Расчет характеристик сигналов и каналов связи

Расчет основных характеристик сигналов и каналов связи. Определение интервала дискретизации и разрядности кода, полной энергии сигнала, автокорреляционной функции, энергетического спектра, мощности и вероятности ошибки при воздействии "белого шума".

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 07.02.2013
Размер файла 339,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОМУ ПРОЕКТУ

Расчет характеристик сигналов и каналов связи

Реферат

Пояснительная записка содержит 27 листов печатного текста, 16 иллюстраций, 4 использованных источника.

Канал связи, практическая ширина спектра, интервал дискретизации, кодовый сигнал, энергетический спектр, модулированный сигнал, автокорреляционная функция.

В курсовой работе проведён расчёт основных характеристик трех сигналов; расчёт интервала дискретизации и разрядности кода, автокорреляционной функции (АКФ), энергетического спектра, мощности и вероятности ошибки при воздействии «белого шума». Приведён канал связи на рис. 1.

Содержание

Введение

1. Расчёт спектральных характеристик сигнала

2. Расчёт практической ширины спектра сигнала

2.1 Расчёт полной энергии сигнала

2.2 Определение практической ширины спектра сигнала

3. Определение интервала дискретизации и разрядности кода

3.1 Определение интервала дискретизации сигнала

3.2 Определение разрядности кода

4. Расчёт автокорреляционной функции АКФ кодового сигнала

5. Расчёт энергетического спектра кодового сигнала

6. Расчёт спектральных характеристик модулированного сигнала

6.1 Расчёт мощности модулированного сигнала

7. Расчёт вероятности ошибки при воздействии «белого шума»

Заключение

Список используемой литературы

Введение

На современном этапе развития перед железнодорожным транспортом стоят задачи по увеличению пропускной и провозной способности, грузовых и пассажирских перевозок, уменьшению времени оборотов вагонов и повышению производительности труда. Эти задачи решаются по двум основным направлениям: техническим перевооружением транспортных средств и совершенствованием системы управления перевозочным процессом.

Значительную роль в деле совершенствования системы управления эксплуатационной работой железнодорожного транспорта играет развитие всех видов связи, а также внедрение и поэтапное развитие комплексной автоматизированной системы управления железнодорожным транспортом (АСУЖТ). Комплекс технических средств АСУЖТ включает в себя вычислительные центры Министерства путей сообщения, управлений дорог и отделений, связанные в единое целое сетью передачи данных.

Совершенствование управления в условиях интенсификации производственных процессов ведет к росту общего объема информации, передаваемой по каналам связи между управляющими органами и управляемыми объектами.

Передача информации на железнодорожном транспорте ведется в условиях воздействия сильных и разнообразных помех. Поэтому системы связи должны обладать высокой помехоустойчивостью, что связано с безопасностью движения. К системам связи предъявляют также требования высокой эффективности при относительной простоте технической реализации и эксплуатации.

Проблема эффективности системы передачи информации состоит в том, чтобы передать наибольшее или заданное количество информации (сообщений) наиболее экономически выгодным образом (с точки зрения затрат энергии и полосы частот) в заданное время. Перечисленные проблемы тесно связанны между собой.

Рассмотрим некоторые определения, необходимые нам в теории.

Информация - совокупность сведений о каком - либо предмете, явлении.

Сообщение - та же информация, выраженная в знаковой форме. Любая система связи предназначена для передачи информации, которая должна иметь некоторою неопределенность, иначе передавать ее не имело смысла.

Сигнал - материальный переносчик сообщений. Между сообщением и сигналом должна быть жесткая функциональная связь.

Канал связи - набор технических средств для передачи сигналов. Разберем его состав в общем виде. На рисунке показан канал для передачи непрерывных сообщений.

Разберем назначение блоков приведенного канала связи.

П-1, П1 - преобразователи сообщения в сигнал и наоборот - сигнала в сообщение.

Непрерывные сообщения можно передавать дискретными сигналами. Операция преобразования непрерывного сообщения в дискретное называется дискретизацией. Дискретизация осуществляется не только по времени, но и по уровням. Дискретизация значений функции (уровня) носит название - квантования.

Кодер сообщения формирует первичный код, каждое сообщение из ансамбля записывается им в форме двоичного представления. Декодер сообщения осуществляет обратную задачу. Собственно, на этом этапе преобразований сигнал можно передавать до потребителя, но в током виде он будет не защищен от помех, и достоверность передачи будет низка. Поэтому далее идут преобразования, направленные на повышения помехоустойчивости канала.

Кодер канала по первичному коду формирует помехоустойчивый код. Здесь в код закладывается определенная избыточность, что позволяет в декодере канала обнаружить, либо исправить ошибки, возникшие при передачи.

Модулятор определяет вид сигнала, передаваемого по линии связи. Демодулятор выделяет принимаемый код по модулированному сигналу.

Линия связи - это материальная среда для передачи сигналов (кабель, радио эфир). Именно здесь (в основном) к полезному сигналу добавляется непрогнозируемые помехи. Строя модулятор, демодулятор (модем), необходимо принять меры для борьбы с помехами.

Цифровой преобразователь (ЦАП) служит для восстановления сообщения.

Интерполятор позволяет по сигналу с ЦАП сформировать непрерывный сигнал.

Канал связи

Рис. 1

1. Расчёт спектральных характеристик сигнала

Под спектром непериодического сигнала понимают функцию частоты , которую получают на основе прямого преобразования Фурье вида:

(1.1)

Для обратного преобразования используют формулу вида(1.2)

(1.2)

Модуль спектральной функции

(1.3)

называют спектром сигнала или спектральной плотностью сигнала.

Аналитическая запись задаваемых сигналов во временной области имеет вид:

1. ,(1.4)

где В, мс.

Данный сигнал имеет вид, представленный на рис. 1.1, зависимость сведена в табл. 1.1.

2. ,(1.5)

где В, 1/с.

Данный сигнал имеет вид, представленный на рис. 1.2, зависимость сведена в табл. 1.2.

3. ,(1.6)

где В, 1/с, рад/c

Данный сигнал имеет вид, представленный на рис. 1.3, зависимость сведена в табл. 1.3.

Запишем спектральную плотность для каждого сигнала :

,(1.7)

,(1.8)

. (1.9)

Модули спектральной плотности сигналов находятся по формуле (1.3) .

Графики спектров сигналов , , представлены на рис 1.4,

рис 1.5, рис 1.6 соответственно.

Фазa спектральной плотности находятся следующим образом:

, (1.10)

График фазы спектральной плотности сигнала представлен на рис 1.7 .

Таблица 1.1 Зависимость

t·10-5, c

-15

-10

-6.36

0

6.36

10

15

U1(t), В

0

0

0.12

0.12

0.12

0

0

Рис.1.1 График сигнала 1

Таблица 1.2 Зависимость

t·10-4, c

-2.8

-2.1

-7

0

7

2.1

2.8

U2(t), В

0.0013

0.0037

0.03

0.09

0.03

0.037

0.0013

Рис. 1.2

Таблица 1.3 Зависимость

t,c

0

0.001

0.002

0.003

0.005

0.007

0.01

U3(t), В

0.25

0.04

-0.08

-0.04

0.03

0.001

0

Рис.1.3 График сигнала 3

Рис. 1.4 График спектра сигнала 1

Рис 1.5 График спектра сигнала 2

Рис 1.6 График спектра сигнала 3

2. Расчёт практической ширины спектра сигнала

2.1 Расчёт полной энергии сигнала

сигнал канал связь дискретизация

Полная энергия сигнала рассчитывается по формуле:

(2.1)

Найдём полную энергию для каждого из сигналов , , , используя формулы (2.1) и (1.3, 1.4, 1.5), расчет производим в среде MathCad:

В/c.(2.2)

В/c.(2.3)

В/c (2.4)

2.2 Определение практической ширины спектра сигнала

Ограничение практической ширины спектра сигнала по верхнему значению частоты , по заданному энергетическому критерию осуществляется на основе неравенства:

,(2.5)

где - энергия сигнала с ограниченным вверху спектром.

Значение определяется на основе известной плотности:

, (2.6)

где - искомое значение верхней граничной частоты сигнала.

Значение определяется путём подбора при расчётах на ЭВМ пользуясь формулами (2.6) и (2.5); и с учетом того, что (согласно заданию).

Найдём и для каждого из сигналов , , , учитывая (1.7), (1.8), (1.9), расчет производим в среде MathCad:

В/c. (2.7)

рад/с.

В/c.(2.8)

рад/с.

В/c.(2.9)

рад/с.

Первый сигнал имеет меньшую граничную частоту , следовательно, его и выбираем для дальнейшего анализа и расчёта.

Табличные зависимости энергии сигналов от частоты приведены соответственно в табл. 2.1, табл. 2.2, табл. 2.3.

Графики зависимости энергии сигналов от частоты приведены соответственно на рис 2.1, рис 2.2, рис 2.3.

Таблица 2.1 Зависимость

щ·103, c-1

0

1

2

3

4

5

6

W(щ) ·10-7, Дж

0

0.774

1.546

2.314

3.075

3.828

4.57

Таблица 2.2 Зависимость

щ·103 c-1

0

1

2

3

4

5

6

W(щ) ·10-7 Дж

0

0.457

0.906

1.34

1.752

2.137

2.494

График зависимости энергии сигнала 1 от частоты

Рис 2.1

График зависимости энергии сигнала 2 от частоты

Рис 2.2

Таблица 2.3 Зависимость

щ·103, c-1

0

1

2

3

4

6

7

W(щ) ·10-5, Дж

0

1.291

3.476

4.087

4.31

4.503

4.555

График зависимости энергии сигнала 3 от частоты

Рис 2.3

3. Расчёт интервала дискретизации и разрядности кода

3.1 Определение интервала дискретизации сигнала

Интервал дискретизации заданного сигнала по времени определяется на основе теоремы Котельникова по неравенству:

(3.1)

где - верхнее значение частоты спектра сигнала, определяемое в соответствии с разделом 2.2.

Гц.

с.

Зависимость данного сигнала от времени приведена в табл. 3.1.

График дискретизированного во времени сигнала рис 3.1.

Таблица 3.1 Зависимость сигнала от времени

t·10-4 c

U(t), В

3.2 Определение разрядности кода

Разрядность кодов определяется исходя из динамического диапазона квантуемых по уровню импульсных отсчётов. При этом в качестве верхней границы динамического диапазона принимается напряжение самого большого по амплитуде отсчёта. Нижняя граница диапазона

,(3.2)

где (согласно заданию).

В.

Для самого малого по амплитуде импульсного отсчёта задаётся соотношение мгновенной мощности сигнала и мощности шума квантования:

,(3.3)

где - мощность шумов квантования при равномерной шкале квантования. Получаем:

.(3.4)

Вычисляем при (согласно заданию):

Вт.

Известно, что:

,(3.5)

где - шаг шкалы квантования.

Из (3.5) получаем:

.(3.6)

Вычисляем:

.

Также известно, что:

,(3.7)

где - число уровней квантования.

Подставляя в (3.3) формулы (3.5), (3.7) и выражая получим:

.(3.8)

Вычисляем :

.

Известно, что при использовании двоичного кодирования число кодовых комбинаций, равное числу уравнений квантования, определяется выражением:

,(3.9)

где - разрядность кодовых комбинаций.

Следовательно из (3.9):

.(3.10)

.

Соответственно .

Длительность элементарного кодового импульса фu определяется исходя из интервала дискретизации Дф и разрядности кода m по выражению:

. (3.11)

с.

4. Расчёт автокорреляционной функции кодового сигнала

Функция автокорреляции показывает статистическую связь между временными сечениями сигнала.

На выходе АЦП создается случайная бинарная последовательность (рис.1).

В общем случае функция автокорреляции (АКФ) четная по параметру и определяется так:

, (4.1)

где T- длительность сигнала,

- дисперсия сигнала,

- временное расстояние между двумя сечениями сигнала.

В нашем случае вычисление функции автокорреляции выполним в среде MathCad, для этого возьмем первые шесть выборки кодовой последовательности, значения которых соответственно равны: 65, 36, 3, 18,21,14; преобразуем их в двоичный код и склеим. Т.о. получим код сигнала. В среде MathCad создадим два вектора Vx и Vy в виде матрицы с 28 строками и одним столбцом и заполним их найденным кодом сигнала. Затем, используя функцию corr(Vx, Vy) находим корреляцию (при равных векторах, она будет равна 1), после этого, сдвигая вектор Vy на одну строку, получаем новое значение корреляции. Так повторяем 28 раза и получаем табличную функцию автокорреляции (табл. 4.1) и ее график (рис. 4.2).

Таблица 4.1 Зависимость K()

·10-4, с

K()

0

1

0.4617

-0.225

0.9234

0.125

1.385

-0.225

1.847

-0.05

2.309

-0.05

2.77

-0.225

Рис. 4.2 График автокорреляционной функции

5. Расчет энергетического спектра кодового сигнала

Энергетический спектр рассчитывается по (5.1):

.(5.1)

Зависимость представлена в табл. 5.1.

График энергетического спектра кодового сигнала представлен на рис.5.1.

Таблица 5.1 Зависимость

щ·103, c-1

0

1

2

3

4

5

G()·10-5, В/Гц

-2.656

-2.586

-2.378

-2.044

-1.6

-1.06

Рис 5.1 График энергетического спектра кодового сигнала

6. Расчёт спектральных характеристик модулированного сигнала

Для передачи полезной информации в технике связи обычно используются модулированные сигналы. Они позволяют решить задачи уплотнения линий связи, электромагнитной совместимости, помехоустойчивости систем. Процесс модуляции является нелинейной операцией и приводит к преобразованию спектра сигнала.

Одним из видов аналоговой модуляции является частотная модуляция (ЧМ)

Аналитически это выглядит так:

, (6.1)

(6.2)

(6.3)

где 1- частота первой гармоники полезного сигнала,

- фаза n-ой гармоники,

- амплитуда несущей, -амплитуда n-ой гармоники

, =, B, рад/с, рад/с,

где с

рад/c

рад/c

где Гц, Гц

На рис. 6.1 представлен график модулированного сигнала.

Графическое представление спектра модулированного сигнала представлено на рис. 6.2

Рис 6.1 График модулированного сигнала

7. Расчёт мощности модулированного сигнала

При модуляции сигнала вводятся следующие энергетические характеристики.

Мощность несущего колебания:

,(7.1)

Вт.

Средняя мощность за период полезного сигнала при амплитудной модуляции:

,(7.2)

Вт.

Мощность колебаний боковых составляющих:

,(7.3)

Вт.

8. Расчёт вероятности ошибки при воздействии «белого шума»

Вероятность ошибки зависит от мощности (или энергии) сигнала и мощности помех (в данном случае белого шума).

В общем случае:

,(8.1)

где - функция Лапласа;

- односторонняя плотность мощности «белого шума»;

- энергия разностного сигнала;

Для сигнала с фазовой модуляцией справедливы следующие выражения:

,(8.2)

,(8.3)

Тогда:

Дж.

Вт/Гц.

Заключение

В данной курсовом проекте были выполнены расчёты спектральных характеристик, ширины спектра, интервалы дискретизации и разрядности кода, расчёт автокорреляционной функции кодового сигнала и его энергетического спектра, спектральных характеристик модулированного сигнала, мощности модулированного сигнала, вероятности ошибки при воздействии «белого шума».

Расчёт практической ширины спектра сигнала показал, что почти вся энергия заключена в довольно узком диапазоне частот, и не нужно использовать весь спектр. Вероятность ошибки при воздействии «белого шума» равна 0, что говорит о том, что фазовая модуляция, используемая в курсовом проекте имеет хорошую точность.

Библиографический список

Расчёт характеристических сигналов и каналов связи: Методические указания к курсовой работе по дисциплине «Теоретические основы транспортной связи»/ Н.Н.Баженов, А.С.Картавцев. - Омский ин - т инж. ж.-д. транспорта, 1990.

Каллер М.Я., Фомин А.Я. Теоретические основы транспортной связи: Учебник для ВУЗов ж.-д. транспорта - М.: Транспорт,1989.

Гоноровский И.С. Радиотехнические цепи и сигналы: Учебник для ВУЗов. - М.: Радио и связь, 1986.

4. Теория передачи сигналов: Учебник для ВУЗов/ А.Г. Зюко, и др. - 2-е изд., перераб. и доп. - М.: Радио и связь, 1986

Размещено на Allbest.ru

...

Подобные документы

  • Расчет спектральных характеристик, практической ширины спектра и полной энергии сигнала. Определение интервала дискретизации и разрядности кода. Расчет автокорреляционной функции кодового сигнала. Расчет вероятности ошибки при воздействии "белого шума".

    курсовая работа [1,4 M], добавлен 07.02.2013

  • Расчет практической ширины спектра сигнала и полной энергии сигнала. Согласование источника информации с каналом связи. Расчет интервала дискретизации и разрядности кода, вероятности ошибки при воздействии "белого шума". Определение разрядности кода.

    курсовая работа [1,4 M], добавлен 07.02.2013

  • Расчет спектральных характеристик сигнала. Определение практической ширины спектра сигнала. Расчет интервала дискретизации сигнала и разрядности кода. Определение автокорреляционной функции сигнала. Расчет вероятности ошибки при воздействии белого шума.

    курсовая работа [356,9 K], добавлен 07.02.2013

  • Расчет характеристик треугольного, прямоугольного и колоколообразного сигнала. Определение интервала дискретизации и разрядности кода. Расчет характеристик кодового и модулированного сигнала. Расчёт вероятности ошибки при воздействии белого шума.

    курсовая работа [1,4 M], добавлен 07.02.2013

  • Расчет спектра сигнала и его полной энергии. Определение практической ширины спектра, интервала дискретизации и разрядности кода. Расчет автокорреляционной функции кодового сигнала. Общие сведения о модуляции. Расчет спектральных характеристик и ошибок.

    курсовая работа [428,2 K], добавлен 07.02.2013

  • Определение практической ширины спектра сигнала. Согласование источника информации с каналом связи. Определение интервала дискретизации сигнала. Расчет вероятности ошибки при воздействии "белого шума". Расчет энергетического спектра кодового сигнала.

    курсовая работа [991,1 K], добавлен 07.02.2013

  • Структура канала связи. Расчет спектральных характеристик модулированного сигнала, ширины спектра, интервала дискретизации сигнала и разрядности кода, функции автокорреляции, энергетического спектра, вероятности ошибки в канале с аддитивным белым шумом.

    курсовая работа [1,7 M], добавлен 07.02.2013

  • Временные функции сигналов, расчёт спектра. Определение интервала дискретизации и разрядности кода. Расчет мощности модулированного сигнала. Согласование источника информации с каналом связи. Расчет вероятности ошибки в канале с аддитивным белым шумом.

    курсовая работа [1020,8 K], добавлен 07.02.2013

  • Расчёт ширины спектра, интервалов дискретизации и разрядности кода. Автокорреляционная функция кодового сигнала и его энергетического спектра. Спектральные характеристики, мощность модулированного сигнала. Вероятность ошибки при воздействии "белого шума".

    курсовая работа [1,0 M], добавлен 07.02.2013

  • Расчет спектра и энергетических характеристик колоколообразного, экспоненциального, осциллирующего сигналов. Вычисление интервала дискретизации и разрядности кода. Согласование источника информации с каналом связи. Определение вероятности ошибки.

    курсовая работа [1,1 M], добавлен 07.02.2013

  • Расчет спектра и энергетических характеристик сигнала. Определение интервалов дискретизации и квантования сигнала. Расчет разрядности кода. Исследование характеристик кодового и модулированного сигнала. Расчет вероятности ошибки в канале с помехами.

    курсовая работа [751,9 K], добавлен 07.02.2013

  • Параметры модулированных и немодулированных сигналов и каналов связи; расчет спектральных, энергетических и информационных характеристик, интервала дискретизации и разрядности кода. Принципы преобразования сигналов в цифровую форму, требования к АЦП.

    курсовая работа [611,1 K], добавлен 04.12.2011

  • Временные функции сигналов, частотные характеристики. Энергия, граничные частоты спектров. Особенности определения разрядности кода. Построение функции автокорреляции. Расчет модулированного сигнала. Расчет вероятности ошибки оптимального демодулятора.

    курсовая работа [1,9 M], добавлен 07.02.2013

  • Анализ основных положений теории сигналов, оптимального приема и модуляции сигналов. Обзор способов повышения верности передаваемой информации. Расчёт интервала дискретизации сигнала и разрядности кода. Согласование источника информации с каналом связи.

    курсовая работа [217,1 K], добавлен 07.02.2013

  • Временные функции, частотные характеристики и спектральное представление сигнала. Граничные частоты спектров сигналов. Определение разрядности кода. Интервал дискретизации сигнала. Определение кодовой последовательности. Построение функции автокорреляции.

    курсовая работа [1,6 M], добавлен 09.02.2013

  • Временные функции сигналов и их частотные характеристики. Энергия и граничные частоты спектров. Расчет технических характеристик АЦП. Дискретизация сигнала и определение разрядности кода. Построение функции автокорреляции. Расчет модулированного сигнала.

    курсовая работа [2,2 M], добавлен 10.03.2013

  • Временные функции сигналов, частотные характеристики. Граничные частоты спектров сигналов, определение кодовой последовательности. Характеристики модулированного сигнала. Расчет информационных характеристик канала, вероятности ошибки демодулятора.

    курсовая работа [594,5 K], добавлен 28.01.2013

  • Сведения о характеристиках и параметрах сигналов и каналов связи, методы их расчета. Структура цифрового канала связи. Анализ технологии пакетной передачи данных по радиоканалу GPRS в качестве примера цифровой системы связи. Определение разрядности кода.

    курсовая работа [2,2 M], добавлен 07.02.2013

  • Расчет спектра, полной и неполной энергии сигналов. Определение параметров АЦП и разработка математической модели цифрового сигнала. Согласование источника информации с каналом связи. Определение вероятности ошибки в канале с аддитивным белым шумом.

    курсовая работа [1,2 M], добавлен 07.02.2013

  • Определение интервалов дискретизации и квантования сигнала. Исследование характеристик кодового и модулированного сигнала. Согласование источника информации с каналом связи. Расчёт разрядности кода, вероятности ошибки в канале с аддитивным белым шумом.

    курсовая работа [917,1 K], добавлен 07.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.