Фундаментальные принципы управления устройствами

Применение фундаментальных принципов управления - разомкнутого управления, компенсации и обратной связи. Схемы систем автоматического управления, их виды. Сигнализация, следящие системы, поиск экстремума показателя качества, оптимальное управление.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 16.12.2012
Размер файла 246,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ АЗЕРБАЙДЖАНСКОЙ РЕСПУБЛИКИ

АЗЕРБАЙДЖАНСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Самостоятельная работа по предмету

"Системы Управления"

Факультет: Автоматика и КТ

система автоматическое управление схема

Группа: 650R

Студент: Мовсумов Мирджалал

Учитель: Гусейнов Азиз

Фундаментальные принципы управления

В основе построения САУ лежат общие фундаментальные принципы управления, определяющие, каким образом согласуются алгоритмы функционирования и управления с фактическим функционированием или причинами, вызывающими отклонение функционирования от заданного. В технике известны и применяются три фундаментальных принципа: разомкнутого управления, компенсации и обратной связи.

Принцип разомкнутого управления состоит в том, что алгоритм управления вырабатывается только на основе заданного алгоритма функционирования и не контролируется по другим факторам - возмущениям или выходным координатам процесса (рис. 1, а). Задание алгоритма функционирования может вырабатываться как специальным техническим устройством - задатчиком программы, так и выполняться заранее при проектировании системы и затем непосредственно использоваться при конструировании УУ. В последнем случае задатчик программы отсутствует. В обоих случаях схема имеет вид разомкнутой цепи, в которой основное воздействие передается от входа к выходу, как показано стрелками. Несмотря на очевидные недостатки (низкая точность управления при изменении возмущающих воздействий и отсутствие контроля выходной координаты) этот принцип используют очень широко.

Рис. 1. Функциональные структуры систем управления с цепями воздействий: разомкнутой - а, в, замкнутой - б и комбинированной - г

Принцип компенсации (управление по возмущению). Если возмущающие воздействия настолько велики, что разомкнутая цепь не обеспечивает требуемой точности выполнения алгоритма функционирования, то для повышения точности вводят коррективы в алгоритм управления, которые компенсировали бы влияние измеряемого возмущения (рис.1, в).

Принципиальная схема системы стабилизации напряжения электромашинного усилителя (ЭМУ) путем компенсации возмущения приведена на рис. 2. Задающее воздействие подается на задающую обмотку возбуждения ОУ1 и определяет величину выходного напряжения ЭМУ. Возмущающим воздействием является ток нагрузки ЭМУ, при увеличении которого (за счет уменьшения сопротивления нагрузки ) снижается выходное напряжение из-за падения напряжения на сопротивлении продольной цепи якоря ЭМУ: , где - полное сопротивление цепи якоря, - ЭДС ЭМУ. При увеличении тока якоря увеличивается пропорционально ему падение напряжения на дополнительном сопротивлении , предназначенном для измерения возмущения. Это напряжение поступает на управляющую обмотку возбуждения ОУ2 и увеличивает поток возбуждения . Суммарный поток возрастает, и величина напряжения на выходе ЭМУ восстанавливается.

Если возмущающее воздействие не может быть непосредственно измерено, то его определяют косвенным путем, что приводит к снижению точности управления. Если же возмущающее воздействие измеряемо, то можно добиться его полной компенсации с нулевой ошибкой отклонения выходной координаты в статическом режиме.

Рис. 2. Система стабилизации напряжения ЭМУ

Принцип обратной связи. Регулирование по отклонению. Систему можно построить и так, чтобы точность выполнения алгоритма обеспечивалась и без измерения возмущения. На рис.1, в показана структура САУ, в которой коррективы в алгоритм управления вносятся по фактическому значению выходной координаты. На вход управляющего устройства поступают как внешнее (задающее) воздействие, так и внутреннее (контрольное). Внутреннее воздействие образует цепь отрицательной обратной связи по выходной координате и делает систему замкнутой.

Управляющее воздействие в замкнутой системе формируется в большинстве случаев в зависимости от величины и знака отклонения истинного значения выходной (управляемой) координаты от ее заданного значения:

, (1.1)

где - сигнал ошибки (называемый также сигналом рассогласования). Замкнутые системы называют часто "САУ по отклонению".

В замкнутой системе контролируется непосредственно выходная координата, и тем самым при формировании управляющих воздействий учитывается действие всех возмущений, влияющих на выходную координату. В этом заключается преимущество замкнутых систем. В то же время сам принцип действия замкнутых систем (принцип управления по отклонению) допускает нежелательные изменения выходной координаты: вначале возмущение должно появиться на выходе, система "почувствует" отклонение и лишь потом выработает управляющее воздействие, направленное на устранение отклонения. Такая инерционность снижает эффективность управления. Несмотря на определенные недостатки этот принцип имеет широкое применение.

На рис.3 представлена принципиальная схема системы управления частотой вращения электродвигателя постоянного тока независимого возбуждения . Управление двигателем осуществляется от электромашинного усилителя AМP, который приводится во вращение асинхронным двигателем (АМ). Частота вращения приводного двигателя измеряется датчиком скорости BR. Сигнал, пропорциональный частоте вращения, через усилитель (У) поступает на одну из обмоток управления ОУ2 в качестве сигнала главной отрицательной обратной связи по частоте вращения. Обмотка управления ОУ1 является задающей и определяет заданное значение частоты вращения. Так как обмотки управления включены встречно, то они же выполняют и функцию элемента сравнения. Потенциометр R предназначен для настройки коэффициента передачи цепи обратной связи.

Рис.3 Принципиальная схема замкнутой САУ частоты вращения

В ряде случаев эффективно применение комбинированного управления по возмущению и отклонению (см. рис.1, г). Комбинированные регуляторы объединяют достоинства обоих принципов - быстроту реакции на изменение возмущений и точное регулирование независимо от того, какая причина вызвала отклонение.

Основные виды автоматического управления

Стабилизация. Системы поддержания постоянства управляемой величины называют также системами стабилизации. Желаемый закон в них имеет вид . Пример системы автоматической стабилизации напряжения генератора приведен на рис.2.

Программное управление. При программном управлении алгоритм функционирования задан и можно применить специальное устройство, вырабатывающее , датчик программы. Таким образом, все схемы, показанные на рис.1, в которых задающее воздействие формируется от датчика программы, относятся к классу систем программного управления. Программное управление можно осуществить по любому из фундаментальных принципов или с помощью их комбинации.

Следящие системы. В следящих системах алгоритм функционирования заранее неизвестен. Обычно регулируемая координата в таких системах должна воспроизводить изменение некоторого внешнего фактора, следить за ним. Так, антенна радиолокатора должна следить за положением самолета. Следящая система может быть выполнена в соответствии с любым фундаментальным принципом управления и будет отличаться от соответствующей системы программного управления тем, что вместо датчика программы в ней будет иметь место устройство слежения за изменением внешнего фактора.

Рис.4. Следящая система

В качестве примера следящей системы на рис.4 приведена упрощенная схема отработки угла. Регулируемой величиной является угол поворота управляемого объекта 2. Приводной двигатель 3 питается от ЭМУ 1. Входное воздействие подается на сельсин-датчик 5 в виде угла поворота его ротора. Соединенные по трансформаторной схеме сельсин-датчик и сельсин-приемник 4, механически связанный с управляемым объектом, вырабатывают напряжение, пропорциональное рассогласованию между входным и выходным валами следящей системы. Напряжение ошибки усиливается усилителем У и ЭМУ 1 и поступает на якорь исполнительного двигателя 3, вращающего одновременно объект 2 и ротор сельсина-приемника до тех пор, пока рассогласование не станет равным нулю.

Системы с поиском экстремума показателя качества. В ряде процессов показатель качества или эффективности процесса может быть выражен в каждый момент времени функцией текущих координат системы, и управление можно считать оптимальным, если оно обеспечивает поддержание этого показателя в точке максимума, например, настройку энергоустановки на максимальный коэффициент полезного действия. Такое управление обладает одной нежелательной особенностью: когда точка настройки под воздействием различных возмущений окажется смещенной от экстремума, неизвестно, в каком направлении следует воздействовать на регулирующий орган объекта, чтобы вернуть ее к экстремуму. Поэтому экстремальное управление начинают с поиска: сначала выполняют небольшие пробные движения в каком-то выбранном направлении, затем анализируют реакцию системы на эти пробы и после этого по результатам анализа вырабатывают управляющее воздействие в виде импульса, приближающего систему к экстремуму.

Оптимальное управление. Оптимальное управление применяется как в технических системах для повышения эффективности производственных процессов, так и в системах организационного управления.

В управлении динамическими техническими системами оптимизация чаще всего существенна именно для переходных процессов, в которых показатель эффективности зависит не только от текущих значений координат (как в экстремальном управлении), но и от характера изменения в прошлом, настоящем и будущем, и выражается некоторым функционалом от координат, их производных и, может быть, времени.

Нахождение оптимального управления в подобных системах требует решения достаточно сложной математической задачи методами вариационного исчисления или математического программирования. Таким образом, органической составляющей частью системы оптимального управления становится вычислительное устройство. Принцип поясняется на рис.5

Рис. 5 Оптимальное управление

На вход вычислительного устройства ВМ поступает информация о текущих значениях координат с выхода объекта , об управлениях с его входа, о внешних воздействиях на объект, а также задание извне различных условий: значение критерия оптимальности , граничных условий , и т.д. Вычислительное устройство по заложенной в него программе вычисляет оптимальное управление . Оптимальные системы могут быть как разомкнутыми, так и замкнутыми.

Адаптивные системы. Системы, автоматически изменяющие значение своих параметров или структуру при непредвиденных изменениях внешних условий на основании анализа состояния или поведения системы так, чтобы сохранялось заданное качество ее работы, называют адаптивными системами. Адаптивные системы с изменением значений параметров иногда называют самонастраивающимися, а системы с изменением структуры - самоорганизующимися.

Обычно адаптивная система содержит в качестве "ядра" схему, реализующую один из фундаментальных принципов управления, а контур адаптации пристраивают к ней как вторичный, осуществляющий коррекцию параметров. Контур адаптации, обычно состоящий из устройства измерения (ИУ), вычисления (ВУ) и управления (УУ), может быть разомкнут (рис.6), если на его вход подается только входное воздействие, или замкнут (связь показана пунктиром), если он реагирует также и на выходную координату системы. Основной контур составляют объект О и регулятор Р.

Рис.6 Адаптивная САУ

Контур самонастройки воздействует на блок настройки параметров БНП, который может быть включен не только последовательно, как показано на рисунке, но и любым другим способом, например, в цепь обратной связи. Вычисление воздействий для коррекции параметров осуществляет ВУ в соответствии с программой.

Классификация САУ по другим признакам имеет более общий характер и слабо связана с фундаментальными принципами управления.

В зависимости от принадлежности источника энергии, при помощи которого создается управляющее воздействие, САУ могут быть прямого и непрямого действия. В системах прямого действия используется энергия управляемого объекта. В системах непрямого действия управляющее воздействие создается за счет энергии дополнительного источника.

По виду сигналов, действующих в системах, последние разделяют на непрерывные и дискретные. Дискретные системы, в свою очередь, разделяются на импульсные, релейные и цифровые.

САУ, у которых управляемая величина в установившемся режиме зависит от величины возмущающего воздействия, называются статическими, а САУ, у которых управляемая величина не зависит от возмущения, называются астатическими.

По виду дифференциальных уравнений, описывающих элементы систем, последние разделяют на линейные и нелинейные. В линейной системе все элементы описываются линейными алгебраическими и дифференциальными уравнениями. Если хотя бы один элемент системы имеет нелинейную зависимость выходной величины от входной, то вся система является нелинейной.

Размещено на Allbest.ru

...

Подобные документы

  • Общие принципы построения систем автоматического управления, основные показатели их качества. Передаточная функция разомкнутой и замкнутой систем. Определение устойчивости системы. Оценка точности отработки заданных входных и возмущающих воздействий.

    реферат [906,1 K], добавлен 10.01.2016

  • Структура замкнутой линейной непрерывной системы автоматического управления. Анализ передаточной функции системы с обратной связью. Исследование линейной импульсной, линейной непрерывной и нелинейной непрерывной систем автоматического управления.

    контрольная работа [1,6 M], добавлен 16.01.2011

  • Назначение и условия эксплуатации локальной системы автоматического управления (ЛСАУ). Подбор элементов и определение их передаточных функций. Расчет датчика обратной связи и корректирующего устройства. Построение логарифмических характеристик системы.

    курсовая работа [1,0 M], добавлен 09.03.2012

  • Состояние проблемы автоматического распознавания речи. Обзор устройств чтения аудио сигналов. Архитектура системы управления периферийными устройствами. Схема управления электрическими устройствами. Принципиальная схема включения электрических устройств.

    дипломная работа [1,1 M], добавлен 18.10.2011

  • Дискретные системы автоматического управления как системы, содержащие элементы, которые преобразуют непрерывный сигнал в дискретный. Импульсный элемент (ИЭ), его математическое описание. Цифровая система автоматического управления, методы ее расчета.

    реферат [62,3 K], добавлен 18.08.2009

  • Уравнения связей структурной схемы САУ. Анализ линейной непрерывной системы автоматического управления. Критерии устойчивости. Показатели качества переходных процессов при моделировании на ЭВМ. Синтез последовательного корректирующего устройства.

    контрольная работа [157,2 K], добавлен 19.01.2016

  • Разработка функциональной схемы системы автоматического управления дозированием песка. Описание технологического процесса. Построение электрической принципиальной схемы. Выбор и расчёт усилителей. Расчёт мостовой схемы, схемы сигнализации, суммирования.

    курсовая работа [154,3 K], добавлен 25.09.2014

  • Структурная схема системы автоматического управления (САУ). Ее статическая и переходная характеристика. Качество процесса управления. Определение показателей качества по расположению нулей и полюсов передаточной функции САУ в комплексной плоскости.

    методичка [273,7 K], добавлен 29.04.2010

  • Применение гибких производственных систем, проблемы при их создании и внедрении. Обеспечение полностью автоматического и автономного цикла работы токарных станков. Разработка системы управления ГАП (РТК) для горячей штамповки. Выбор системы управления.

    курсовая работа [3,5 M], добавлен 16.12.2012

  • Синтезирование корректирующей обратной связи в управляющем устройстве системы управления. Определение эквивалентных ПФ и ЛАЧХ исполнительного органа системы. Построение желаемой ЛАЧХ и синтез последовательного проектируемого корректирующего устройства.

    контрольная работа [770,7 K], добавлен 02.07.2012

  • Проектирование систем автоматического управления (САУ), методы их расчетов. Коэффициенты усиления в прямом канале управления, передачи обратных модальных связей, обеспечивающих показатели качества замкнутой САУ. Переходные процессы синтезированной САУ.

    курсовая работа [1,2 M], добавлен 06.04.2013

  • Частотные показатели качества системы автоматического управления в переходном режиме. Полный анализ устойчивости и качества управления для разомкнутой и замкнутой систем с помощью критериев Гурвица и Найквиста, программных продуктов Matlab, MatCad.

    курсовая работа [702,6 K], добавлен 18.06.2011

  • Анализ устойчивости системы автоматического управления (САУ) по критерию Найквиста. Исследование устойчивости САУ по амплитудно-фазочастотной характеристике АФЧХ и по логарифмическим характеристикам. Инструменты управления приборной следящей системы.

    курсовая работа [1020,7 K], добавлен 11.11.2009

  • Элементы автоматического управления. Проектирование цикловой дискретной системы автоматического управления с путевым контроллером. Исходный граф, схема механизмов и граф функционирования устройства. Синтез логических функций управления выходами.

    контрольная работа [783,3 K], добавлен 17.08.2013

  • Проектирование систем автоматического управления программно-технического комплекса. Разработка системы управления двумя насосами 11кВт: силовая цепь и цепь включения питания, инженерно-технические решения и программное обеспечение работы терминала.

    отчет по практике [1,5 M], добавлен 22.07.2012

  • Работа регулятора линейного типа, автоматического регулятора, исполнительного механизма, усилителя мощности, нормирующего преобразователя. Составление алгоритмической структурной схемы системы автоматического управления. Критерий устойчивости Гурвица.

    контрольная работа [262,6 K], добавлен 14.10.2012

  • Классификация (типы) бортовых систем автотранспортного средства. Система автоматического управления трансмиссией автомобиля. БИУС – вид автоматизированной системы управления, предназначенной для автоматизации рабочих процессов управления и диагностики.

    дипломная работа [1,5 M], добавлен 26.07.2017

  • Исследование динамики элементов систем автоматического управления. Анализ устойчивости и режима автоколебаний нелинейной САУ температуры в сушильной камере с использованием методов фазовых траекторий, гармонической реализации, алгебраическим и частотным.

    курсовая работа [1,3 M], добавлен 06.12.2012

  • Анализ исходной системы автоматического управления, определение передаточной функции и коэффициентов. Анализ устойчивости исходной системы с помощью критериев Рауса, Найквиста. Синтез корректирующих устройств и анализ синтезированных систем управления.

    курсовая работа [442,9 K], добавлен 19.04.2011

  • Выбор регулятора для объекта управления с заданной передаточной функцией. Анализ объекта управления и системы автоматического регулирования. Оценка переходной и импульсной функций объекта управления. Принципиальные схемы регулятора и устройства сравнения.

    курсовая работа [2,5 M], добавлен 03.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.