Системи розпізнавання людей за допомогою бібліотеки YOLO V3
Аналіз та характеристика існуючих систем розпізнавання людей. Особливості дво- та одноступеневого розпізнавання образів. Методика підвищення продуктивності глибоких нейронних мереж. Програмна реалізація алгоритму на основі YOLOv3 та фремворка Darknet.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Інформаційні технології |
Вид | статья |
Язык | украинский |
Прислал(а) | Далявський В.С., Фечан А.В. |
Дата добавления | 07.09.2024 |
Размер файла | 630,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Історія досліджень, пов’язаних з розпізнаванням образів, його практичне використання. Методи розпізнавання образів: метод перебору, глибокий аналіз характеристик образу, використання штучних нейронних мереж. Характерні риси й типи завдань розпізнавання.
реферат [61,7 K], добавлен 23.12.2013Розробка, дослідження та реалізація методів вирішення завдань аналізу, розпізнавання і оцінювання зображень як один із провідних напрямків інформатики. Класифікація та аналіз існуючих методів розпізнавання образів, переваги та недоліки їх застосування.
статья [525,8 K], добавлен 19.09.2017Огляд методів розпізнавання образів. Основні ідеї інформаційно-екстремального методу розпізнавання рукописних символів. Критерій оптимізації параметрів функціонування даної системи. Інформаційне та програмне забезпечення обробки рукописних символів.
дипломная работа [291,0 K], добавлен 14.10.2010Специфіка застосування нейронних мереж. Огляд програмних засобів, що використовують нейронні мережі. Побудова загальної моделі згорткової нейронної мережі. Реалізація нейромережного модулю розпізнавання символів на прикладі номерних знаків автомобілів.
дипломная работа [3,4 M], добавлен 15.03.2022Ознайомлення із загальною структурою системи автоматичного розпізнавання мовлення. Визначення особливостей нейронних мереж. Дослідження та характеристика процесу побудови системи розпізнавання мовлення. Вивчення специфіки прихованої моделі Маркова.
дипломная работа [1,1 M], добавлен 25.07.2022Комп’ютерне моделювання системи сегментації та розпізнавання облич на зображеннях. Підвищення швидкодії моделювання за кольором шкіри та покращення якості розпізнавання при застосуванні робастних boosting-методів. Розробка алгоритмів функціонування.
дипломная работа [1,6 M], добавлен 02.07.2014Алгоритм оптичного розпізнавання образів. Універсальність таких алгоритмів. Технологічність, зручність у процесі використання програми. Два класи алгоритмів розпізнавання друкованих символів: шрифтовий та безшрифтовий. технологія підготовки бази даних.
реферат [24,5 K], добавлен 19.11.2008Огляд інтелектуальних принципів організації процесу розпізнавання символів. Розробка системи безклавіатурного введення документів у комп’ютер. Опис і обґрунтування проектних рішень; розрахунки і експериментальні дані; впровадження системи в експлуатацію.
дипломная работа [182,5 K], добавлен 07.05.2012Сегментація і нормалізація зображень. Основні функціональні можливості та режими роботи комплексу розпізнавання письмового тексту. Розробка комплексу оптичного розпізнавання символів. Шрифтові та безшрифтові алгоритми розпізнавання друкованого тексту.
курсовая работа [1,7 M], добавлен 19.05.2014Системи розпізнавання обличчя. Призначення та область застосування програми "Пошук обличчя люди у відеопотоках стандарту MPEG-4". Штучна нейронна мережа, локалізація та розпізнавання обличчя. Методи, засновані на геометричних характеристиках обличчя.
курсовая работа [1,8 M], добавлен 27.03.2010Розробка методів вирішення завдань аналізу, розпізнавання, оцінювання зображень як одних з провідних напрямків інформатики. Описання методу пошуку співпадіння об’єкту-цілі з міткою-прицілом на заданому відеоряді. Виявлення об’єкта на цифровому зображенні.
статья [138,7 K], добавлен 21.09.2017Актуальність сучасної системи оптичного розпізнавання символів. Призначення даних систем для автоматичного введення друкованих документів в комп'ютер. Послідовність стадій процесу введення документу в комп'ютер. Нові можливості програми FineReader 5.0.
курсовая работа [4,5 M], добавлен 29.09.2010Структура сучасних систем виявлення вторгнень (СВВ), аналіз її методів і моделей. Характеристика основних напрямків розпізнавання порушень безпеки захищених систем в сучасних СВВ. Перелік недоліків існуючих СВВ та обґрунтування напрямків їх вдосконалення.
реферат [467,9 K], добавлен 12.03.2010Застосування нейронних мереж при вирішенні різних технічних проблем. Архітектура штучних нейронних мереж. Дослідження штучного інтелекту. Гіпотеза символьних систем. Представлення за допомогою символів. Синтаксичний та семантичний аналіз розуміння мови.
курсовая работа [985,8 K], добавлен 14.01.2010Навчання штучних нейронних мереж, особливості їх використання для вирішення практичних завдань. Рецепторна структура сприйняття інформації. Перцептрон як модель розпізнавання. Задача моделювання штучної нейронної мережі з розпаралелюванням процесів.
дипломная работа [2,8 M], добавлен 24.07.2013Огляд суті гри "Доміно", характеристика її існуючих програмних реалізацій. Розробка евристичного алгоритму для розв’язання ігрової ситуації "Доміно". Програмна реалізація алгоритму мовою програмування високого рівня C#. Отладка оціночної функції.
курсовая работа [1,4 M], добавлен 14.05.2012Призначення модулів та їх структура. Компіляція програм, які використовують модулі. Програмна реалізація алгоритму створення бібліотеки операцій над векторами. Інструкція користувачеві програми. Контрольні приклади та аналіз результатів їх реалізації.
курсовая работа [145,6 K], добавлен 20.03.2011Дослідження інструментальних засобів для створення систем спільного навчання. Створення Windows-додатків на основі Visual C#. Функціональні можливості та програмна реалізація системи інтерактивної взаємодії. Програмна реалізація модулю прийому зображення.
дипломная работа [4,5 M], добавлен 22.10.2012Методи побудови довірчих інтервалів для невідомої імовірності. Оцінка неоднорідності генеральної сукупності за допомогою лінійних сплайнів. Непараметричні критерії еквівалентності генеральних сукупностей за допомогою мір близькості між вибірками.
автореферат [32,7 K], добавлен 06.04.2009Побудова блок-схеми алгоритму проста вставка. Програмна реалізація алгоритму, опис результатів. Особливості обліку ітерації масивів. Відсортування даних за допомогою програми Turbo Pascal. Аналітична оцінка трудомісткості, графічне представлення.
контрольная работа [570,1 K], добавлен 21.05.2014