The use of artificial intelligence in systems for in-depth analysis of network traffic

The improving the network traffic analysis systems, including deep analysis systems, taking into account existing threats and vulnerabilities of network equipment and software of computer networks based on methods and algorithms of machine learning.

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык английский
Дата добавления 12.12.2024
Размер файла 8,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

The use of artificial intelligence in systems for in-depth analysis of network traffic

Kononov V.V.

Abstract

The relevance of research is explained by the need to improve the network traffic analysis systems, including deep analysis systems, taking into account existing threats and vulnerabilities of network equipment and software of computer networks based on methods and algorithms of machine learning.

Keywords: deep traffic analysis, computer network, traffic encryption, VPN, neural traffic analysis, random trees committee.

The term “deep packet inspection” (DPI) [1] refers to the analysis of a network packet at the upper levels (application and presentation level) of the Open Systems Interaction Model (OSI) [2].

In addition to analyzing network packets [3] using standard templates for certain parameters that can be used to unambiguously determine whether a packet belongs to a specific application, for example, by header format, port numbers, etc., the DPI system performs behavioral traffic analysis. This allows you to recognize applications that do not use known data headers and data structures for data exchange.

For identification, a sequence of packets with the same characteristics is analyzed. Analyzed characteristics: Source_IP: port - Destination_IP: port, packet size, frequency of opening new sessions per unit of time, etc. The analysis is based on behavioral (heuristic) models corresponding to such applications.

The main component of the DPI solution [4] is the classification module. It is responsible for the classification of network flows. The classification can be performed with varying accuracy depending on the purpose of the DPI application:

type of protocol or application (e.g. Web, P2P, VoIP),

specific application layer protocol (HP BitTorrent, SIP), applications using the protocol (Google Chrome, uTorrent, Skype).

Traffic analysis using traditional tools becomes impossible without selecting a key for encrypted data streaming (for example, TLS/SSL protocols). It takes a lot of resources to find the key. The relevance of hacking remains only at the government or military level.

Therefore, the development of algorithms that allow classifying the traffic of secure connections with the required level of detail according to the protocol is relevant.

Traffic classification allows you to identify various applications and protocols transmitted over the network. Also, the classification function is the management of this traffic, its optimization and prioritization. After classification, all packets are marked as belonging to a specific protocol or application. This allows network devices to use a quality of service (QoS) policy based on these labels and flags.

There are two main methods for classifying traffic:

1. Classification based on data blocks (Classification based on payload). It is based on the analysis of data packet fields. This method is the most common, but does not work with encrypted and tunneled traffic.

2. Classification based on statistical analysis (time between packets, session time, etc.).

A universal approach to traffic classification is based on the information contained in the IP packet header. These are usually an IP address (layer 3), a MAC address (layer 2), and the protocol used. This approach has its limitations.

Deep package inspection (DPI) allows you to implement a more advanced package classification. The main mechanism for identifying applications in DPI is signature analysis [3]. Each application has its own unique characteristics, which are entered into the signature database. Comparing a sample from the database with the traffic being analyzed allows you to determine the application or protocol. However, new applications appear periodically, and the signature database also needs to be updated to ensure high identification accuracy.

There are several methods of signature analysis:

1. The pattern of analysis. Applications contain specific examples of sequences in the data block of the package. They can be used for identification and classification. Not every package contains an example of application data, so the method does not always work.

2. Numerical analysis. Numerical analysis uses quantitative characteristics of the sequence of packets, such as: the size of the data block, response time, and the interval between packets. Simultaneous analysis of several packages takes a long time, which reduces the effectiveness of this method.

3. Behavioral analysis, heuristic analysis. The method is based on the analysis of the traffic dynamics of the running application. While the application is running, it creates traffic that can also be identified and tagged [4].

4. Protocol analysis/states. The protocols of some applications are a sequence of specific actions. The analysis of such sequences allows you to accurately identify the application.

When working with encrypted traffic, behavioral and heuristic analysis is used. For more accurate identification, cluster analysis is used, which combines heuristic and behavioral analysis methods.

The development of an analysis algorithm for classifying network traffic of secure connections of dedicated users according to a predetermined set of categories is relevant.

Let's consider two scenarios for analyzing network traffic:

encrypted traffic analysis,

Analysis of encrypted traffic passing through a virtual private network (VPN).

If the structure of the organization's local network is based on the encrypted connection network traffic analysis module, then the traffic comes from the edge router. Traffic is captured and preprocessed using. The main characteristics of the data stream are extracted from the received files. A vector of primary signs and sessions lasting 15, 30, 60 and 120 seconds is formed. The generation and selection of features for training a neural network classifier is performed. The prepared feature vector is fed into the neural network analysis module of user sessions. The settings for training and work are set by the administrator.

Next, the following information is sent to the decision-making block: the decision of the base block on the type of traffic, the probability of traffic belonging to one of the main types and the types of recognized traffic from the neural network analysis block analyzing user sessions. The administrator can make adjustments to the current decision on the traffic type decision block.

Then the current traffic from the decision block and the tagged traffic from the basic traffic analysis module (sender's IP, recipient's IP, sender's port, recipient's port) are sent to the user session storage.

Next, the data on the reconnected user sessions is sent to the traffic type analysis module and the user type. An information security specialist receives information about the types of users and their rights. The administrator interacts with the repository to view and replenish the database, and also sets traffic capture parameters.

At the first stage, a fragment of the intercepted traffic is loaded, then the classifier script is selected. Based on the features specified in the scenario, a training sample is formed to build an initial knowledge base. After analyzing the specified features on the test sample, the accuracy of the classifier is determined. If the accuracy meets the requirements, the state is preserved, otherwise the loop returns to determining the type of scenario.

Traffic classification is based on the analysis of the temporal characteristics of the flow of intercepted network packets to form encrypted and VPN signs (temporary signs). The time characteristics of the stream make it possible to reduce the computational costs of building a set of features extracted from encrypted network traffic by reducing the set of fixed parameters.

The experiment uses a network traffic dump with 14 tags of various traffic types generated by various applications (7 for regular encrypted traffic and 7 for VPN traffic).

The criterion for the quality of traffic classification is the accuracy of the classification of samples. The accuracy of the classification can be assessed by crossvalidation. The division into training and test sets is carried out by dividing the sample: the training set is two-thirds of the data, and the test set is one-third of the data.

The following algorithms are considered to solve the classification problem:

Random Forest Algorithm (RFT),

K-Nearest Neighbor Method (KNN),

Multilayer Perceptron (MLP).

The source data is real traffic generated by applications and services such as Skype, Facebook, etc.

For each type of traffic (VoIP, P2P, etc.), open sessions and sessions are used in the created VPN tunnel, so there are 14 traffic categories in total: VoIP, VPN-VoIP, P2P, VPN-P2P, etc.

The traffic was captured using Wireshark sniffer. An external VPN service is used for VPN traffic. The connection was made using OpenVPN. To generate SFTP and FTPS traffic, an external service provider and FileZilla as a client were used.

The influence of the session duration of the captured data stream on the classification accuracy has been established. The developed classifier demonstrates recognition accuracy of up to 80% on the test sample. The MLP, RFT and KNN algorithms had almost identical indicators in all experiments.

It has also been found that the proposed classifiers work better when forming network traffic flows using short timeout values.

This method differs in the way of generating and selecting functions, which allows you to classify the existing traffic of secure connections of selected users according to a predefined set of categories. The developed algorithms make it possible to increase the security of the data transmission network by improving the algorithms for analyzing network traffic within the framework of the data leakage prevention system.

network traffic computer software

Список литературы

1. Overview of the DPI - Deep Packet Inspection technology

2. Olifer V. G. Computer networks. Principles, technologies, protocols / V.G. Olifer, N.A. Olifer. - St. Petersburg: Peter, 2011. - 944 p;

3. Network packet analyzers

4. Russian DPI manufacturers and their platforms

Размещено на Allbest.ru

...

Подобные документы

  • Information security problems of modern computer companies networks. The levels of network security of the company. Methods of protection organization's computer network from unauthorized access from the Internet. Information Security in the Internet.

    реферат [20,9 K], добавлен 19.12.2013

  • Technical methods of supporting. Analysis of airplane accidents. Growth in air traffic. Drop in aircraft accident rates. Causes of accidents. Dispatcher action scripts for emergency situations. Practical implementation of the interface training program.

    курсовая работа [334,7 K], добавлен 19.04.2016

  • Overview of social networks for citizens of the Republic of Kazakhstan. Evaluation of these popular means of communication. Research design, interface friendliness of the major social networks. Defining features of social networking for business.

    реферат [1,1 M], добавлен 07.01.2016

  • The material and technological basis of the information society are all sorts of systems based on computers and computer networks, information technology, telecommunication. The task of Ukraine in area of information and communication technologies.

    реферат [29,5 K], добавлен 10.05.2011

  • История Network File System. Общие опции экспорта иерархий каталогов. Описание протокола NFS при монтировании удаленного каталога. Монтирование файловой системы Network Files System командой mount. Конфигурации, обмен данными между клиентом и сервером.

    курсовая работа [1,3 M], добавлен 16.06.2014

  • Social network theory and network effect. Six degrees of separation. Three degrees of influence. Habit-forming mobile products. Geo-targeting trend technology. Concept of the financial bubble. Quantitative research method, qualitative research.

    дипломная работа [3,0 M], добавлен 30.12.2015

  • NIC (Network Interface Card) или сетевые адаптеры. Создание локальной сети и профиля. Выбор оборудования и операционной системы. Обжим проводов. Установка Windows 2003 Server, Traffic Inspector, DNS-сервера, DHCP-сервера. Применение маршрутизаторов.

    курсовая работа [8,8 M], добавлен 17.03.2014

  • Технология протокола NAT (Network Address Translation). Особенности его функционирования, применения и основные конфигурации. Протоколы трансляции сетевых адресов. Преимущества и недостатки NAT. Основные способы его работы: статический и динамический.

    курсовая работа [480,1 K], добавлен 03.03.2015

  • 2 November 1988 Robert Morris younger (Robert Morris), graduate student of informatics faculty of Cornwall University (USA) infected a great amount of computers, connected to Internet network.

    реферат [9,3 K], добавлен 24.04.2005

  • Основные виды сетевых атак на VIRTUAL PERSONAL NETWORK, особенности их проведения. Средства обеспечения безопасности VPN. Функциональные возможности технологии ViPNet(c) Custom, разработка и построение виртуальных защищенных сетей (VPN) на ее базе.

    курсовая работа [176,0 K], добавлен 29.06.2011

  • Lines of communication and the properties of the fiber optic link. Selection of the type of optical cable. The choice of construction method, the route for laying fiber-optic. Calculation of the required number of channels. Digital transmission systems.

    дипломная работа [1,8 M], добавлен 09.08.2016

  • Сравнение эталонных моделей OSI, TCP. Концепции OSI: службы; интерфейсы; протоколы. Критика модели, протоколов OSI. Теория стандартов Дэвида Кларка (апокалипсис двух слонов). Плохая технология как одна из причин, по которой модель OSI не была реализована.

    реферат [493,1 K], добавлен 23.12.2010

  • Consideration of a systematic approach to the identification of the organization's processes for improving management efficiency. Approaches to the identification of business processes. Architecture of an Integrated Information Systems methodology.

    реферат [195,5 K], добавлен 12.02.2016

  • Модули, входящие в пакет программного обеспечения. Project Menagement, Methodology Management, Portfolio Analysis, Timesheets, myPrimavera, Software Development Kit, ProjectLink. Иерархическая структура Primavera и ее взаимосвязь с программой MS Project.

    контрольная работа [9,5 K], добавлен 18.11.2009

  • Сущность и предназначение технологии VPN (Virtual Private Network), принципы ее работы. Современные средства криптографической защиты информации. Достоинства и недостатки использования VPN-технологий. VPN-appliances класса Small Office Home Office.

    презентация [1,2 M], добавлен 10.04.2014

  • Преимущества и недостатки пиринговых сетей. Сети и протоколы. eDonkey2000: поиск, загрузка, межсерверніе соединения. Использование Kad Network. BitTorrent, принцип работы протокола, файл метаданных, трекер. Программы для работы с пиринговыми сетями.

    курсовая работа [78,6 K], добавлен 16.02.2009

  • Изучение архитектуры искусственных нейронных сетей, способов их графического изображения в виде функциональных и структурных схем и программного представления в виде объектов специального класса network. Неокогнитрон и инвариантное распознавание образов.

    курсовая работа [602,6 K], добавлен 12.05.2015

  • Machine Translation: The First 40 Years, 1949-1989, in 1990s. Machine Translation Quality. Machine Translation and Internet. Machine and Human Translation. Now it is time to analyze what has happened in the 50 years since machine translation began.

    курсовая работа [66,9 K], добавлен 26.05.2005

  • Опис механізмів передачі даних між сторінками. Розробка доступного та зручного інтерфейсу веб-сайту компанії "Artput" для відвідувачів сайту і для адміністратора. Установка Apache 1.3.29 та PHP 4.3.4 під Windows XP. Структура веб-сервера та веб-сайту.

    дипломная работа [5,0 M], добавлен 24.09.2012

  • Многоуровневая разветвлённая система сертификации инженеров по компьютерным сетям. Устройства сетевой безопасности. Крупные системы видеоконференций TelePresence. Программное обеспечение управления сетью. Универсальные шлюзы и шлюзы удалённого доступа.

    презентация [212,2 K], добавлен 26.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.