статья  Применение машинного обучения для классификации комментариев

Рассмотрение машинного обучения для классификации комментариев в рамках курсового проекта по дисциплине "Machine Learning. Обучающиеся технические системы". Автоматическое определение эмоциональной окраски (позитивный, негативный) текстовых данных.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

  ###    ###    ###    ###    ###  
 #   #  #   #  #   #  #   #  #   # 
 #   #      #      #      #  #   # 
  ####     #      #      #   #   # 
     #    #      #      #    #   # 
    #    #      #      #     #   # 
  ##    #####  #####  #####   ###  
                                   

Введите число, изображенное выше:

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 19.02.2019
Размер файла 269,0 K

Подобные документы

  • Machine Learning как процесс обучения машины без участия человека, основные требования, предъявляемые к нему в сфере медицины. Экономическое обоснование эффективности данной технологии. Используемое программное обеспечение, его функции и возможности.

    статья [16,1 K], добавлен 16.05.2016

  • Создание системы предобработки данных; разработка системы классификации на базе методов и алгоритмов машинного обучения, их реализация в программной системе. Предобработка информации, инструкция пользователя, система классификации, машинный эксперимент.

    дипломная работа [917,1 K], добавлен 31.01.2015

  • Виды машинного обучения, его основные задачи и методы. Подходы к классификации: логистическая регрессия, наивный байесовский классификатор, стохастический градиентный спуск, K-ближайший сосед, дерево решений, случайный лес, метод опорных векторов.

    курсовая работа [436,9 K], добавлен 14.12.2022

  • Получение и обработка данных о веб-сайте. Иерархическая классификация, алгоритмы машинного обучения. Решающие деревья, плоские классификаторы. Метрики оценки качества. Полная точность (accuracy), кросс-валидация. Параллельные вычисления, хранение данных.

    курсовая работа [276,8 K], добавлен 04.09.2016

  • Особенности графической среды разработки и Visual C++. Разработка проекта с использованием функций библиотеки MFC для удаления комментариев из текстов программ, автоматического выбора языка, на котором написана утилита и сохранения результата в файл.

    курсовая работа [22,7 K], добавлен 07.11.2010

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа [1,8 M], добавлен 08.02.2017

  • Ознакомление с основами расширяемого языка разметки Extensible Markup Language. Изучение основных правил создания XML-документа. Рассмотрение набора элементов языка, секций CDATA, директив анализатора, комментариев, спецсимволов, текстовых данных.

    презентация [400,9 K], добавлен 21.12.2014

  • Программное обеспечение для получения исходных данных для обучения нейронных сетей и классификации товаров с их помощью. Алгоритм метода обратного распространения ошибки. Методика классификации товаров: составление алгоритма, программная реализация.

    дипломная работа [2,2 M], добавлен 07.06.2012

  • Управление электронным обучением. Технологии электронного обучения e-Learning. Программное обеспечение для создания e-Learning решений. Компоненты LMS на примере IBM Lotus Learning Management System и Moodle. Разработка учебных курсов в системе Moodle.

    курсовая работа [146,6 K], добавлен 11.06.2009

  • История автоматизированного перевода. Современные компьютерные программы перевода. Сфера использования машинного перевода. Формы организации взаимодействия человека и ЭВМ в машинном переводе. Интерредактирование и постредактирование машинного перевода.

    курсовая работа [30,0 K], добавлен 19.06.2015

  • Історія машинного перекладу як науково-прикладного напряму. Теорія машинного перекладу. Особливості використання систем, орієнтованих на персональні комп’ютери. Напрямки розвитку та застосування машинного перекладу. Приклади систем машинного перекладу.

    реферат [21,5 K], добавлен 19.02.2011

  • Человеко-машинный интерфейс. Текстовый и смешанный (псевдографический) интерфейсы. Применение человеко-машинного интерфейса в промышленности. Программные средства для разработки человеко-машинного интерфейса. Среда разработки мнемосхем GraphworX32.

    дипломная работа [5,3 M], добавлен 19.03.2010

  • Изучение принципа работы интернет-аукциона (на примере сайта molotok.ru). Способ получения информации с веб-ресурсов. Разработка программного обеспечения с целью создания исходных данных для обучения нейронных сетей и классификации товаров с их помощью.

    дипломная работа [2,0 M], добавлен 29.06.2012

  • Популярность алгоритмов машинного обучения для компьютерных игр. Основные техники обучения с подкреплением в динамической среде (компьютерная игра "Snake") с экспериментальным сравнением алгоритмов. Обучение с подкреплением как тип обучения без учителя.

    курсовая работа [1020,6 K], добавлен 30.11.2016

  • Преимущества применения информационных технологий в образовании. Системы дистанционного образования. Организационная схема обучения дисциплине "Финансы и кредит". Расчет трудоемкости, длительности и себестоимости разработки информационной системы.

    дипломная работа [5,6 M], добавлен 30.08.2010

  • Общие понятия об e-learning. Области применения продукта. Модели и технологии. Исследование и анализ программных инструментов. Создание учебного курса для преподавателей инженерно-экономического факультета. Оценка эффективности внедрения такого обучения.

    дипломная работа [4,7 M], добавлен 03.05.2018

  • Machine Translation: The First 40 Years, 1949-1989, in 1990s. Machine Translation Quality. Machine Translation and Internet. Machine and Human Translation. Now it is time to analyze what has happened in the 50 years since machine translation began.

    курсовая работа [66,9 K], добавлен 26.05.2005

  • Использование классификаторов машинного обучения для анализа данных. Создание модели, которая на основании параметров, влияющих на течение диабета, выявляет показатель возвращения больного в ухудшенное состояния после оказанного лечения (реадмиссию).

    дипломная работа [625,2 K], добавлен 10.06.2017

  • Понятие базы знаний для управления метаданными. Особенности баз знаний интеллектуальной системы. Языки, используемые для разработки интеллектуальных информационных систем. Классические задачи, решаемые с помощью машинного обучения и сферы их применения.

    реферат [16,9 K], добавлен 07.03.2010

  • Моделирование системы массового обслуживания. Анализ зависимости влияния экзогенных переменных модели однофазной одноканальной СМО на эндогенные переменные. План машинного эксперимента множественного регрессионного анализа и метода наименьших квадратов.

    лабораторная работа [107,5 K], добавлен 15.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.