статья  О создании программного комплекса для распознавания эмоций с использованием методов машинного обучения

Описание анализа систем распознавания эмоций с применением методов машинного обучения, находящихся в открытом доступе, в рамках курсового проекта по дисциплине Обучающие Технические Системы "Machine Learning". Neurobotics EmoDetect. Cognitive Emotion.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

   ####    ####     ####     ####     ####   
  #####   ######   ##  ##   ##  ##   ##  ##  
 ### ##   ##  ##   ##  ##   ##  ##   ##  ##  
 #######  ##  ##    ####     ####     #####  
 #######  ##  ##   ##  ##   ##  ##       ##  
     ##   ######   ##  ##   ##  ##   ##  ##  
     ##    ####     ####     ####     ####   
                                             

Введите число, изображенное выше:

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 14.03.2019
Размер файла 985,3 K

Подобные документы

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа [1,8 M], добавлен 08.02.2017

  • Machine Learning как процесс обучения машины без участия человека, основные требования, предъявляемые к нему в сфере медицины. Экономическое обоснование эффективности данной технологии. Используемое программное обеспечение, его функции и возможности.

    статья [16,1 K], добавлен 16.05.2016

  • Понятие системы распознавания образов. Классификация систем распознавания. Разработка системы распознавания формы микрообъектов. Алгоритм для создания системы распознавания микрообъектов на кристаллограмме, особенности его реализации в программной среде.

    курсовая работа [16,2 M], добавлен 21.06.2014

  • Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.

    дипломная работа [1019,9 K], добавлен 13.10.2017

  • Основные понятия теории распознавания образов и ее значение. Сущность математической теории распознавания образов. Основные задачи, возникающие при разработке систем распознавания образов. Классификация систем распознавания образов реального времени.

    курсовая работа [462,2 K], добавлен 15.01.2014

  • Появление технических систем автоматического распознавания. Человек как элемент или звено сложных автоматических систем. Возможности автоматических распознающих устройств. Этапы создания системы распознавания образов. Процессы измерения и кодирования.

    презентация [523,7 K], добавлен 14.08.2013

  • Методы распознавания образов (классификаторы): байесовский, линейный, метод потенциальных функций. Разработка программы распознавания человека по его фотографиям. Примеры работы классификаторов, экспериментальные результаты о точности работы методов.

    курсовая работа [2,7 M], добавлен 15.08.2011

  • Понятие и особенности построения алгоритмов распознавания образов. Различные подходы к типологии методов распознавания. Изучение основных способов представления знаний. Характеристика интенсиональных и экстенсиональных методов, оценка их качества.

    презентация [31,6 K], добавлен 06.01.2014

  • Необходимость в системах распознавания символов. Виды сканеров и их характеристики. Оптимальное разрешение при сканировании. Программы распознавания текста. Получение электронного документа. FineReader - система оптического распознавания текстов.

    презентация [469,2 K], добавлен 15.03.2015

  • Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.

    курсовая работа [3,9 M], добавлен 22.10.2012

  • Выбор типа и структуры нейронной сети. Подбор метода распознавания, структурная схема сети Хопфилда. Обучение системы распознавания образов. Особенности работы с программой, ее достоинства и недостатки. Описание интерфейса пользователя и экранных форм.

    курсовая работа [3,0 M], добавлен 14.11.2013

  • Создание системы предобработки данных; разработка системы классификации на базе методов и алгоритмов машинного обучения, их реализация в программной системе. Предобработка информации, инструкция пользователя, система классификации, машинный эксперимент.

    дипломная работа [917,1 K], добавлен 31.01.2015

  • Історія машинного перекладу як науково-прикладного напряму. Теорія машинного перекладу. Особливості використання систем, орієнтованих на персональні комп’ютери. Напрямки розвитку та застосування машинного перекладу. Приклади систем машинного перекладу.

    реферат [21,5 K], добавлен 19.02.2011

  • Компьютерные обучающие системы. Принципы новых информационных технологий обучения. Типы обучающих программ. Активизация обучения. Компьютерное тестирование. Перспективные исследования в области компьютерного обучения. Интернет-технологии, мультимедиа.

    контрольная работа [60,3 K], добавлен 10.09.2008

  • Литературный обзор методов распознавания кромок для схожих задач. Объекты в приложении и их отображение. Генерация выходных данных. Алгоритм распознавания линии (графика), отличный от градиентных подходов и использующий алгоритм предварительной обработки.

    дипломная работа [711,8 K], добавлен 27.04.2014

  • Первое систематическое изучение искусственных нейронных сетей. Описание элементарного перцептрона. Программная реализация модели распознавания графических образов на основе перцептрона. Интерфейс программы, основные окна. Составление алгоритма приложения.

    реферат [100,5 K], добавлен 18.01.2014

  • Оптико-электронная система идентификации объектов подвижного состава железнодорожного транспорта. Автоматический комплекс распознавания автомобильных номеров. Принципы и этапы работы систем оптического распознавания. Особенности реализации алгоритмов.

    дипломная работа [887,3 K], добавлен 26.11.2013

  • Обзор математических методов распознавания. Общая архитектура программы преобразования автомобильного номерного знака. Детальное описание алгоритмов: бинаризация изображения, удаление обрамления, сегментация символов и распознавание шаблонным методом.

    курсовая работа [4,8 M], добавлен 22.06.2011

  • Основные цели и задачи построения систем распознавания. Построение математической модели системы распознавания образов на примере алгоритма идентификации объектов военной техники в автоматизированных телекоммуникационных комплексах систем управления.

    дипломная работа [332,2 K], добавлен 30.11.2012

  • Принцип работы нейросетей и модели синтеза. Ключевые моменты проблемы распознавания речи. Система распознавания речи как самообучающаяся система. Описание системы: ввод звука, наложение первичных признаков на вход нейросети, модель и обучение нейросети.

    курсовая работа [215,2 K], добавлен 19.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.