Метрологические характеристики нормирующих преобразователей

Исследование предназначения нормирующих измерительных преобразователей. Преобразования естественных выходных сигналов первичных измерительных преобразователей в унифицированный выходной сигнал. Анализ схемы потенциометра с переменной силой рабочего тока.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 31.01.2013
Размер файла 105,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru/

метрологические характеристикИ нормирующих преобразователей

Нормирующие измерительные преобразователи относятся к функциональной группе средств получения информации и предназначены для преобразования естественных выходных сигналов первичных измерительных преобразователей в унифицированный выходной сигнал (табл. 1).

Таблица 1

Тип первичного преобразователя

Вид выходного сигнала первичного преобразователя

Тип нормирующего преобразователя

Выходной сигнал нормирующего преобразователя

Тензорезисторный

Сопротивление, Ом

ПА-1

0-1В

Дифференциально-трансформаторный

Индуктивность, мГ

НП-ПЗ

0-5 мА

Терморезистивный

Сопротивление, Ом

Ш71, Ш71-И, ПТ-ТС-68

0-5 мА. 0-10В

Термоэлектрический

ЭДС, мВ

Ш72, Ш72-И,

ПТ-ТП-68

0-5 мА, 0-10В

0-5 мА

Реохордный

ЭДС, мВ

Ш73, HP-PI

0-5 мА, 0-10В

В качестве унифицированных сигналов используют :

· постоянный ток, изменяющийся от 0-5мА (0-20, 4-20 мА) при изменении сигнала от первичного преобразователя от 0 до 100% диапазона измерений.

· напряжение постоянного тока, изменяющееся в диапазонах 0-1 В; 0-10 В

Сигналы 0-5 мА используют при длине линий связи до 5 км, а 0-20 (420) до 20 км.

Токовые сигналы обладают хорошей помехозащищенностью. Наиболее широко используется диапазон 4-20 мА, т.к. позволяет достаточно просто контролировать обрыв линий связи. Кроме того, нормирующие преобразователи используются в системах дистанционного контроля т.к. выходные сигналы измерительных преобразователей имеют малую мощность, и их передача на большие расстояния в ряде случаев затруднена.

Унификация выходного сигнала первичного преобразователя позволяет резко сократить номенклатуру вторичных приборов, обеспечить их взаимозаменяемость и разработать информационно-измерительные комплексы с применением ЭВМ.

Нормирующие преобразователи термоЭДС

В основу работы положен компенсационный метод измерения термоЭДС с использованием схемы потенциометра с переменной силой рабочего тока. Схема преобразователя приведена на рис. 1. Здесь I - контур измерений; II - контур компенсации. Контур I содержит корректирующий мост КМ, усилитель У1 с токовым выходом Iвых, резистор RОС и термопару ЕАВ(t, t0). Корректирующий мост предназначен для введения автоматической поправки на изменение температуры свободных концов ТЭП, а также компенсации начальной термоЭДС в преобразователях, нижний предел измерения которых не равен 0°С.

Корректирующий мост представляет собой электрический неравновесный мост с постоянными манганиновыми резисторами R1, R2, R3 и медным резистором RM. Диагональ ab питания моста подключена к стабилизированному источнику питания Uпит. Напряжение этого источника выбирается в зависимости от градуировки подключаемой термопары. Измерительная диагональ cd корректирующего моста включена в разрыв между электродом термопары и соединительным проводом. При температуре свободных концов ТЭП, а, следовательно, и резистора RM расположенного рядом с концами удлинительных проводов, равной 0°С, мост находится в равновесии, т. е. напряжение в диагонали cd равно нулю. Если температура свободных концов, например, выросла и стала t0', то сопротивление резистора RM,, также вырастет, в результате чего в диагонали появится напряжение Ucd. Это возникшее напряжение компенсирует недостающую термоЭДС, т. е. Ucd =EAB(t0',t0).

Усилитель У1 состоит из двух каскадов: магнитного УМ, выполненного по двухтактной двухполупериодной схеме, и полупроводникового усилителя УП, работающего в режиме усиления постоянного тока Усилитель У1 выполняет функции нуль-индикатора.

Контур компенсации II включает в себя резистор Rос и усилитель обратной связи У Этот усилитель аналогичен усилителю У1, но включен с глубокой отрицательной связью по выходному току усилителя. Выходной ток Iос усилителя У2 является рабочим током контура II и при прохождении этого тока по сопротивлению Rос на нем создается компенсирующее напряжение:

нормирующий преобразователь сигнал потенциометр

Uос = IосRос. (1)

Со стороны контура I к резистору Rос подводится сигнал ТЭП ЕАВ(t, t0), сложенный с напряжением Ucd, создаваемым в измерительной диагонали корректирующего моста. Таким образом, этот суммарный сигнал, сравнивается с напряжением Uoc. Небаланс, равный:

?U = EAB(t, t0)+Ucd - Uoc, (2)

подается на усилитель У1. Выходной сигнал усилителя У1 создает ток Iвых, который поступает во внешнюю цепь Rн и далее - в усилитель обратной связи У Выходной ток Iос усилителя У2 изменяется и изменяет падение напряжения Uoc на резисторе roc до тех пор, пока небаланс ?U не достигнет некоторой малой величины дU, называемой статической ошибкой компенсации.

Наличие статической ошибки компенсации приводит к тому, что в контуре измерения I проходит недокомпенсированный ток. При этом, чем больше измеряемая термоЭДС, тем больше этот ток.

Исключить эту ошибку в устройствах, выполненных по статической автокомпенсационной схеме, принципиально невозможно, так как выходной ток преобразователя Iвых и ток контура компенсации Iос определяются наличием этой ошибки и пропорциональны ей. В то же время статическая ошибка автокомпенсационной схемы может быть значительно уменьшена, если использовать усилитель с большим коэффициентом усиления.

Рассмотрим математическую связь между измеряемой термоЭДС ЕАВ(t, t0) и выходным током преобразователя Iвых.

На вход усилителя У1 поступает напряжение:

(3)

На выходе усилителей У1 и У2 формируются соответственно токи:

(4)

(5)

где k1 и k2 - коэффициенты усиления усилителей У1 и У2; Rвх сопротивление входной цепи усилителя У1,

Падение напряжения на резисторе Roc составит:

(6)

Тогда, с учетом (3), (4) и (6) можно записать:

(7)

или

(8)

где k - коэффициент преобразования нормирующего преобразователя.

В зависимости от диапазона входного сигнала нормирующие преобразователи, работающие в комплекте с ТЭП, имеют классы точности 0,4 -1,5.

Нормирующий преобразователь ТСП

Схема нормирующего преобразователя, работающего в комплекте с термопреобразователем сопротивления, показана на рис. Этот преобразователь по схеме и принципу действия аналогичен нормирующему преобразователю, работающему в комплекте с термоэлектрическим преобразователем. Отличие указанных схем заключается в том, что вместо корректирующего моста используется измерительный неравновесный мост, в одно из плеч которого по трехпроводной схеме включен термо-преобразователь сопротивлений. Остальные сопротивления выполнены из манганина. Сопротивления Rл служат для подгонки сопротивления соединительных проводов к номинальному значению. К диагонали питания моста ab подведено стабилизированное напряжение постоянного тока. Выходной ток преобразователя Iвых пропорционален напряжению Ucd в измерительной диагонали моста.

Классы точности преобразователей 0,4-1,5.

Преобразователь измерительный ПТ-ТП-68

Предназначен для линейного преобразования термоЭДС термоэлектрических термометров типов ТХК, ТХА, ТПП соответствующих шкале МПТШ68 в унифицированный выходной сигнал постоянного тока 0-5 мА.

Преобразователь может быть использован с любыми вторичными приборами и устройствами, рассчитанными на входной сигнал 0-5 мА, при условии, что их суммарное сопротивление с учетом сопротивления линии связи не превышает 3125 Ом.

Преобразователь имеет гальваническое разделение между входной и выходной цепями, что позволяет подключить к его выходу термопару с заземленным электродом. Преобразователь обладает хорошей защищенностью от наводок переменного напряжения во входной цепи, что устраняет необходимость экранировки цепей термопары. Время вхождения преобразователя в класс при изменении входного сигнала скачком от 0 до 100% или наоборот не более 2,5 с.

Преобразователь выполнен по схеме статической автокомпенсации (рис. 2).

ЛИТЕРАТУРА

1. Волынский В.А. и др. Электротехника /Б.А. Волынский, Е.Н. Зейн, В.Е. Шатерников: Учеб. пособие для вузов. - М.: Энергоатомиздат, 2007. - 528 с., ил.

Касаткин А.С., Немцов М.В. Электротехника: Учеб. пособие для вузов. - 4-е изд., перераб. - М.: Энергоатомиздат, 2009. - 440 с., ил.

3. Основы промышленной электроники: Учебник для неэлектротехн. спец. вузов /В.Г. Герасимов, О М. Князьков, А Е. Краснопольский, В.В. Сухоруков; под ред. В.Г. Герасимова. - 3-е изд., перераб. и доп. - М.: Высш. шк., 2006. - 336 с., ил.

4. Электротехника и электроника в 3-х кн. Под ред. В.Г. Герасимова Кн.1. Электрические и магнитные цепи. - М.: Высшая шк. - 2006 г.

5. Электротехника и электроника в 3-х кн. Под ред. В.Г. Герасимова Кн. Электромагнитные устройства и электрические машины. - М.: Высшая шк. - 2007 г.

Размещено на Allbest.ru

...

Подобные документы

  • Характеристики измерительных преобразователей. Надежность средств измерений. Выходное напряжение тахогенераторов. Основные характеристики, определяющие качество преобразователей. Алгоритмические методы повышения качества измерительных преобразователей.

    курсовая работа [266,1 K], добавлен 09.09.2016

  • Устройство, принцип действия, описание измерительных преобразователей механического сигнала в виде упругой балки, пьезоэлектрического, емкостного, фотоэлектрического и электромагнитного преобразователей. Оценка их числовых значений с помощью расчетов.

    курсовая работа [843,2 K], добавлен 11.11.2013

  • Применение аналого-цифровых преобразователей (АЦП) для преобразования непрерывных сигналов в дискретные. Осуществление преобразования цифрового сигнала в аналоговый с помощью цифроаналоговых преобразователей (ЦАП). Анализ принципов работы АЦП и ЦАП.

    лабораторная работа [264,7 K], добавлен 27.01.2013

  • Сущность понятий термопара и терморезистор. Основные виды тепловых преобразователей. Применение термоэлектрических преобразователей в устройствах для измерения температуры. Характерные свойства металлов, применяемых для изготовления терморезисторов.

    контрольная работа [34,5 K], добавлен 18.11.2010

  • Основные функции вторичных измерительных преобразователей. Усилители, делители напряжения и мосты, фазометры и частотомеры. Специфика вторичных преобразователей для датчиков перемещений. Нелинейность вторичных преобразователей при аналоговой обработке.

    реферат [642,2 K], добавлен 21.02.2011

  • Структура и параметры преобразователей, использующихся в бытовой радиоэлектроаппаратуры. Типы преобразователей частоты. Использование электронно-оптических преобразователей. Выбор промежуточной частоты, настройка и регулировка преобразователей частоты.

    реферат [239,8 K], добавлен 27.11.2012

  • Понятие средства измерений, их виды и классификация погрешностей. Метрологические характеристики средств измерений, особенности норм на их значения. Частные динамические характеристики аналого-цифровых преобразователей и цифровых измерительных приборов.

    курсовая работа [340,9 K], добавлен 03.01.2013

  • Комплексный электрический расчет усилителя, оценка его надежности и разработка конструктивного чертежа устройства. Вольтамперная характеристика диода КД-514А. Определение искажения в предоканечном каскаде. Расчет коэффициента линейных искажений.

    курсовая работа [923,2 K], добавлен 10.01.2015

  • Измерительные информационные системы (ИИС) являются симбиозом аппаратных средств и алгоритмов обработки измерительной информации. Рассмотрение различных первичных измерительных преобразователей (датчиков) в ИИС. Классификационные признаки датчиков.

    контрольная работа [440,1 K], добавлен 20.02.2011

  • Принципиальная схема активного полосового фильтра на транзисторе с общим эмиттером и пассивных RC-цепях. Определение параметров нагрузки, выбор транзисторов по допустимой мощности рассеяния на коллекторе и максимальной амплитуде коллекторного тока.

    курсовая работа [805,4 K], добавлен 30.12.2014

  • Основные виды датчиков перемещения, принцип их действия и особенности проектирования. Обзор первичных измерительных преобразователей и цепей. Выбор и обоснование направления проектирования, структурной схемы. Анализ метрологических характеристик.

    курсовая работа [1,2 M], добавлен 04.05.2017

  • Разработка структурной схемы электронного устройства. Синтез и расчет транзисторного усилителя. Синтез преобразователей уровня, схемы арифметических преобразователей. Схема компаратора, разработка цифровой схемы. Расчет тока нагрузки блока питания.

    реферат [1,4 M], добавлен 06.11.2013

  • Изучение конструкции, принципа действия и паспортных технических характеристик преобразователей частоты типа FR-Е 540. Методы работы на лабораторной установке на базе комплектного электропривода. Исследование систем электропривода переменного тока.

    лабораторная работа [225,4 K], добавлен 07.12.2014

  • Свойства индуктивных, емкостных, магнитострикционных, реостатных преобразователей и преобразователей Холла. Основные требования к преобразователю, принцип его действия. Расчет функции преобразования, чувствительности, основных параметров и погрешности.

    курсовая работа [1,2 M], добавлен 29.07.2013

  • Структурные схемы и принцип работы преобразователей постоянного напряжения. Расчет выпрямителей. Анализ включения транзисторов в преобразователях напряжения. Определение объема катушки, толщину изоляции тороидального трансформатора, его тепловой расчет.

    контрольная работа [1,1 M], добавлен 28.01.2015

  • Основные контролируемые параметры электронно-оптических преобразователей (ЭОП). Интегральная чувствительность (чувствительность с фильтром) фотокатода, коэффициент преобразования, предел разрешения, рабочее разрешение, электронно-оптическое увеличение.

    реферат [427,5 K], добавлен 26.11.2008

  • Изучение принципа работы аналого-цифровых преобразователей (АЦП и ADC) . Классическая схема аналого-цифрового преобразования: аналоговый сигнал, компараторы, выходной код, шифратор. Характеристика отсчётов аналогового сигнала и частей опорного напряжения.

    статья [344,1 K], добавлен 22.09.2010

  • Эквивалентная схема измерения температуры с использованием термопреобразователя сопротивления. Функциональная схема измерительного преобразователя. Расчет и выбор схемы источника опорного напряжения. Настройка схемы ИП в условиях комнатной температуры.

    курсовая работа [2,3 M], добавлен 29.08.2013

  • Основные этапы интеграции отдельных физико-конструктивных элементов преобразователей. Интегральные тензопреобразователи на основе гетероэпитаксиальных структур "кремний на сапфире". Параметры мостовых тензорезисторных преобразователей давления.

    дипломная работа [1,2 M], добавлен 29.04.2015

  • Проектирование устройства контроля функционального состояния на базе беспроводной передачи сигналов от первичных преобразователей, размещаемых на обследуемом пациенте, к системе автоматизированной обработки данных, его практическое использование.

    дипломная работа [2,6 M], добавлен 25.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.