статья Влияние нейросетей на мировую экономику: вызовы и возможности
Рассмотрение развития, структуры, видов и применения нейросетей. Процесс обучения и передачи информации в нейросетях. Основные принципы работы итоговых нейросетей. Применение нейросетей для распознавания образов, обработки естественного языка, медицине.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 26.02.2025 |
Размер файла | 678,3 K |
Подобные документы
Исследование нейросетевых архитектур и их приложений. Общие принципы, характерные для нейросетей. Локальность и параллелизм вычислений. Программирование: обучение, основанное на данных. Универсальность обучающих алгоритмов. Сферы применения нейросетей.
курсовая работа [250,5 K], добавлен 25.11.2010Принцип работы нейросетей и модели синтеза. Ключевые моменты проблемы распознавания речи. Система распознавания речи как самообучающаяся система. Описание системы: ввод звука, наложение первичных признаков на вход нейросети, модель и обучение нейросети.
курсовая работа [215,2 K], добавлен 19.10.2010Возможности программ моделирования нейронных сетей. Виды нейросетей: персептроны, сети Кохонена, сети радиальных базисных функций. Генетический алгоритм, его применение для оптимизации нейросетей. Система моделирования нейронных сетей Trajan 2.0.
дипломная работа [2,3 M], добавлен 13.10.2015Основные понятия экономической информатики. Информационная система, ее роль и место в системе управления. Формирование решений с помощью нейросетей. Создание информационных систем с учетом стандартов их жизненного цикла. Электронный документооборот.
шпаргалка [206,4 K], добавлен 10.11.2010Анализ нейронных сетей и выбор их разновидностей. Модель многослойного персептрона с обучением по методу обратного распространения ошибки. Проектирование библиотеки классов для реализации нейросети и тестовой программы, описание тестирующей программы.
курсовая работа [515,4 K], добавлен 19.06.2010Основы биометрической идентификации. Возможность использования нейросетей для построения системы распознавания речи. Разработка программного обеспечения для защиты от несанкционированного доступа на основе спектрального анализа голоса пользователя.
дипломная работа [2,8 M], добавлен 10.11.2013Эффективность применения нейронных сетей при выборе модели телефона. История искусственного интеллекта. Сущность нейросетевых технологий, обучение нейросимулятора. Пример выбора по определенным параметрам модели сотового телефона с помощью персептрона.
презентация [93,8 K], добавлен 14.08.2013Обработка изображений на современных вычислительных устройствах. Устройство и представление различных форматов изображений. Исследование алгоритмов обработки изображений на базе различных архитектур. Сжатие изображений на основе сверточных нейросетей.
дипломная работа [6,1 M], добавлен 03.06.2022Нейрокибернетика как направление изучения "искусственного интеллекта". Программный, аппаратный и гибридный подход к созданию нейросетей. Развитие института нейрокибернетики в России. Направления внедрение нейрокибернетики и интеллектуальных систем.
контрольная работа [31,4 K], добавлен 26.02.2012Разработка систем автоматического управления. Свойства нейронных сетей. Сравнительные оценки традиционных ЭВМ и нейрокомпьютеров. Формальная модель искусственного нейрона. Обучение нейроконтроллера при помощи алгоритма обратного распространения ошибки.
реферат [1,4 M], добавлен 05.12.2010Основные отличия нейросетей от других методов. Неформализуемые и трудно формализуемые задачи. Моделирование интеллектуальной деятельности человека. Оценка стоимости квартир в Перми с использованием нейронных сетей. Проектирование и обучение нейросети.
презентация [139,4 K], добавлен 14.08.2013Виды сделок на рынке драгоценных металлов. Основы нейросетей и нейросетевого моделирования. Проектирование и разработка приложения с использованием искусственного интеллекта для решения задач по прогнозированию цен на рынке драгоценных металлов.
дипломная работа [3,6 M], добавлен 30.06.2012Основные понятия теории распознавания образов и ее значение. Сущность математической теории распознавания образов. Основные задачи, возникающие при разработке систем распознавания образов. Классификация систем распознавания образов реального времени.
курсовая работа [462,2 K], добавлен 15.01.2014Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.
дипломная работа [1019,9 K], добавлен 13.10.2017Оптико-электронная система идентификации объектов подвижного состава железнодорожного транспорта. Автоматический комплекс распознавания автомобильных номеров. Принципы и этапы работы систем оптического распознавания. Особенности реализации алгоритмов.
дипломная работа [887,3 K], добавлен 26.11.2013Задача обработки естественного языка при помощи ЭВМ с каждым днем становится все актуальней и актуальней. Развитие научно-технического прогресса во всем мире привело к тому, что объем новой информации постоянно растет с увеличивающейся скоростью.
реферат [13,0 K], добавлен 26.11.2004Выбор типа и структуры нейронной сети. Подбор метода распознавания, структурная схема сети Хопфилда. Обучение системы распознавания образов. Особенности работы с программой, ее достоинства и недостатки. Описание интерфейса пользователя и экранных форм.
курсовая работа [3,0 M], добавлен 14.11.2013Методы распознавания образов (классификаторы): байесовский, линейный, метод потенциальных функций. Разработка программы распознавания человека по его фотографиям. Примеры работы классификаторов, экспериментальные результаты о точности работы методов.
курсовая работа [2,7 M], добавлен 15.08.2011Появление технических систем автоматического распознавания. Человек как элемент или звено сложных автоматических систем. Возможности автоматических распознающих устройств. Этапы создания системы распознавания образов. Процессы измерения и кодирования.
презентация [523,7 K], добавлен 14.08.2013Описание структурной схемы искусственного нейрона. Характеристика искусственной нейронной сети как математической модели и устройств параллельных вычислений на основе микропроцессоров. Применение нейронной сети для распознавания образов и сжатия данных.
презентация [387,5 K], добавлен 11.12.2015