Распознавание изображений на Python при помощи нейросети

Разработка нейронной сети для распознавания изображений. Рассмотрение примеров применения машинного обучения в различных областях. Фреймворки и библиотеки для упрощения разработки ботов для Telegram. Создание приложения при помощи нейросети на Python.

Рубрика Программирование, компьютеры и кибернетика
Предмет Информатика
Вид отчет по практике
Язык русский
Прислал(а) Кацубо А.С.
Дата добавления 20.12.2023
Размер файла 920,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа [1,8 M], добавлен 08.02.2017

  • Программное обеспечение Python и ее основные характеристики, как программной среды. Общие сведения о языке программирования Python. Особенности применения ППП Python (x,y) с использованием его различных вычислительных модулей в учебном процессе.

    дипломная работа [2,9 M], добавлен 07.04.2019

  • Принцип работы нейросетей и модели синтеза. Ключевые моменты проблемы распознавания речи. Система распознавания речи как самообучающаяся система. Описание системы: ввод звука, наложение первичных признаков на вход нейросети, модель и обучение нейросети.

    курсовая работа [215,2 K], добавлен 19.10.2010

  • Анализ создания виртуального окружения для разработки. Установка фреймворка Flask. Особенность настройки аутентификации и привилегий. Создание Python-файла и написание в нем простого веб-приложения. Запуск и проверка работоспособности приложения.

    лабораторная работа [2,1 M], добавлен 28.11.2021

  • Разработка программ средствами библиотеки tkinter на языке Python. Изучение основы работы в текстовом редакторе Word. Описание авторской идеи анимации. Использование базовых команд и конструкций. Процесс проектирования и алгоритм разработанной программы.

    контрольная работа [125,3 K], добавлен 11.11.2014

  • Use case-диаграмма. Оценка трудоёмкости и сроков разработки проекта с использованием языка Python по методикам CETIN И COCOMO-II. Проектирование информационной системы. Разработка приложения с использованием Django: создание шаблонов, моделей и пр.

    дипломная работа [1,3 M], добавлен 10.07.2017

  • Разработка алгоритма и программы для распознавания пола по фотографии с использованием искусственной нейронной сети. Создание алгоритмов: математического, работы с приложением, установки весов, реализации функции активации и обучения нейронной сети.

    курсовая работа [1,0 M], добавлен 05.01.2013

  • Понятие и характеристики облачных технологий, модели их развертывания, технологические процессы, аспекты экономики и критика. Язык программирования Python, оценка функциональности, сравнение с аналогами. Управление облаком в Python на примере libcloud.

    курсовая работа [43,0 K], добавлен 08.06.2014

  • Разработка структуры базы данных для хранения дипломных проектов в среде объектно-ориентированного программирования Python. Создание внешнего вида окон ввода-вывода информации, технологии переходов. Листинг программы с пояснениями; направления улучшения.

    курсовая работа [3,1 M], добавлен 27.02.2015

  • Отличительные особенности языка программирования Python: низкий порог вхождения, минималистичный язык, краткий код, поддержка математических вычислений, большое количество развитых web-фреймворков. Традиционная модель выполнения программ на языке Python.

    реферат [51,9 K], добавлен 18.01.2015

  • Об'єктно-орієнтована мова Python - сучасна мова програмування, проста у вивченні та використанні. Наявність повної стандартної бібліотеки. Середовища програмування на Python. Механізм функціонування інтерпретатора. Колекції даних, комбіновані оператори.

    презентация [753,2 K], добавлен 06.02.2014

  • Описание структурной схемы искусственного нейрона. Характеристика искусственной нейронной сети как математической модели и устройств параллельных вычислений на основе микропроцессоров. Применение нейронной сети для распознавания образов и сжатия данных.

    презентация [387,5 K], добавлен 11.12.2015

  • Разработка алгоритма и программы на персональном компьютере двухслойной нейросети, аналогичной программы на микроконтроллере STM32F407VG. Этапы реализации обучения нейросети и передачи весовых коэффициентов на микроконтроллер по интерфейсу связи UART.

    курсовая работа [1,4 M], добавлен 21.02.2016

  • Обработка изображений на современных вычислительных устройствах. Устройство и представление различных форматов изображений. Исследование алгоритмов обработки изображений на базе различных архитектур. Сжатие изображений на основе сверточных нейросетей.

    дипломная работа [6,1 M], добавлен 03.06.2022

  • Анализ нейронных сетей и выбор их разновидностей. Модель многослойного персептрона с обучением по методу обратного распространения ошибки. Проектирование библиотеки классов для реализации нейросети и тестовой программы, описание тестирующей программы.

    курсовая работа [515,4 K], добавлен 19.06.2010

  • Выбор типа и структуры нейронной сети. Подбор метода распознавания, структурная схема сети Хопфилда. Обучение системы распознавания образов. Особенности работы с программой, ее достоинства и недостатки. Описание интерфейса пользователя и экранных форм.

    курсовая работа [3,0 M], добавлен 14.11.2013

  • Этапы разработки системы реального времени для распознавания лиц на статическом изображении в условиях сложных сцен. Основные понятия алгоритма AdaBoost. Использование примитивов Хаара для описания свойств изображений. Среда разработки "Borland Delphi".

    курсовая работа [6,8 M], добавлен 06.01.2011

  • Рассмотрение способов применения и основных понятий нейронных сетей. Проектирование функциональной структуры автоматизированной системы построения нейросети обратного распространения ошибки, ее классов и интерфейсов. Описание периода "бета тестирования".

    дипломная работа [3,0 M], добавлен 02.03.2010

  • Оптическое распознавание символов как механический или электронный перевод изображений рукописного, машинописного или печатного текста в последовательность кодов. Компьютерные программы для оптического распознавания символов и их характеристика.

    презентация [855,2 K], добавлен 20.12.2011

  • Оптико-электронная система идентификации объектов подвижного состава железнодорожного транспорта. Автоматический комплекс распознавания автомобильных номеров. Принципы и этапы работы систем оптического распознавания. Особенности реализации алгоритмов.

    дипломная работа [887,3 K], добавлен 26.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.