статья  Анализ существующих подходов и проблем обработки изображений

Изучение естественных способностей к распознаванию у человека или других организмов и разработка математических моделей распознавания и технических устройств на их основе как основные направления обработки образов. Сущность и роль данных подходов.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

 d888       d8888      d8888   d888    d888   
d8888      d8P888     d8P888  d8888   d8888   
  888     d8P 888    d8P 888    888     888   
  888    d8P  888   d8P  888    888     888   
  888   d88   888  d88   888    888     888   
  888   8888888888 8888888888   888     888   
  888         888        888    888     888   
8888888       888        888  8888888 8888888 
                                              
                                              
                                              

Введите число, изображенное выше:

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 15.07.2018
Размер файла 18,5 K

Подобные документы

  • Оптико-электронная система идентификации объектов подвижного состава железнодорожного транспорта. Автоматический комплекс распознавания автомобильных номеров. Принципы и этапы работы систем оптического распознавания. Особенности реализации алгоритмов.

    дипломная работа [887,3 K], добавлен 26.11.2013

  • Основные понятия теории распознавания образов и ее значение. Сущность математической теории распознавания образов. Основные задачи, возникающие при разработке систем распознавания образов. Классификация систем распознавания образов реального времени.

    курсовая работа [462,2 K], добавлен 15.01.2014

  • Теоретический анализ современных методик создания программных средств по распознаванию образов, их преимущества и недостатки. Описание предметной области, обоснование выбора технологии и разработка проекта программного средства по распознаванию образов.

    дипломная работа [2,3 M], добавлен 20.05.2013

  • Литературный обзор методов распознавания кромок для схожих задач. Объекты в приложении и их отображение. Генерация выходных данных. Алгоритм распознавания линии (графика), отличный от градиентных подходов и использующий алгоритм предварительной обработки.

    дипломная работа [711,8 K], добавлен 27.04.2014

  • Процессы распознавания символов. Шаблонные и структурные алгоритмы распознавания. Процесс обработки поступающего документа. Обзор существующих приложений по оптическому распознаванию символов. Определение фиксированного шага и сегментация слов.

    дипломная работа [3,3 M], добавлен 11.02.2017

  • Изучение современных методик компьютерной обработки биомедицинских изображений с целью улучшения изображений для их наилучшего визуального восприятия врачом-диагностом и эффективного сжатия изображений – для надежного хранения и быстрой передачи данных.

    курсовая работа [2,3 M], добавлен 15.04.2019

  • Понятие визуальной системы ввода информации, ее сущность и особенности, место и роль в современном развитии интерфейсов между человеком и компьютером. Развитие технологии автоматического обнаружения и распознавания лица, контуров губ в видеопотоке.

    научная работа [94,3 K], добавлен 29.01.2009

  • Анализ существующих проблем и обзор библиотеки обработки изображений и алгоритмов общего назначения OpenCV. Особенности разработки и детальный анализ требований к программе. Основная логика ее работы и реализация. Трекинг лица и объекта по цвету.

    дипломная работа [1,3 M], добавлен 26.06.2017

  • Анализ существующих алгоритмов обработки информации человеком и современных моделей памяти. Разработка алгоритмов и математической модели ассоциативного мышления. Имитационная модель обработки информации. Компьютерный эксперимент по тестированию модели.

    курсовая работа [2,3 M], добавлен 19.11.2014

  • Описание структурной схемы искусственного нейрона. Характеристика искусственной нейронной сети как математической модели и устройств параллельных вычислений на основе микропроцессоров. Применение нейронной сети для распознавания образов и сжатия данных.

    презентация [387,5 K], добавлен 11.12.2015

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа [1,8 M], добавлен 08.02.2017

  • Появление технических систем автоматического распознавания. Человек как элемент или звено сложных автоматических систем. Возможности автоматических распознающих устройств. Этапы создания системы распознавания образов. Процессы измерения и кодирования.

    презентация [523,7 K], добавлен 14.08.2013

  • Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.

    дипломная работа [1019,9 K], добавлен 13.10.2017

  • Описание математических методов представления и обработки графических изображений. Описание разработанного программного дополнения. Описание функций и их атрибутов. Представление и обработка графических изображений. Результаты тестирования программы.

    курсовая работа [1,7 M], добавлен 27.01.2015

  • История появления и основные понятия графического дизайна. Выявление главных преимуществ и недостатков недеструктивной обработки изображений. Сравнение деструктивной и недеструктивной обработки изображений. Сущность и особенности двухмерной графики.

    реферат [5,2 M], добавлен 05.05.2023

  • Методы распознавания образов (классификаторы): байесовский, линейный, метод потенциальных функций. Разработка программы распознавания человека по его фотографиям. Примеры работы классификаторов, экспериментальные результаты о точности работы методов.

    курсовая работа [2,7 M], добавлен 15.08.2011

  • Изучение и программная реализация в среде Matlab методов обработки, анализа, фильтрации, сегментации и улучшения качества рентгеновских медицинских изображений. Цифровые рентгенографические системы. Разработка статически обоснованных алгоритмов.

    курсовая работа [4,7 M], добавлен 20.01.2016

  • Обзор существующего программного обеспечения для автоматизации выделения границ на изображении. Разработка математической модели обработки изображений и выделения контуров в оттенках серого и программного обеспечения для алгоритмов обработки изображений.

    дипломная работа [1,7 M], добавлен 27.03.2013

  • Изучение существующих методов и программного обеспечения для извлечения числовых данных из графической информации. Программное обеспечение "graphtrace", его структура и методы обработки данных. Использование этой системы для данных различного типа.

    дипломная работа [3,9 M], добавлен 06.03.2013

  • Определение компьютерной графики, задачи, виды, области применения. Способы распознавания образов, системы технического зрения. Инструменты для синтеза изображений и обработки визуальной информации. Представление цветов, форматы графических файлов.

    шпаргалка [49,9 K], добавлен 13.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.