Анализ качества программных средств
Инструментарии анализа качества программных продуктов. Дефектологические свойства разделяют надефектогенность, дефектабельность и дефектоскопичность. Стандарты управления качеством промышленной продукции. Корректность и устойчивость программных систем.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 01.10.2024 |
Размер файла | 2,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Инструментарии анализа качества программных продуктов в среде
При разработке программных продуктов используется в той или иной мере компьютерная поддержка процессов разработки и сопровождения ПП. Это достигается путем представления хотя бы некоторых программных документов ПП (прежде всего, программ) на компьютерных носителях данных (например, на дискетах) и предоставлению в распоряжение разработчика ПП специальных ПП или включенных в состав компьютера специальных устройств, созданных для какой-либо обработки таких документов. В качестве такого специального ПП можно указать компилятор с какого-либо языка программирования. Компилятор избавляет разработчика ПП от необходимости писать программы на языке компьютера, который для разработчика ПП был бы крайне неудобен, - вместо этого он составляет программы на удобном ему языке программирования, которые соответствующий компилятор автоматически переводит на язык компьютера. В качестве специального устройства, поддерживающего процесс разработки ПП, можно указать, например, эмулятор какого- либо языка. Эмулятор позволяет выполнять (интерпретировать) программы на языке, отличном от языка компьютера, поддерживающего разработку ПП, например, на языке компьютера, для которого эта программа предназначена.
ПП, предназначенное для поддержки разработки других ПП, будем называть программным инструментом разработки ПП, а устройство компьютера, специально предназначенное для поддержки разработки ПП, будем называть аппаратным инструментом разработки ПП.
Инструменты разработки ПП могут использоваться в течение всего жизненного цикла ПП для работы с разными программными документами. Так текстовый редактор может использоваться для разработки практически любого программного документа. С точки зрения функций, которые инструменты выполняют при разработке ПП, их можно разбить на следующие четыре группы:
редакторы,
анализаторы,
преобразователи,
инструменты, поддерживающие процесс выполнения программ.
Редакторы поддерживают конструирование (формирование) тех или иных программных документов на различных этапах жизненного цикла. Как уже упоминалось, для этого можно использовать один какой- нибудь универсальный текстовый редактор. Однако, более сильную поддержку могут обеспечить специализированные редакторы: для каждого вида документов - свой редактор. В частности, на ранних этапах разработки в документах могут широко использоваться графические средства описания (диаграммы, схемы и т.п.). В таких случаях весьма полезными могут быть графические редакторы. На этапе программирования (кодирования) вместо текстового редактора может оказаться более удобным синтаксически управляемый редактор, ориентированный на используемый язык программирования.
Анализаторы производят либо статическую обработку документов, осуществляя различные виды их контроля, выявление определенных их свойств и накопление статистических данных (например, проверку соответствия документов указанным стандартам), либо динамический анализ программ (например, с целью выявление распределения времени работы программы по программным модулям).
Преобразователи позволяют автоматически приводить документы к другой форме представления (например, форматеры) или переводить документ одного вида к документу другого вида (например, конверторы или компиляторы), синтезировать какой-либо документ из отдельных частей и т.п.
Инструменты, поддерживающие процесс выполнения программ, позволяют выполнять на компьютере описания процессов или отдельных их частей, представленных в виде, отличном от машинного кода, или машинный код с дополнительными возможностями его интерпретации. Примером такого инструмента является эмулятор кода другого компьютера. К этой группе инструментов следует отнести и различные отладчики. По существу, каждая система программирования содержит программную подсистему периода выполнения, которая выполняет программные фрагменты, наиболее типичные для языка программирования, и обеспечивает стандартную реакцию на возникающие при выполнении программ исключительные ситуации (такую подсистему мы будем называть исполнительной поддержкой). Такую подсистему также можно рассматривать как инструмент данной группы.
Качество ИС связано с дефектами, заложенными на этапе проектирования и проявляющимися в процессе эксплуатации. Свойства ИС, в том числе и дефектологические, могут проявляться лишь во взаимодействии с внешней средой, включающей технические средства, персонал, информационное и программное окружение.
В зависимости от целей исследования и этапов жизненного цикла ИС дефектологические свойства разделяют надефектогенность, дефектабельность и дефектоскопичность.
Дефектогенность определяется влиянием следующих факторов:
численностью разработчиков ИС, их профессиональными психофизиологическими характеристиками;
условиями и организацией процесса разработки ИС;
характеристиками инструментальных средств и комплексов ИС;
сложностью задач, решаемых ИС;
степенью агрессивности внешней среды (потенциальной возможностью внешней среды вносить преднамеренные дефекты, например, воздействие вирусов).
Дефектабельность характеризует наличие дефектов ИС и определяется их количеством и местонахождением. Другими факторами, влияющими на дефектабельность, являются:
структурно-конструктивные особенности ИС;
интенсивность и характеристики ошибок, приводящих к дефектам.
Дефектоскопичность характеризует возможность проявления дефектов в виде отказов и сбоев в процессе отладки, испытаний или эксплуатации. На дефектоскопичность влияют:
количество, типы и характер распределения дефектов;
устойчивость ИС к проявлению дефектов;
характеристики средств контроля и диагностики дефектов;
квалификация обслуживающего персонала.
Оценка качества ИС - задача крайне сложная из-за многообразия интересов пользователей. Поэтому невозможно предложить одну универсальную меру качества и приходится использовать ряд характеристик, охватывающих весь спектр предъявляемых требований. Наиболее близки к задачам оценки качества ИС модели качества программного обеспечения, являющегося одним из важных составных частей ИС. В настоящее время используется несколько абстрактных моделей качества программного обеспечения, основанных на определениях характеристики качества, показателя качества, критерия и метрики.
Критерий может быть определен как независимый атрибут ИС или процесса ее создания. С помощью такого критерия может быть измерена характеристика качества ИС на основе той или иной метрики. Совокупность нескольких критериев определяетпоказатель качества ,формируемый исходя из требований, предъявляемых к ИС. В настоящее время наибольшее распространение получила иерархическая модель взаимосвязи компонентов качества ИС. Вначале определяются характеристики качества, в числе которых могут быть, например:
общая полезность;
исходная полезность;
удобство эксплуатации.
Далее формируются показатели, к числу которых могут быть отнесены:
практичность;
целостность;
корректность;
удобство обслуживания;
оцениваемость;
гибкость;
адаптируемость;
мобильность;
возможность взаимодействия.
Каждому показателю качества ставится в соответствие группа критериев. Для указанных показателей приведем возможные критерии. Надо отметить, что один и тот же критерий может характеризовать несколько показателей:
практичность - работоспособность, возможность обучения, коммуникативность, объем ввода, скорость ввода-вывода;
целостность - регулирование доступа, контроль доступа;
эффективность - эффективность использования памяти, эффективность функционирования;
корректность - трассируемость, завершенность, согласованность;
надежность - точность, устойчивость к ошибкам, согласованность, простоту;
удобство обслуживания - согласованность, простоту, краткость, информативность, модульность;
оцениваемость - простоту, наличие измерительных средств, информативность, модульность;
гибкость - распространяемость, общность, информатирован-ность, модульность;
адаптируемость - общность, информативность, модульность, аппаратную независимость, программную независимость;
мобильность - информативность, модульность, аппаратную независимость, программную независимость;
возможность взаимодействия - модульность, унифицируемость процедур связи, унифицируемость данных.
С помощью метрик можно дать количественную или качественную оценку качества ИС. Различают следующие виды метрических шкал для измерения критериев.
Первый тип - метрики, которые используют интервальную шкалу, характеризуемую относительными величинами реально измеряемых физических показателей, например, временем наработки на отказ, вероятностью ошибки, объемом информации и других.
Второй тип - метрики, которым соответствует порядковая шкала, позволяющая ранжировать характеристики путем сравнения с опорными значениями.
Третий тип - метрики, которым соответствуют номинальная, или категорированная шкала, определяющая наличие рассматриваемого свойства или признака у рассматриваемого объекта без учета градаций по этому признаку. Так, например,интерфейс может быть "простым для понимания", "умеренно простым", "сложным для понимания".
Развитием иерархического подхода является представленная на рис.1 модель классификации критериев качестваинформационных систем. С помощью функциональных критериев оценивается степень выполнения ИС основных целей или задач. Конструктивные критерии предназначены для оценки компонент ИС, не зависящих от целевого назначения.
Одним из путей обеспечения качества ИС является сертификация .В США Радиотехническая комиссия по аэронавтике в своем руководящем документе определяет процесс сертификации следующим образом:
Рис. 1. Модель классификации критериев качества информационных систем
" Сертификация - процесс официально выполняемой функции системы ... путем удостоверения, что функция ... удовлетворяет требованиям заказчика, а также государственным нормативным документам".
В настоящее время не существует стандартов, полностью удовлетворяющих оценке качества ИС. В западноевропейских странах имеется ряд стандартов, определяющих основы сертификации программных систем. Стандарт Великобритании (BS750) описывает структурные построения программных систем, при соблюдении которых может быть получен документ, гарантирующий качествона государственном уровне. Имеется международный аналог указанного стандарта (ISO9000) и аналог для стран-членов НАТО (AQAP1). Существующая в нашей стране система нормативно-технических документов относит программное обеспечение к "продукции производственно-технического назначения", которая рассматривается как материальный объект. Однако программное обеспечение является скорее абстрактной нематериальной сферой. Существующие ГОСТы (например, ГОСТ 28195-89 "Оценкакачества программных средств. Общие положения") явно устарели и являются неполными.
Стандарты управления качеством промышленной продукции
Международные стандарты серии ISO 9000 разработаны для управления качеством продукции, их дополняют стандарты серии ISO14000, отражающие экологические требования к производству промышленной продукции. Хотя эти стандарты непосредственно не связаны с CALS- стандартами, их цели - совершенствование промышленного производства, повышение его эффективности - совпадают.
Очевидно, что управление качеством тесно связано с его контролем. Контроль качества традиционно основан на измерении показателей качества продукции на специальных технологических операциях контроля и выбраковке негодных изделий. Однако есть и другой подход к управлению качеством, который основан на контроле качественных показателей не самих изделий, апроектных процедур и технологических процессов, используемых при создании этих изделий.
Такой подход во многих случаях более эффективен. Он требует меньше затрат, поскольку позволяет обойтись без стопроцентного контроля продукции и благодаря предупреждению появления брака снижает производственные издержки. Именно этот подход положен в основу стандартов ISO 9000, принятых ISO в 1987 г. и проходящих корректировку приблизительно каждые пять лет.
Таким образом, методической основой для управления качеством являются международные стандарты серии ISO 9000. Они определяют и регламентируют инвариантные вопросы создания, развития, применения и сертификации систем качества в промышленности. В них устанавливается форма требований к системе качества в целях демонстрации поставщиком своих возможностей и оценки этих возможностей внешними сторонами.
Основной причиной появления стандартов ISO 9000 была потребность в общем для всех участников международного рынка базисе для контроля и управления качеством товаров. Американское общество контроля качества определило цели ISO 9000 как помощь в развитии международного обмена товарами и услугами и кооперации в сфере интеллектуальной, научной, технологической и деловой активности.
В стандартах ISO 9000 используется определение качества из стандарта ISO 8402: " Качество - совокупность характеристик продукта, относящихся к его способности удовлетворять установленные или предполагаемые потребности". Аналогичноеопределение содержится в ГОСТ 15467-79: " Качество продукции - это совокупность свойств продукции, обусловливающих ее пригодность удовлетворять определенные потребности в соответствии с ее назначением". В ISO 9000 вводится понятие системыкачества (QS - Quality System), под которой понимают документальную систему с руководствами и описаниями процедур достижения качества. Другими словами, система качества есть совокупность организационной структуры, ответственности, процедур, процессов и ресурсов, обеспечивающая осуществление общего руководства качеством. Система качества обычно представляет собой совокупность трех слоев документов:
описание политики управления для каждого системного элемента;
описание процедур управления качеством (что, где, кем и когда должно быть сделано);
тесты, планы, инструкции и т. п.
Сертификация предприятий по стандартам ISO 9001-9003 выполняется некоторой уполномоченной внешней организацией. Наличие сертификата качества - одно из важных условий для успеха коммерческой деятельности предприятий.
Вторичные стандарты включают в себя:
ISO 9000 - основные понятия, руководство по применению ISO 9001;
ISO 9004 - элементы систем управления качеством. Поддерживающие стандарты предназначены для развития и установки систем качества:
ISO 10011 - аудит, критерии для аудита систем качества ;
ISO 10012 - требования для измерительного оборудования;
ISO 10013 - пособие для развития руководств по управлению качеством.
Часть этих стандартов утверждена как государственные стандарты Российской Федерации. В частности, к ним относятся:
ГОСТ Р ИСО 9001-96 "Системы качества. Модель обеспечения качества при проектировании, разработке, производстве, монтаже и обслуживании";
ГОСТ Р ИСО 9002-96 "Системы качества. Модель обеспечения качества при производстве, монтаже и обслуживании";
ГОСТ Р ИСО 9003-96 "Системы качества. Модель обеспечения качества при окончательном контроле и испытаниях".
В настоящее время разработана новая версия стандартов серии ISO 9000 под названием ISO 9000:2000 Quality managementsystems (системы управления качеством ), в которую включены следующие документы:
ISO 9000:2000 Fundamentals and vocabulary (основы и терминология);
ISO 9001:2000 Requirements (требования);
ISO 9004:2000 Guidelines for performance improvement (руководство по развитию).
Главное отличие новой версии от предыдущей состоит в том, что она обусловлена стремлением упростить практическое использование стандартов, направлена на их лучшую гармонизацию и заключаются в следующем.
В стандарте ISO 9001 минимизируется объем требований к системе качества. Стандарты ISO 9002-9003 из новой версии исключаются. Расширяется круг контролируемых ресурсов, в их число включены такие элементы, как информация, коммуникации,инфраструктура.
Введенные в стандарте ISO 9004 двадцать элементов качества сворачиваются в четыре группы:
распределение ответственности (management responsibility);
управление ресурсами (resource management);
реализация продукции и услуг (product and/or service realization);
измерения и анализ (measurement, analysis, and improvement).
Сертификация предприятий по стандартам ISO 9001-9003 выполняется некоторой уполномоченной внешней организацией. Наличие сертификата качества - одно из важных условий для успеха коммерческой деятельности предприятий.
Стандарты ISO 14000 являются также системой управления влиянием на окружающую среду; они, как и ISO 9000, реализуются в процессе сертификации предприятий, задают процедуры управления и контроль документации, аудит, подразумевают соответствующее обучение и сбор статистики. Кроме требований заказчиков и покупателей, в них воплощаются внутренние требования организации.
качество программный дефектологический
Корректность и устойчивость программных систем
Корректность и устойчивость - два основных качества программной системы, без которых все остальные ее достоинства не имеют особого смысла. Понятие корректности программной системы имеет смысл только тогда, когда задана ее спецификация. В зависимости от того, как формализуется спецификация, уточняется понятие корректности.
В лекции 10 введено строгое понятие корректности метода по отношению к его спецификациям, заданным в виде предусловия и постусловия метода. |
Корректность - это способность программной системы работать в строгом соответствии со своей спецификацией. Отладка - процесс, направленный на достижение корректности.
Во время работы системы могут возникать ситуации, выходящие за пределы, предусмотренные спецификацией. Такие ситуации называются исключительными.
Устойчивость - это способность программной системы должным образом реагировать на исключительные ситуации. Обработка исключительных ситуаций - процесс, направленный на достижение устойчивости.
Почему так трудно создавать корректные и устойчивые программные системы? Все дело в сложности разрабатываемых систем. Когда в 60-х годах прошлого века фирмой IBM создавалась операционная система OS-360, то на ее создание потребовалось 5000 человеко-лет, и проект по сложности сравнивался с проектом высадки первого человека на Луну. Сложность нынешних сетевых операционных систем, систем управления хранилищами данных, прикладных систем программирования на порядки превосходит сложность OS-360, так что, несмотря на прогресс, достигнутый в области технологии программирования, проблемы, стоящие перед разработчиками, не стали проще.
Жизненный цикл программной системы
Под " жизненным циклом " понимается период от замысла программного продукта до его "кончины". Обычно рассматриваются следующие фазы этого процесса:
Проектирование <-> Разработка <-> Развертывание и Сопровождение
Все это называется циклом, поскольку после каждой фазы возможен возврат к предыдущим этапам. В объектной технологии этот процесс является бесшовным, все этапы которого тесно переплетены. Не следует рассматривать его как однонаправленный - от проектирования к сопровождению. Чаще всего, ситуация обратная: уже существующая реализация системы, прошедшая сопровождение, и существующие библиотеки компонентов оказывают решающее влияние на то, какой будет новая система, каковы будут ее спецификации.
Вот некоторые типовые правила, характерные для процесса разработки ПО:
Уделяйте этапу проектирования самое пристальное внимание. Успех дела во многом определяется первым этапом. Нет смысла торопиться с переходом на последующие этапы, пока не составлены ясные и четкие спецификации. Ошибки этого этапа - самые дорогие и трудно исправляемые.
Помните о тех, для кого разрабатывается программный продукт. Идите "в люди", чтобы понять, что нужно делать. Вместе с тем, не следует полностью полагаться на пользователей - их опыт консервативен, новые идеи могут часто приходить от разработчиков, а не от пользователей.
Разработка не начинается "с нуля". Только используя уже готовые компоненты, можно своевременно создать новую систему. Работая над проектом, думайте о будущем, создавайте компоненты, допускающие их повторное использование в других проектах.
Создавайте как можно раньше прототип своей системы и передавайте его пользователям в опытную эксплуатацию. Это поможет устранить множество недостатков и ошибок в заключительной версии программного продукта.
Какие бы хорошие спецификации не были написаны, какими бы хорошими технологиями и инструментами не пользовались разработчики, какими бы профессионалами они ни были - этого еще не достаточно для успеха дела. Необходимым условием является управление проектом, наличие специальных средств управления. Но и этого не достаточно. Третьим важным фактором является существование команды. Коллектив разработчиков должен представлять собой единый коллектив. Умение работать в команде так же важно, как и профессиональные навыки разработчика.
Обработка исключительных ситуаций.
Три закона программотехники
Первый закон (закон для разработчика)
Корректность системы - недостижима. Каждая последняя найденная ошибка является предпоследней.
Этот закон отражает сложность нетривиальных систем. Разработчик всегда должен быть готов к тому, что в работающей системе имеются ситуации, в которых система работает не в точном соответствии со своей спецификацией, так что от него может требоваться очередное изменение либо системы, либо ее спецификации.
Второй закон (закон для пользователя)
Не бывает некорректных систем. Каждая появляющаяся ошибка при эксплуатации системы - это следствие незнания спецификации системы.
Есть два объяснения справедливости второго закона. Несерьезное объяснение состоит в том, что любая система, что бы она ни делала, при любом постусловии корректна по отношению к предусловию False, поскольку невозможно подобрать ни один набор входных данных, удовлетворяющих этому предусловию. Так что все системы корректны, если задать False в качестве их предусловия. Если вам пришлось столкнуться с системой, предусловие которой близко к False, то лучшее, что можно сделать, это отложить ее в сторону и найти другую.
Более поучительна реальная ситуация, подтверждающая второй закон и рассказанная мне в былые годы Виталием Кауфманом - специалистом по тестированию трансляторов. В одной серьезной организации была разработана серьезная прикладная система, имеющая для них большое значение. К сожалению, при ее эксплуатации сплошь и рядом возникали ошибки, из-за которых организация вынуждена была отказаться от использования системы. Разработчики обратились к нему за помощью. Он, исследуя систему, не внес в нее ни строчки кода. Единственное, что он сделал, это описал точную спецификацию системы, благодаря чему стала возможной нормальная эксплуатация.
Обратите внимание на философию, характерную для этих законов: при возникновении ошибки разработчик и пользователь должны винить себя, а не кивать друг на друга. Так что часто встречающиеся фразы "Ох уж эта фирма Чейтософт - вечно у них ошибки!" характеризует, мягко говоря, непрофессионализм говорящего.
Третий закон (закон чечако)
Если спецификацию можно нарушить, - она будет нарушена. Новичок (чечако) способен "подвесить" любую систему.
Неквалифицированный пользователь в любом контексте всегда способен выбрать наименее подходящее действие, явно не удовлетворяющее спецификации, которая ориентирована на "разумное" поведение пользователей. Полезным практическим следствием этого закона является привлечение к этапу тестирования системы неквалифицированного пользователя - "человека с улицы".
Конструкция try..catch..finally
Иногда при выполнении программы возникают ошибки, которые трудно предусмотреть или предвидеть, а иногда и вовсе невозможно.
Например, при передачи файла по сети может неожиданно оборваться сетевое подключение. Такие ситуации называются исключениями. Язык C# предоставляет разработчикам возможности для обработки таких ситуаций. Для этого в C# предназначена конструкция try...catch...finally.
При использовании блока try...catch..finally вначале выполняются все инструкции в блоке try. Если в этом блоке не возникло исключений, то после его выполнения начинает выполняться блок finally. И затем конструкция try..catch..finally завершает свою работу.
Если же в блоке try вдруг возникает исключение, то обычный порядок выполнения останавливается, и среда CLR начинает искать блок catch, который может обработать данное исключение. Если нужный блок catch найден, то он выполняется, и после его завершения выполняется блок finally.
Если нужный блок catch не найден, то при возникновении исключения программа аварийно завершает свое выполнение.
Рассмотрим следующий пример:
В данном случае происходит деление числа на 0, что приведет к генерации исключения. И при запуске приложения в режиме отладки мы увидим в Visual Studio окошко, которое информирует об исключении:
В этом окошке мы видим, что возникло исключение, которое представляет тип System.DivideByZeroException, то есть попытка деления на ноль. С помощью пункта View Details можно посомтреть более детальную информацию об исключении.
И в этом случае единственное, что нам остается, это завершить выполнение программы.
Чтобы избежать подобного аварийного завершения программы, следует использовать для обработки исключений конструкцию try...catch...finally. Так, перепишем пример следующим образом:
В данном случае у нас опять же возникнет исключение в блоке try, так как мы пытаемся разделить на ноль. И дойдя до строки
int y = x / 0;
выполнение программы остановится. CLR найдет блок catch и передаст управление этому блоку.
После блока catch будет выполняться блок finally.
Таким образом, программа по-прежнему не будет выполнять деление на ноль и соответственно не будет выводить результат этого деления, но теперь она не будет аварийно завершаться, а исключение будет обрабатываться в блоке catch.
Следует отметить, что в этой конструкции обязателен блок try. При наличии блока catch мы можем опустить блок finally:
И, наоборот, при наличии блока finally мы можем опустить блок catch и не обрабатывать исключение:
Однако, хотя с точки зрения синтаксиса C# такая конструкция вполне корректна, тем не менее, поскольку CLR не сможет найти нужный блок catch, то исключение не будет обработано, и программа аварийно завершится.
Ряд исключительных ситуаций может быть предвиден разработчиком. Например, пусть программа предусматривает ввод числа и вывод его квадрата:
Если пользователь введет не число, а строку, какие-то другие символы, то программа выпадет в ошибку. С одной стороны, здесь как раз та ситуация, когда можно применить блок try..catch, чтобы обработать возможную ошибку. Однако гораздо оптимальнее было бы проверить допустимость преобразования:
Метод Int32.TryParse() возвращает true, если преобразование можно осуществить, и false - если нельзя. При допустимости преобразования переменная x будет содержать введенное число. Так, не используя try...catch можно обработать возможную исключительную ситуацию.
С точки зрения производительности использование блоков try..catch более накладно, чем применение условных конструкций. Поэтому по возможности вместо try..catch лучше использовать условные конструкции на проверку исключительных ситуаций.
Размещено на Allbest.ru
...Подобные документы
Определение качества программных средств. Эволюция методов контроля и управления качеством продукции. Восемь принципов менеджмента качества, их содержание. Внешние и внутренние метрики продукта, организационная основа управления качеством программ.
презентация [301,0 K], добавлен 26.10.2016Влияние качества программных продуктов на экономические характеристики производства, управление ими. Стандартизированные характеристики качества сложных программных продуктов. Гипотетические примеры определения требований к характеристикам качества.
контрольная работа [22,4 K], добавлен 13.12.2014Анализ методологии и стандартизации оценки характеристик качества готовых программных средств: по функциональной пригодности, по корректности, по способности к взаимодействию, по защищенности. Процессы и продукты жизненного цикла программных средств.
контрольная работа [26,6 K], добавлен 23.01.2011Критерии оценки эффективности и качества создания программных средств. Роль трудоемкости и длительности создания программных средств в определении эффективности их создания. Требования к качеству, суммарные затраты на разработку программного средства.
реферат [26,7 K], добавлен 10.10.2014Анализ методов оценки надежности программных средств на всех этапах жизненного цикла, их классификация и типы, предъявляемые требования. Мультиверсионное программное обеспечение. Современные модели и алгоритмы анализа надежности программных средств.
дипломная работа [280,5 K], добавлен 03.11.2013Программное обеспечение как продукт. Основные характеристик качества программного средства. Основные понятия и показатели надежности программных средств. Дестабилизирующие факторы и методы обеспечения надежности функционирования программных средств.
лекция [370,1 K], добавлен 22.03.2014Эффективность и оптимизация программ. Разработка программных продуктов. Обеспечение качества программного продукта. Назначение, область применения, требование к программному продукту. Требования к функциональным характеристикам, надежности, совместимости.
курсовая работа [46,8 K], добавлен 05.04.2009Нормативные и правовые акты, регламентирующие применение современных программных средств в документационном обеспечении управления в Российской Федерации. Анализ программных средств для внедрения системы электронного документооборота в ООО "СЛМ-Монтаж".
дипломная работа [163,2 K], добавлен 10.05.2015Особенности документирования программных средств, стадии разработки продуктов. Классификация обеспечивающего пакета документов. Сущность и основные недостатки Единой системы программной документации. Классификация стандартов, Гост 19.102-77 ЕСПД.
презентация [64,8 K], добавлен 22.03.2014Основные интегрированные информационные системы поддержки принятия решений. Обзор и сравнительный анализ программных продуктов инвестиционного проектирования. Программа управления проектами "MS Project". Примеры программных продуктов в ОАО "Криогенмаш".
курсовая работа [776,0 K], добавлен 03.06.2014Определение задач и классов программных средств для организации научных конференций. Особенности использования программных средств поддержки организации и проведения конференций. Сравнение программных средств для организации и проведения конференций.
реферат [1,8 M], добавлен 05.12.2017Жизненный цикл информационных систем. Процессы документирования и управления конфигурацией. Использование каскадного и спирального подходов к построению ИС. Их преимущества и недостатки. Процесс разработки программного обеспечения по каскадной схеме.
презентация [350,6 K], добавлен 09.11.2015Диагностический анализ системы управления ООО "Система". Оценка функциональной структуры функционирующей АСУ, ее плюсы и минусы. Проектирование подсистемы "Учет разрабатываемых программных продуктов". Расчет затрат на разработку программного продукта.
дипломная работа [5,7 M], добавлен 29.06.2011Этапы технологического процесса разработки программных продуктов, их жизненный цикл. Общая характеристика языков программирования. Виды ошибок и принципы тестирования программ. Установление прав собственности на продукт посредством лицензий и контрактов.
презентация [1,9 M], добавлен 01.05.2011Понятие и классификация педагогических программных средств. Значимость программных продуктов фирмы "1С" в образовании. Структура и описание цифрового образовательного ресурса. Методика формирования знаний, умений и навыков по программным продуктам "1С".
дипломная работа [7,7 M], добавлен 02.05.2012Анализ обучающих программ, систем для создания обучающих дисков, оценки качества обучающих систем, информационных технологий, состояния в области проектирования программных продуктов. Описание диаграммных методик. Разработка математической модели.
дипломная работа [1,7 M], добавлен 17.07.2009Программное обеспечение для ЭВМ и личные права на него. Техническое обслуживание программного обеспечения. Компьютерные преступления на рынке программных продуктов. Пути снижения преступности на рынке программных продуктов и компьютерной информации.
курсовая работа [95,7 K], добавлен 23.01.2012Порядок и принципы документирования работ, выполняемых на этапе анализа и проектирования в жизненном цикле программных средств, нормативная основа. Описание пользовательского интерфейса прототипа разработанной информационной системы, его структура.
курсовая работа [472,9 K], добавлен 11.11.2014Создание программы для автоматизации продаж программных продуктов, ведение базы данных по клиентам, формирование отчетов по реализованным товарам и вырученным средствам. Алгоритмизация задачи. Аномалии и защитное программирование. Тестирование и отладка.
курсовая работа [2,9 M], добавлен 17.07.2014Выполнение отладки программных модулей с использованием специализированных программных средств. Тестирование, оптимизация кода модуля. Реализация базы данных в конкретной системе управления. Анализ проектной и технической документации на уровне компонент.
дипломная работа [5,0 M], добавлен 08.06.2017