локальным вычислительным сетям: Справочник / В. К. Щербо, В. М. Киреичев, С. И. Самойленко; под ред. С. И. Самойленко. - М.: Радио и связь, 2005.
2. Практическая передача данных: Модемы, сети и про-токолы / Ф. Дженнингс; пер. с англ. - М.: Мир, 2000.
3. Сети ЭВМ: протоколы стандарты, интерфейсы / Ю. Блэк; пер. с англ. - М.: Мир, 1999.
4. Fast Ethernet / Л. Куинн, Р. Рассел. - BHV-Киев, 2007.
5. Коммутация и маршрутизация IP/IPX трафика / М. В. Кульгин, АйТи. - М.: Компьютер-пресс, 2001.
6. Волоконная оптика в локальных и корпоративных се-тях связи / А. Б. Семенов, АйТи. - М.: Компьютер-пресс, 1998.
7. Протоколы Internet. С. Золотов. - СПб.: BHV - Санкт-Петербург, 2002.
8. Персональные компьютеры в сетях TCP/IP. Крейг Хант; пер. с англ. - BHV-Киев, 2003.
9. Вычислительные системы, сети и телекоммуникации / Пятибратов и др. - ФИС, 2004.
10. Высокопроизводительные сети. Энциклопедия поль-зователя / А. Марк Спортак и др.; пер. с англ. - Киев: Диа-Софт, 2006.
Размещено на Allbest.ru
...Подобные документы
Анализ процесса оцифровки зависимости интенсивности звукового сигнала от времени. Характеристика технологии создания музыкальных звуков в современных электромузыкальных цифровых синтезаторах. Изучение основных звуковых форматов, способов обработки звука.
курсовая работа [2,3 M], добавлен 23.11.2011Понятие звуковой информации как кодирования звука, в основе которого лежит процесс колебания воздуха и электрического тока. Величина слухового ощущения (громкость). Временная дискретизация звука, ее частота. Глубина и качество звуковой информации.
презентация [545,6 K], добавлен 13.05.2015Генерирование и сохранение мелодии в виде звукового файла формата wav. Проведение частотного анализа полученного сигнала. Зависимость объема wav-файлов от разрядности кодирования сигнала. Спектр нот записанного wav-файла с заданной разрядностью.
лабораторная работа [191,0 K], добавлен 30.03.2015Создание приложения в среде Advantech Studio для организации работы с модулем аналогового вывода ADAM-5024. Отображение сигнала на виртуальном приборе HMI, тренда сигнала в реальном времени и тренда исторических данных. Конфигурация модульной системы.
курсовая работа [3,2 M], добавлен 16.11.2013Современные методы цифрового сжатия. Классификация алгоритмов сжатия. Оцифровка аналогового сигнала. Алгоритм цифрового кодирования. Последовательное двойное сжатие. Чересстрочность и квантование. Сокращение цифрового потока. Профили, уровни формата MPEG.
реферат [784,9 K], добавлен 22.01.2013Сущность компьютера как своеобразного вычислителя. Характеристика микропроцессора – главного элемента компьютера, его электронной схемы, выполняющей все вычисления и обработку информации. История компьютерной техники. Работа звуковой карты, клавиатуры.
контрольная работа [75,7 K], добавлен 01.03.2011Формат звукового файла wav, способ его кодирования. Реализация возможностей воспроизведения звука в среде программирования MATLAB. Составление функциональной схемы программы. Апробирование информационной технологии воспроизведения звуковых файлов.
курсовая работа [1,2 M], добавлен 13.02.2016Разработка программного обеспечения, предназначенного для изменения характеристик исходного звукового сигнала с целью изменения характеристик его звучания. Алгоритмы обработки и фильтрации звукового сигнала, редактирование его, изменение темпа и уровня.
дипломная работа [1,8 M], добавлен 08.07.2008Критерий разработки кодирующих устройств. Международный стандарт кодирования для передачи речи в телефонном канале PCM. Оценка качества сигнала. Задача спектрального оценивания. Гармонический алгоритм Берга. Системы синтеза речи. Форматы звуковых файлов.
дипломная работа [905,3 K], добавлен 17.10.2012Обзор и общее описание, оценка преимуществ и недостатков виртуальных приборов на базе звуковой карты компьютера: осциллографы, анализаторы, генераторы, измерители сопротивления. Выбор и расчет схемы измерения. Разработка программного обеспечения.
дипломная работа [4,1 M], добавлен 17.02.2013Структура и функции генератора случайных чисел. Методы предельного уменьшения ошибки второго рода. Усиление шумового сигнала. Его дискретизация по времени и аналого-цифровое преобразование. Формирование случайной последовательности и ее корреляция.
курсовая работа [299,4 K], добавлен 11.12.2014Понятие звукового микшерного пульта как устройства первичной обработки звуковых сигналов. Технические параметры и функциональные возможности пультов. Смешивание источников сигнала в групповых каналах, дополнительные отводы и использование аттенюаторов.
реферат [3,2 M], добавлен 09.11.2010Простейшая схема взаимодействия оперативной памяти с ЦП. Устройство и принципы функционирования оперативной памяти. Эволюция динамической памяти. Модуль памяти EDO-DRAM BEDO (Burst EDO) - пакетная EDO RAM. Модуль памяти SDRAM, DDR SDRAM, SDRAM II.
реферат [16,1 K], добавлен 13.12.2009ISDN как цифровая сеть с интеграцией обслуживания для совместимости услуги телефонной связи и обмена данными. Передача звукового сигнала в цифровой форме. Повышение скорости обмена данными по обычной телефонной сети. Минимальное число двоичных разрядов.
лекция [230,6 K], добавлен 15.04.2014Кодирование как процесс представления информации в виде кода. Кодирование звуковой и видеоинформации, характеристика процесса формирования определенного представления информации. Особенности универсального дружественного интерфейса для пользователей.
контрольная работа [20,3 K], добавлен 22.04.2011BIOS как базовая система ввода-вывода, его внутренняя структура и основные элементы, модуль расширения и его задачи. Базовый модуль DOS. Функции командного процессора. Утилиты: понятие и содержание, особенности функционирования, главные цели и задачи.
презентация [219,7 K], добавлен 13.08.2013Вид деятельности, для автоматизации которой предназначен модуль. Определение границ проекта "создание мобильного приложения системы КБНТИ для отображения изменений в системе и управления модулем подписок". Построение диаграммы состояний уведомления.
отчет по практике [386,9 K], добавлен 11.04.2016Компоненты персонального компьютера: блок питания, материнская плата, устройство процессора, оперативной памяти, видео и звуковой карты, сетевого адаптера и жесткого диска. Съемные носители информации. Монитор, клавиатура и мышь. Периферийные устройства.
дипломная работа [970,4 K], добавлен 22.11.2010Анализ методики использования многомерных массивов в среде Delphi. Общее понятие массивов, их реализация, достоинства, недостатки. Массивы в Object Pascal. Описание функциональной структуры приложения: модуль MatrixOperations, модуль fileIO, модуль form.
курсовая работа [1,3 M], добавлен 28.09.2010Цифровое представление звуковых сигналов. Устройства вывода звуковой информации: колонки, динамик и наушники. Устройства ввода звуковой информации. Частота и интенсивность звука. Амплитуда звуковых колебаний, мощность источника звука, диапазон колебаний.
реферат [133,3 K], добавлен 08.02.2011