Techniques and strategies for handling high traffic

Analysis of various methods and strategies for scaling the fintech API to solve the problems of financial applications. The principles of distributing traffic between multiple servers to improve their performance. Asynchronous data processing methods.

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык английский
Дата добавления 14.12.2024
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Techniques and strategies for handling high traffic

Zarubaika Andrei

Abstract

The global fmtech market is projected to experience significant growth, with a compound annual growth rate (CAGR) of 23.8% from 2021 to 2028, reaching a market size of USD 305.7 billion. As the demand for fmtech services rises, the need for fintech APIs to facilitate integration between financial applications also increases. However, handling high traffic loads presents challenges to fintech companies, including performance issues, downtime, and service disruptions. This article explores various techniques and strategies for scaling fintech APIs to address these challenges. Caching, load balancing, auto-scaling, API gateways, asynchronous processing, distributed databases, and monitoring are discussed as key approaches to handle high traffic loads. Caching, implemented at different levels, accelerates API response times by storing frequently accessed data. Load balancing distributes traffic across multiple servers, improving performance and handling increased loads. Auto-scaling adjusts infrastructure capacity based on incoming traffic patterns, ensuring optimal resource utilization.

API gateways act as reverse proxies, managing authentication, rate limiting, and caching, providing a centralized entry point for APIs. Asynchronous processing techniques, such as message queues and event-driven architectures, enable servers to handle multiple requests simultaneously. Distributed databases ensure scalability and fault tolerance by distributing data across multiple servers. To make informed decisions, the article provides a comparison of leading API gateways and highlights the top databases based on a StackOverflow survey. Additionally, it emphasizes the importance of choosing a logging and monitoring solution separately from the scaling infrastructure, with a focus on long-term cost estimation and avoiding performance impact. By implementing these techniques and strategies, fintech companies can deliver seamless and reliable services to customers even during high traffic periods. Investing in scalable and reliable infrastructure becomes crucial for staying ahead in the growingfintech market.

Keywords: fintech, API scaling, caching, load balancing, auto-scaling, API gateways, asynchronous processing, distributed databases, monitoring.

According to recent studies, the global fintech market is expected to grow at a compound annual growth rate (CAGR) of 23.8% from 2021 to 2028, reaching a market size of USD 305.7 billion by 2028 [1]. As the demand for fintech services continues to grow, so does the demand for fintech APIs, which enable seamless integration between different financial applications.

However, with the increase in demand for fintech APIs comes the challenge of handling high traffic loads. Without proper scaling techniques and strategies, fintech companies may experience performance issues, downtime, and even service disruptions, leading to dissatisfied customers and lost revenue.

One of the most effective techniques for scaling fintech APIs is caching. By caching frequently accessed data, API requests can be served faster, reducing the load on the server. Caching can be implemented at various levels, including client-side, server-side, and database level.

Load balancing is another important technique for handling high traffic loads. By distributing traffic across multiple servers, fintech companies can improve performance and handle higher traffic loads. Load balancing can be implemented at the application or network level, and can be done using various techniques, including round-robin, least connections, and IP hash. Despite the fact that you will choose a leading load balancer for your solution, please pay attention to limitations, default configurations which are coming as part of the solutions, as they may decrease throughput of the entire solution. Based on statistics from the top 5 leading are [2]:

1. Azure Application Gateway

2. Citric ADC

3. KempLoadMaster

4. F5 NGINX Plus

5. HAProxy

Auto-scaling is a technique that enables the infrastructure to automatically adjust its capacity based on the incoming traffic. It involves setting up rules that trigger the addition or removal of servers based on traffic patterns.

Graph 1 - Trending API Load Balancers

Auto-scaling can be implemented using cloud-based infrastructure services, such as Amazon Web Services (AWS) or Microsoft Azure. Another alternative is to apply autoscaling design patterns, for example:

1. Trigger-based scaling: This pattern involves setting up triggers based on specific metrics, such as CPU usage or network traffic, and automatically scaling the system up or down based on those triggers.

2. Scheduled scaling: This pattern involves setting up a schedule for scaling, such as scaling up during peak hours and scaling down during off-peak hours.

3. Predictive scaling: This pattern involves using machine learning or other predictive algorithms to anticipate future traffic and automatically scale the system up or down accordingly.

4. Capacity-based scaling: This pattern involves setting up a minimum and maximum number of instances, and scaling up or down as needed to ensure that the system remains within those limits.

5. Service-based scaling: This pattern involves setting up different services with different scaling needs and scaling them independently of each other.

6. Hybrid scaling: This pattern involves combining multiple scaling strategies, such as trigger-based scaling and scheduled scaling, to create a more robust and flexible auto-scaling system. Fault-tolerant scaling: This pattern involves setting up a system that can automatically recover from failures by scaling up or down as needed to ensure that the system remains available and responsive.

API gateways are also essential for scaling fintech APIs. They act as a reverse proxy that routes requests to different services based on predefined rules, and can handle tasks such as authentication, rate limiting, and caching. API gateways provide a centralized entry point for APIs, making it easier to manage, monitor, and scale APIs.

Please find comparison between to 14 API gateways from geekflare [3]:

Table 1 - API gateways comparison

API Gateway

Language/ Platform

Open Source

Key Features

Notable Users

Kong Gateway

Lua/Nginx

Yes

Authentication, Traffic Control, Analytics, Serverless, etc.

Nasdaq, Honeywell, Expedia, Samsung

Apache APISIX

Nginx/etcd

Yes

Dynamic Routing, Plug-in Hot Loading

360, NetEase, TravelSky

Tyk

Go

Yes

Authentication, Quotas, Rate Limiting, Monitoring, GraphQL

Self-hosted or managed, available on AWS

Ocelot

.NET

Yes

Routing, Authentication, Rate Limiting, Load Balancing

.NET-based microservices or SOA

Goku

Golang

Yes

Dynamic Routing, Service Orchestration, Multi-tenancy, etc.

EOLINK Inc.

Express Gateway

Express.js

Yes

Basic Features

Joyent, The Linux Foundation, Switch Media, etc.

Gloo

Envoy Proxy

Yes

Full-Featured, Developer Portal, WAF, Rate Limiting, etc.

Open-source or enterprise, advanced features

KrakenD

Golang

Yes

Ultra-high Performance, Aggregation, Transformation, etc.

Faster than Kong and Tyk

Fusio

PHP

Yes

Monetization, Subscription Support, OAI, RAML, Documentation

Simple and Intuitive Backend

WSO2

Java

Yes

Full Lifecycle API Management

Deployable anywhere, Kubernetes operator

Asynchronous processing is another technique that can help fintech companies handle high traffic loads. By processing requests in a non-blocking way, the server can handle more requests simultaneously, using techniques such as message queues, event- driven architectures, and microservices. Here are some of the most common asynchronous design patterns used in APIs:

1. Callbacks: A callback is a function that is passed as an argument to another function and is called when the operation is complete. Callbacks are a simple and widely used pattern for handling asynchronous operations in APIs.

2. Promises: A promise is an object that represents the eventual completion (or failure) of an asynchronous operation and allows you to attach callbacks to handle the results. Promises provide a cleaner and more concise way of handling asynchronous operations than callbacks.

3. Async/await: Async/await is a newer syntax that simplifies the use of promises by allowing you to write asynchronous code that looks like synchronous code. Async/await makes it easier to write and maintain asynchronous code, and it is becoming increasingly popular in modern APIs.

4. Reactive programming: Reactive programming is a programming paradigm that focuses on the propagation of change and the composition of asynchronous sequences of data. Reactive programming is often used in APIs that require realtime data processing and event-driven architectures.

5. Message queues: A message queue is a software component that allows you to decouple the processing of requests from the handling of responses. Message queues are often used in APIs that need to handle large volumes of requests and need to scale horizontally to handle spikes in traffic.

Distributed databases are designed to handle large volumes of data across multiple servers, providing scalability and fault tolerance. By distributing the data across multiple servers, distributed databases can handle high traffic loads and ensure reliability and data consistency. Based on StackOverflow survey top 5 leading databases are [4]:

1. MySQL

2. PostgreSQL

3. SQLite

4. MongoDB

5. Microsoft SQL Server

Graph 2 - Trending API distributed databases

Finally, monitoring and logging are essential for identifying issues and optimizing performance. By monitoring the API's performance, including response times, error rates, and traffic patterns, fintech companies can identify potential issues and take proactive measures to improve performance. As there are many-many solutions on the market, the suggestion is to look into the same brands for logging and monitoring and estimate the price for 3-5 years forward. Initially solutions look not expensive, the adoption costs about half of the year for the entire company. However, in a one or two-years period costs increase dramatically and automatically and you either should replace the vendor and invest about a year for adoption, or have to agree to paying an increasing price. The other suggestion is to never mix solution and observability systems. In other words, the performance of the solution shouldn't be impacted by the observability system.

In conclusion, scaling fintech APIs requires a combination of techniques and strategies to handle high traffic loads. By implementing techniques such as caching, load balancing, auto-scaling, API gateways, asynchronous processing, distributed databases, and monitoring, fintech companies can provide seamless and reliable services to their customers, even under high traffic loads. As the fintech market continues to grow, it is essential for companies to stay ahead of the curve and invest in scalable and reliable infrastructure.

fintech traffic financial server

References

1. Smart Infrastructure Market (2022)

2. Load Balancing

3. Ali, A., 14 Open Source and Managed API Gateway for Modern Applications

4. Stack Overflow Annual Developer Survey (2023)

Размещено на Allbest.ru

...

Подобные документы

  • Technical methods of supporting. Analysis of airplane accidents. Growth in air traffic. Drop in aircraft accident rates. Causes of accidents. Dispatcher action scripts for emergency situations. Practical implementation of the interface training program.

    курсовая работа [334,7 K], добавлен 19.04.2016

  • Data mining, developmental history of data mining and knowledge discovery. Technological elements and methods of data mining. Steps in knowledge discovery. Change and deviation detection. Related disciplines, information retrieval and text extraction.

    доклад [25,3 K], добавлен 16.06.2012

  • A database is a store where information is kept in an organized way. Data structures consist of pointers, strings, arrays, stacks, static and dynamic data structures. A list is a set of data items stored in some order. Methods of construction of a trees.

    топик [19,0 K], добавлен 29.06.2009

  • Information security problems of modern computer companies networks. The levels of network security of the company. Methods of protection organization's computer network from unauthorized access from the Internet. Information Security in the Internet.

    реферат [20,9 K], добавлен 19.12.2013

  • Central Processing Unit. Controls timing of all computer operations. Types of adapter card. Provides quick access to data. Uses devices like printer. Random Access Memory. Directs and coordinates operations in computer. Control the speed of the operation.

    презентация [3,5 M], добавлен 04.05.2012

  • Анализ работы программы "Traffic Inspector", предназначенной для автоматизации учета интернет-трафика. Рассмотрение задач биллинговой системы: тарификации предоставляемых услуг; управления балансом пользователя; детализации личного счёта абонента.

    курсовая работа [4,0 M], добавлен 03.07.2012

  • NIC (Network Interface Card) или сетевые адаптеры. Создание локальной сети и профиля. Выбор оборудования и операционной системы. Обжим проводов. Установка Windows 2003 Server, Traffic Inspector, DNS-сервера, DHCP-сервера. Применение маршрутизаторов.

    курсовая работа [8,8 M], добавлен 17.03.2014

  • Проблемы оценки клиентской базы. Big Data, направления использования. Организация корпоративного хранилища данных. ER-модель для сайта оценки книг на РСУБД DB2. Облачные технологии, поддерживающие рост рынка Big Data в информационных технологиях.

    презентация [3,9 M], добавлен 17.02.2016

  • Asynchronous Transfer Mode как сетевая высокопроизводительная технология коммутации и мультиплексирования, основанная на передаче данных в виде ячеек фиксированного размера. Транспортные протоколы для локальных и глобальных сетей. Иерархия скоростей.

    лекция [186,3 K], добавлен 15.04.2014

  • Классификация задач DataMining. Создание отчетов и итогов. Возможности Data Miner в Statistica. Задача классификации, кластеризации и регрессии. Средства анализа Statistica Data Miner. Суть задачи поиск ассоциативных правил. Анализ предикторов выживания.

    курсовая работа [3,2 M], добавлен 19.05.2011

  • Способы усовершенствования использования существующего Интернет-канала на предприятии ООО "Бизнес ИТ". Процесс и главные этапы разработки подсистемы управления и мониторинга межсетевого экрана Forefront TMG 2010, а также методы расширения его функционала.

    дипломная работа [3,8 M], добавлен 01.07.2011

  • Web Forum - class of applications for communication site visitors. Planning of such database that to contain all information about an user is the name, last name, address, number of reports and their content, information about an user and his friends.

    отчет по практике [1,4 M], добавлен 19.03.2014

  • Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.

    контрольная работа [208,4 K], добавлен 14.06.2013

  • Technical and economic characteristics of medical institutions. Development of an automation project. Justification of the methods of calculating cost-effectiveness. General information about health and organization safety. Providing electrical safety.

    дипломная работа [3,7 M], добавлен 14.05.2014

  • Совершенствование технологий записи и хранения данных. Специфика современных требований к переработке информационных данных. Концепция шаблонов, отражающих фрагменты многоаспектных взаимоотношений в данных в основе современной технологии Data Mining.

    контрольная работа [565,6 K], добавлен 02.09.2010

  • Написание тестирующей программы для проверки знаний учащихся с помощью языка программирования Visual Basic for Applications (VBA), встроенного в пакет Microsoft Office. Общие сведения о программе, условия ее выполнения, настройка, проверка, выполнение.

    контрольная работа [25,2 K], добавлен 07.06.2010

  • Понятие и виды Web-хостинга. Анализ рынка хостинговых компаний. Языки Web-программирования: HTML, PHP, Water, Clear Methods Steam. Web-дизайн и браузеры. Возможности современных визуальных HTML-редакторов. Создание сайта "Каталога хостинговых компаний".

    курсовая работа [537,6 K], добавлен 15.01.2012

  • Функции и основная роль коммерческого банка. Особенности кредитных и депозитных операций. Описание среды программирования и сущность Visual Basic for Applications (VBA). Схема алгоритма программы, процедура сохранения файла и выхода из программы.

    курсовая работа [1,9 M], добавлен 04.04.2012

  • Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.

    курсовая работа [728,4 K], добавлен 10.07.2017

  • Общее понятие о системе Earth Resources Data Analysis System. Расчет матрицы преобразования космоснимка оврага. Инструменты геометрической коррекции, трансформирование. Создание векторных слоев. Оцифрованные классы объектов. Процесс подключения скрипта.

    курсовая работа [4,3 M], добавлен 17.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.