контрольная работа  Область Data Mining

Значение понятия "скрытые знания". Определение сути методов Data mining. Язык запросов к базам данных. Выявление возможностей для создания, изменения и извлечения хранимых данных. Data mining и искусственный интеллект. Задачи кластеризации и ассоциации.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

  ###     ###     ###      #     #####  
 #   #   #   #   #   #    ##         #  
 #   #       #   #   #     #         #  
  ####     ##    #   #     #        #   
     #       #   #   #     #        #   
    #    #   #   #   #     #       #    
  ##      ###     ###      #       #    
                                        

Введите число, изображенное выше:

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 14.04.2014
Размер файла 27,8 K

Подобные документы

  • Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.

    контрольная работа [208,4 K], добавлен 14.06.2013

  • Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.

    курсовая работа [728,4 K], добавлен 10.07.2017

  • Data mining, developmental history of data mining and knowledge discovery. Technological elements and methods of data mining. Steps in knowledge discovery. Change and deviation detection. Related disciplines, information retrieval and text extraction.

    доклад [25,3 K], добавлен 16.06.2012

  • Совершенствование технологий записи и хранения данных. Специфика современных требований к переработке информационных данных. Концепция шаблонов, отражающих фрагменты многоаспектных взаимоотношений в данных в основе современной технологии Data Mining.

    контрольная работа [565,6 K], добавлен 02.09.2010

  • Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.

    курсовая работа [3,9 M], добавлен 22.10.2012

  • Перспективные направления анализа данных: анализ текстовой информации, интеллектуальный анализ данных. Анализ структурированной информации, хранящейся в базах данных. Процесс анализа текстовых документов. Особенности предварительной обработки данных.

    реферат [443,2 K], добавлен 13.02.2014

  • Классификация задач DataMining. Создание отчетов и итогов. Возможности Data Miner в Statistica. Задача классификации, кластеризации и регрессии. Средства анализа Statistica Data Miner. Суть задачи поиск ассоциативных правил. Анализ предикторов выживания.

    курсовая работа [3,2 M], добавлен 19.05.2011

  • Роль информации в мире. Теоретические основы анализа Big Data. Задачи, решаемые методами Data Mining. Выбор способа кластеризации и деления объектов на группы. Выявление однородных по местоположению точек. Построение магического квадранта провайдеров.

    дипломная работа [2,5 M], добавлен 01.07.2017

  • Понятие информационных систем и принципы их проектирования. Изучение различных методов извлечения знаний, построение оптимальной информационной системы Data Mining, позволяющей разбивать набор данных, представленных реляционными базами данных на кластеры.

    аттестационная работа [4,7 M], добавлен 14.06.2010

  • Классификация задач Data Mining. Задача кластеризации и поиска ассоциативных правил. Определению класса объекта по его свойствам и характеристикам. Нахождение частых зависимостей между объектами или событиями. Оперативно-аналитическая обработка данных.

    контрольная работа [26,1 K], добавлен 13.01.2013

  • Data Mining как процесс поддержки принятия решений, основанный на поиске в данных скрытых закономерностей (шаблонов информации). Его закономерности и этапы реализации, история разработки данной технологии, оценка преимуществ и недостатков, возможности.

    эссе [36,8 K], добавлен 17.12.2014

  • OLAP как автоматизированные технологии сложного (многомерного) анализа данных, Data mining - извлечение данных, интеллектуальный анализ. Виды запросов к многомерной базе данных, их содержание и анализ полученных результатов. Схема "звезда", "снежинка".

    презентация [132,1 K], добавлен 19.08.2013

  • Проблемы оценки клиентской базы. Big Data, направления использования. Организация корпоративного хранилища данных. ER-модель для сайта оценки книг на РСУБД DB2. Облачные технологии, поддерживающие рост рынка Big Data в информационных технологиях.

    презентация [3,9 M], добавлен 17.02.2016

  • Создание структуры интеллектуального анализа данных. Дерево решений. Характеристики кластера, определение групп объектов или событий. Линейная и логистическая регрессии. Правила ассоциативных решений. Алгоритм Байеса. Анализ с помощью нейронной сети.

    контрольная работа [2,0 M], добавлен 13.06.2014

  • Анализ существующих музыкальных сетей, профиля музыкального файла. Технологии и возможности Web 2.0. Анализ алгоритмов в Data Mining. Структура социальной сети. Набор графических элементов, описывающий человека в зависимости от прослушиваемой музыки.

    дипломная работа [3,7 M], добавлен 20.04.2012

  • Изучение возможностей AllFusion ERwin Data Modeler и проектирование реляционной базы данных (БД) "Санатория" на основе методологии IDEF1x. Определение предметной области, основных сущностей базы, их первичных ключей и атрибутов и связи между ними.

    лабораторная работа [197,5 K], добавлен 10.11.2009

  • A database is a store where information is kept in an organized way. Data structures consist of pointers, strings, arrays, stacks, static and dynamic data structures. A list is a set of data items stored in some order. Methods of construction of a trees.

    топик [19,0 K], добавлен 29.06.2009

  • Определение программы управления корпоративными данными, ее цели и предпосылки внедрения. Обеспечение качества данных. Использование аналитических инструментов на базе технологий Big Data и Smart Data. Фреймворк управления корпоративными данными.

    курсовая работа [913,0 K], добавлен 24.08.2017

  • Історія виникнення комерційних додатків для комп'ютеризації повсякденних ділових операцій. Загальні відомості про сховища даних, їх основні характеристики. Класифікація сховищ інформації, компоненти їх архітектури, технології та засоби використання.

    реферат [373,9 K], добавлен 10.09.2014

  • Проектирование баз данных, реализация ее серверной части, методика создания таблиц, различных триггеров, хранимых процедур, клиентского приложения. Процедура поиска данных, фильтрации данных, вывода отчета, ввода SQL запросов и вывода хранимых процедур.

    контрольная работа [50,1 K], добавлен 30.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.