статья  Технология нейронной стилизации изображений с помощью машинного и глубокого обучения: методы и применение

Появление и перспективы использования технологии нейронной стилизации. Типологизация методов машинного обучения для стилизации изображений. Рассмотрение реализации стилизации изображений с помощью машинного и глубокого обучений на языке Python.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

###  ###   #   ###  # #  
#    #    ##   #    # #  
###  ###   #   ###  ###  
  #    #   #     #    #  
###  ###   #   ###    #  
                         

Введите число, изображенное выше:

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 09.12.2024
Размер файла 299,8 K

Подобные документы

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа [1,8 M], добавлен 08.02.2017

  • Типы изображений (черно-белые, полутоновые, цветные) и их форматы. Устройства, создающие цифровые изображения, и их параметры. Применение и характеристики методов сжатия изображений. Поиск по содержимому в базах данных изображений. Структуры баз данных.

    презентация [360,4 K], добавлен 11.10.2013

  • Сравнительная оценка существующих программ, повышающих разрешение изображений на языке Borland Delphi. Выбор оптимального инструментария для разработки логической схемы. Форма поиска файлов, преобразования изображений и реализации алгоритмов интерполяции.

    дипломная работа [3,0 M], добавлен 29.11.2011

  • Цифровые рентгенографические системы. Методы автоматического анализа изображений в среде MatLab. Анализ рентгеновского изображения. Фильтрация, сегментация, улучшение изображений. Аппаратурные возможности предварительной нормализации изображений.

    курсовая работа [890,9 K], добавлен 07.12.2013

  • Обработка изображений на современных вычислительных устройствах. Устройство и представление различных форматов изображений. Исследование алгоритмов обработки изображений на базе различных архитектур. Сжатие изображений на основе сверточных нейросетей.

    дипломная работа [6,1 M], добавлен 03.06.2022

  • Основы программирования на языке VB.NET. Область применения трехмерных изображений. Форматы хранения пакетов инженерной графики. Преимущества трехмерного моделирования. Разработка программы по вращению трехмерных изображений на языках VB.NET и VRML.

    курсовая работа [195,1 K], добавлен 11.03.2013

  • История автоматизированного перевода. Современные компьютерные программы перевода. Сфера использования машинного перевода. Формы организации взаимодействия человека и ЭВМ в машинном переводе. Интерредактирование и постредактирование машинного перевода.

    курсовая работа [30,0 K], добавлен 19.06.2015

  • Історія машинного перекладу як науково-прикладного напряму. Теорія машинного перекладу. Особливості використання систем, орієнтованих на персональні комп’ютери. Напрямки розвитку та застосування машинного перекладу. Приклади систем машинного перекладу.

    реферат [21,5 K], добавлен 19.02.2011

  • Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.

    курсовая работа [3,9 M], добавлен 22.10.2012

  • Machine Learning как процесс обучения машины без участия человека, основные требования, предъявляемые к нему в сфере медицины. Экономическое обоснование эффективности данной технологии. Используемое программное обеспечение, его функции и возможности.

    статья [16,1 K], добавлен 16.05.2016

  • Разработка приложения, целью которого ставится преобразование черно-белых полутоновых изображений в цветные. Обзор методики обработки изображения, способов преобразования изображения с помощью нейронной сети. Описания кластеризации цветового пространства.

    дипломная работа [6,3 M], добавлен 17.06.2012

  • Изучение современных методик компьютерной обработки биомедицинских изображений с целью улучшения изображений для их наилучшего визуального восприятия врачом-диагностом и эффективного сжатия изображений – для надежного хранения и быстрой передачи данных.

    курсовая работа [2,3 M], добавлен 15.04.2019

  • Обзор методов создания Web-ресурса для публикации фотопанорамных изображений. Необходимые компоненты для работы сервера. Создание хранилища данных в программной оболочке Denwer. Публикация готовых панорамных изображений на сайте кафедры ИСКМ ВолГУ.

    курсовая работа [1,9 M], добавлен 28.08.2012

  • Обзор программных продуктов для анализа изображений: ABBYY FineReader и OCR CuneiForm. Понятие и виды нейронных сетей. Алгоритм обучения персептрона. Результаты исследований и описание интерфейса программы. Расчет себестоимости программного обеспечения.

    дипломная работа [590,7 K], добавлен 17.08.2011

  • Применение различных методов компрессии изображений и анимации. Определение наиболее подходящего формата сжатия. Выбор кодеков при помощи программы RIOT. Применение дополнительных способов оптимизации с использование программ OptiPNG, PNGOUT и TweakPNG.

    лабораторная работа [1,5 M], добавлен 31.05.2013

  • Современные системы текстурного анализа изображений. Примеры текстурной сегментации одноканальных изображений. Использование признаков, полученных на основе гистограммы яркостей второго порядка, для классификации спектрозональных аэрофотоснимков.

    реферат [573,5 K], добавлен 15.01.2017

  • Человеко-машинный интерфейс. Текстовый и смешанный (псевдографический) интерфейсы. Применение человеко-машинного интерфейса в промышленности. Программные средства для разработки человеко-машинного интерфейса. Среда разработки мнемосхем GraphworX32.

    дипломная работа [5,3 M], добавлен 19.03.2010

  • Описание математических методов представления и обработки графических изображений. Описание разработанного программного дополнения. Описание функций и их атрибутов. Представление и обработка графических изображений. Результаты тестирования программы.

    курсовая работа [1,7 M], добавлен 27.01.2015

  • Разработка алгоритма и программы для распознавания пола по фотографии с использованием искусственной нейронной сети. Создание алгоритмов: математического, работы с приложением, установки весов, реализации функции активации и обучения нейронной сети.

    курсовая работа [1,0 M], добавлен 05.01.2013

  • Общая характеристика, принципы и методы работы с программой Adobe ImageReady. Особенности и этапы создания анимированных изображений с помощью программы, ее интерфейс и палитра, дополнительные возможности, сходства и различия от Adobe Photoshop.

    аттестационная работа [39,2 K], добавлен 26.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.