статья Обучение модульной нейронной сети для многозадачного искусственного интеллекта
Погружение структурной модели в пространство рецепторных и аксоновых полей - процесс, порождающий топологическую модель нейронной сети, по которой можно реализовать адаптивный алгоритм обработки данных. Сущность регуляризации параметров алгоритма.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 10.05.2022 |
Размер файла | 121,7 K |
Подобные документы
Описание структурной схемы искусственного нейрона. Характеристика искусственной нейронной сети как математической модели и устройств параллельных вычислений на основе микропроцессоров. Применение нейронной сети для распознавания образов и сжатия данных.
презентация [387,5 K], добавлен 11.12.2015Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа [2,6 M], добавлен 23.09.2013Исследование нечеткой модели управления. Создание нейронной сети, выполняющей различные функции. Исследование генетического алгоритма поиска экстремума целевой функции. Сравнительный анализ нечеткой логики и нейронной сети на примере печи кипящего слоя.
лабораторная работа [2,3 M], добавлен 25.03.2014Математическая модель искусственной нейронной сети. Структура многослойного персептрона. Обучение без учителя, методом соревнования. Правило коррекции по ошибке. Метод Хэбба. Генетический алгоритм. Применение нейронных сетей для синтеза регуляторов.
дипломная работа [1,5 M], добавлен 17.09.2013Разработка алгоритма и программы для распознавания пола по фотографии с использованием искусственной нейронной сети. Создание алгоритмов: математического, работы с приложением, установки весов, реализации функции активации и обучения нейронной сети.
курсовая работа [1,0 M], добавлен 05.01.2013Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа [1,1 M], добавлен 05.10.2010Преимущества нейронных сетей. Модели нейронов, представляющих собой единицу обработки информации в нейронной сети. Ее представление с помощью направленных графов. Понятие обратной связи (feedback). Основная задача и значение искусственного интеллекта.
реферат [1,2 M], добавлен 24.05.2015Модель и задачи искусственного нейрона. Проектирование двуслойной нейронной сети прямого распространения с обратным распространением ошибки, способной подбирать коэффициенты ПИД-регулятора, для управления движения робота. Комплект “LEGO Mindstorms NXT.
отчет по практике [797,8 K], добавлен 13.04.2015Нейронные сети и оценка возможности их применения к распознаванию подвижных объектов. Обучение нейронной сети распознаванию вращающегося трехмерного объекта. Задача управления огнем самолета по самолету. Оценка экономической эффективности программы.
дипломная работа [2,4 M], добавлен 07.02.2013Этап предварительной обработки данных, классификации, принятия решения. Изображения обучающих рукописных символов, тестового символа. Выход нейронной сети для тестового символа. График тренировки нейронной сети. Последовательность точек. Входные вектора.
статья [245,7 K], добавлен 29.09.2008Обучение простейшей и многослойной искусственной нейронной сети. Метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Реализация в программном продукте NeuroPro 0.25. Использование алгоритма обратного распространения ошибки.
курсовая работа [1019,5 K], добавлен 05.05.2015Выявление закономерностей и свойств, применимых в искусственной нейронной сети. Построение графиков и диаграмм, определяющих степень удаленности между объектами. Моделирование, тестирование и отладка программной модели, использующей клеточный автомат.
дипломная работа [4,1 M], добавлен 25.02.2015Разработка нейронной сети, ее применение в алгоритме выбора оружия ботом в трехмерном шутере от первого лица, тестирование алгоритма и выявление достоинств и недостатков данного подхода. Обучение с подкреплением. Описание проекта в Unreal Engine 4.
контрольная работа [611,0 K], добавлен 30.11.2016Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.
дипломная работа [2,7 M], добавлен 18.02.2017Математические модели, построенные по принципу организации и функционирования биологических нейронных сетей, их программные или аппаратные реализации. Разработка нейронной сети типа "многослойный персептрон" для прогнозирования выбора токарного станка.
курсовая работа [549,7 K], добавлен 03.03.2015Сущность, структура, алгоритм функционирования самообучающихся карт. Начальная инициализация и обучение карты. Сущность и задачи кластеризации. Создание нейронной сети со слоем Кохонена при помощи встроенной в среды Matlab. Отличия сети Кохонена от SOM.
лабораторная работа [36,1 K], добавлен 05.10.2010Построение векторной модели нейронной сети. Проектирование и разработка поискового механизма, реализующего поиск в полнотекстовой базе данных средствами нейронных сетей Кохонена с применением модифицированного алгоритма расширяющегося нейронного газа.
курсовая работа [949,0 K], добавлен 18.07.2014Программная реализация статической нейронной сети Хемминга, распознающей символы текста. Описание реализации алгоритма. Реализация и обучение сети, входные символы. Локализация и масштабирование изображения, его искажение. Алгоритм распознавания текста.
контрольная работа [102,3 K], добавлен 29.06.2010Принцип построения и описание прибора. Назначение и область применения спектрометра космических излучений на алмазных детекторах. Аппроксимация степенным многочленом. Математическая модель нейронной сети. Описание интерфейса программного комплекса.
дипломная работа [591,1 K], добавлен 03.09.2017Изучение и реализация системы, использующей возможности Microsoft Azure для распределенного обучения нейронной сети. Рассмотрение функционирования распределенных вычислений. Выбор задачи для исследования; тестирование данного программного ресурса.
дипломная работа [2,0 M], добавлен 20.07.2015