Схема преобразователя аналогового сигнала
Аналого-цифровой преобразователь для преобразования аналогового сигнала в двоичный параллельный цифровой код. Генератор тактовой частоты. Структурная схема преобразователя аналогового сигнала в последовательный код. Выбор основной элементной базы.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 13.02.2013 |
Размер файла | 755,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Общие сведения
Операционный усилитель - усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.
В настоящее время ОУ получили широкое применение как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.
Аналого-цифровой преобразователь - устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал). Обратное преобразование осуществляется при помощи ЦАП (цифро-аналогового преобразователя, DAC).
Как правило, АЦП - электронное устройство, преобразующее напряжение в двоичный цифровой код. Тем не менее, некоторые неэлектронные устройства с цифровым выходом, следует также относить к АЦП, например, некоторые типы преобразователей угол-код. Простейшим одноразрядным двоичным АЦП является компаратор.
Генератор тактовой частоты (генератор тактовых импульсов) генерирует электрические импульсы заданной частоты (обычно прямоугольной формы) для синхронизации различных процессов в цифровых устройствах - ЭВМ, электронных часах и таймерах, микропроцессорной и другой цифровой технике. Тактовые импульсы часто используются как эталонная частота - считая их количество, можно, например, измерять временные интервалы.
В микропроцессорной технике один тактовый импульс, как правило, соответствует одной атомарной операции. Обработка одной инструкции может производиться за один или несколько тактов работы микропроцессора, в зависимости от архитектуры и типа инструкции. Частота тактовых импульсов определяет скорость вычислений.
2. Структурная схема
Структурная схема преобразователя аналогового сигнала в последовательный код содержит следующие элементы:
ОУ - схема включения согласующего операционного усилителя
АЦП - аналого-цифровой преобразователь (преобразователь аналогового сигнала в
параллельный восьмиразрядный код)
ПК - преобразователь параллельного восьмиразрядного кода в последовательный
ГТИ - задающий генератор тактовых импульсов
УУ - устройство управления преобразователем
Рис. 1. Структурная схема преобразователя
где
АС - аналоговый сигнал (напряжение Uвх)
САС - согласованный аналоговый сигнал
ПВК - параллельный восьмиразрядный код
ЦК - цифровой код (последовательный код)
ИС - импульсы синхронизации (тактовые импульсы)
ИУ - импульсы управления
3. Принципиальная схема
На основе структурной схемы была разработана принципиальная схема.
4. Выбор основной элементной базы
Генератор тактовых импульсов строится на микросхеме К155ЛА3 и кварцевом резонаторе ZQ1. Счетчик импульсов представляет из себя микросхему К555ИЕ9.
Устройство управления строится на логических элементах - микросхемы К555ЛН1, К555ЛИ6 и К555ЛА2.
В качестве АЦП возьмем микросхему К1108ПВ1А.
Преобразователь параллельного кода в последовательный построим на микросхеме К555ИР9.
Схема сопряжения содержит операционный усилитель типа К574УД1.
В качестве линии связи используется 2-х проводная витая пара типа МГТФ.
Перечень элементов представлен в приложении.
5. Аналого-цифровой преобразователь (АЦП)
Мы используем микросхему быстродействующего функционально законченного АЦП последовательного приближения К1108ПВ1А предназначенную для преобразования аналогового сигнала в двоичный параллельный цифровой код.
Микросхема рассчитана на преобразование однополярного входного напряжения в диапазоне от 0 до 3 В, при максимальной частоте преобразования 1,33 МГц для восьмиразрядного режима.
Для работы АЦП К1108ПВ1А требуется несколько внешних керамических конденсаторов и источники напряжения Ucc1 = 5 В ±5% и Ucc2 = -5,2 В±5%. Мощность потребляемая от источников питания, не превышает 0,85 Вт. Конденсатор С9 необходим для частотной коррекции ОУ и фильтрации помех.
Для работы в восьмиразрядном режиме вход SE10/8 соединяется с шиной отрицательного источника питания Ucc2.
Цикл преобразования в режиме восьмиразрядного АЦП состоит из 10 тактов (восемь рабочих в процессе кодирования и по одному служебному в начале и конце цикла преобразования).
Цикл начинается с первым отрицательным фронтом тактового импульса после поступления команды ST. Во время первого служебного такта осуществляется сброс регистров и установление напряжения на входе селектора опорных уровней.
В течение следующих восьми тактов происходит кодирование аналогового сигнала при условии, что он зафиксирован на входе АЦП.
На десятом такте код из регистра хранения переписывается в выходной регистр, после чего формируется сигнал готовности данных. Появление на выходе RAD сигнала логический 0 свидетельствует о смене информации в выходном регистре и ее хранении весь следующий цикл преобразования.
Для считывания информации необходимо подать на вход ERD (разрешение считывания) сигнал логический 0.
Запуск АЦП считается устойчивым, если сигнал ST подается в течение одного периода тактовой частоты с момента начала очередного цикла (t = 1 мкс). К ТТЛ ЦИС микросхема К1108ПВ1А подключается без дополнительных устройств сопряжения.
Рис. 2. ИС К1108ПВ1А
Назначение выводов ИС К1108ПВ1А
1. Цифровой выход CP
2. Цифровой выход
3. Цифровой выход
4. Цифровой выход
5. Цифровой выход
6. Цифровой выход
7. Цифровой выход
8. Цифровой выход
9. Цифровой выход
10. Цифровой выход MP
11. Готовность данных RAD
12. Напряжение питания Ucc2
13. Укороченный цикл SE10/8
14. Общий (цифровая земля)
15. Напряжение питания Ucc2
16. Коррекция СУ EC1
17. Аналоговый вход UIRN
18. Внешний ИОН UREF
19. Коррекция ОУ ИОН FC2
20. Общий (аналоговая земля)
21. Напряжение питания Ucc1
22. Запуск ST
23. Тактовый вход CLK
24. Разрешение считывания ERD
Микросхема К1108ПВ1А имеет следующие характеристики
(Ucc1 = 5,25 В; Ucc1 = -5,25 В; U1вых і 2,4 В; U0вых Ј 0,4 В; Iпотр сс1 Ј 50 мА;
Iпотр сс2 Ј 130 мА; I0вх Ј 2,5 мА; I1вх Ј 0,4 мА; I0вых і 3,2 мА; I1вых і 0,1 мА; tздр Ј 60 нс)
Потребляемая мощность микросхемы К1108ПВ1А равна: PпотрЈ850 мВт
6. Преобразователь параллельного кода в последовательный код
Для этой цели используется восьмиразрядный сдвиговый регистр К555ИР9 (DD6). Этот регистр позволяет записывать параллельный восьмиразрядный код. Преобразование параллельного кода в последовательный происходит за восемь тактов подаваемых на синхронизирующий вход С. На первом такте подаваемом на вход С параллельный восьмиразрядный код записывается как Q0ёQ7(Qi - состояние выхода i-го разряда), для этого подаем низкий потенциал на вход ®WR переключая тем самым регистр в режим записи. На первом такте значение Q7 передается на выход. На втором такте подаваемом на С параллельный код Q0ёQ7 сдвигается на один разряд Q0®Q1, Q1®Q2, …, Q6®Q7. Последовательный вход D® заземляем, поэтому в первый разряд записывается нуль (Q0 = 0). На выходе появляется следующий импульс. За восемь тактов весь код выходит из регистра последовательно. Вывод DE не используем и тоже заземляем.
Рис. 3. ИС К555ИР9
Назначение выводов ИС К555ИР9
1. Запись-чтение ®WR
2. Тактовый вход C
3. Вход D4
4. Вход D5
5. Вход D6
6. Вход D7
7. Инверсный выход Q7
8. Общий GND
9. Прямой выход Q7
10. Последовательный вход D®
11. Вход D0
12. Вход D1
13. Вход D2
14. Вход D3
15. Задержка такта DE
16. Питание Ucc
Микросхема К555ИР9 имеет следующие характеристики
(Ucc = 5,25 В; U1вых і 0,5 В; U0вых і 2,4 В; Iпотр Ј 20 мА; I0вх Ј 0,4 мА; I1вх Ј 0,02 мА;
I0вых і 8 мА; I1вых Ј -2,6 мА; tздр Ј 65 нс)
Потребляемая мощность микросхемы К555ИР9 равна: Pпотр = 105 мВт.
7. Схема включения согласующего операционного усилителя
Мы используем схему подключения согласующего операционного усилителя для преобразования двухполярного входного напряжения. В ней используется инвертирующий режим усиления (по отношению к Uвх) и диодная схем защиты АЦП при перегрузках. Напряжение на входе АЦП связано с входным сигналом следующим соотношением
UIRN = - KЧUвх + (1 + K) ЧUREF1
где K = R4/(R5 + R6) - коэффициент передачи усилителя
UREF1 - опорное напряжение на не инвертирующем входе ОУ (задается делителем R1-R3)
В нашем случае для диапазона преобразования Uвх = ±2,5В выбираются К = 0,58 и опорный уровень UREF1 = 0,905 В (при UREF = 2,5 В). Настройка коэффициента передачи осуществляется сопротивлением резистора R5, после чего резистором R2 устанавливается нуль на середину передаточной характеристики АЦП.
При Uвх =2,5В на АЦП появляется выходной код 00..00, а при Uвх=-2,5В - код 11..11.
Таким образом, на выходе преобразователя получаем обратный смещенный двоичный код.
Схема защиты входа АЦП от перегрузок работает следующим образом. Диоды VD1 и VD2, включенные параллельно резистору обратной связи R4, образуют двухсторонний ограничитель. Диод VD4 и стабилитрон VD3, смещенные постоянным током от источников 15 и -15В, задают уровни ограничения в отрицательной и положительной областях (относительно UREF1).
Диод VD5 обеспечивает защиту входа АЦП в случае отключения источников питания ОУ или выхода его из строя.
Данная схема включения согласующего ОУ универсальна и позволяет использовать АЦП К1108ПВ1А в режиме максимального быстродействия. При работе БИС АЦП с быстродействующим ОУ типа К574УД1, тщательном монтаже и оптимальной схеме коррекции ОУ время установления процессов в согласующей схеме на уровне 0,1% не превышает 1 мкс.
Рис. 4. Схема включения согласующего ОУ
В данной схеме используются следующие элементы:
VD1, VD2, VD4, VD5 - диоды типа КД520А
VD3 - стабилитрон типа КС133А
А - операционный усилитель типа К574УД1
Операционный усилитель типа К574УД1 имеет следующие характеристики Ucc = ±15 В; Uвых і 10 мВ; Iвх Ј 0,5 нА; Iпотр Ј 10 мА.
Потребляемая мощность составляет Pпотр = 150 мВт
8. Схема управления АЦП и преобразователя кода
Схема управления (устройство управления) состоит из трех частей:
1. Генератор тактовых импульсов на кварцевом резонаторе
2. Двоично-десятичный счетчик
3. Схема управления на логических элементах «НЕ», «И» и «И-НЕ»
Для схемы управления мы используем следующие микросхемы: К555ИЕ9, К555ЛИ6, К555ЛН1, К555ЛА2 и К155ЛА3.
С генератора импульсов идут такты стабильной частоты. Они подаются на вход синхронизации двоично-десятичного счетчика. Счетчик производит счет от нуля до девяти. Полученный с выхода счетчика четырехразрядный код подается на логические элементы. Первый импульс подается на вход запуска АЦП приводя его в состояние готовности. Далее восемь тактов АЦП преобразует аналоговый сигнал со входа в параллельный восьмиразрядный код, а регистр в свою очередь преобразует параллельный восьмиразрядный код предыдущего цикла в последовательный код и выдает его в линию связи. На десятом такте с логических элементов идет сигнал на считывание кода с выхода АЦП и одновременно на регистр, для считывания следующего параллельного восьмиразрядного кода.
Все микросхемы синхронизированы одним тактовым генератором.
9. Генератор тактовых импульсов
В качестве генератора тактовых импульсов используем кварцевый автогенератор. Генератор строим на трех элементах «И-НЕ». Кварцевый генератор обеспечивает высокостабильный сигнал. Нестабильность выходного сигнала не превышает ±(5ё10) Ч10-6 в интервале температур 10ё40 0С. АЦП в восьмиразрядном режиме может работать на частоте до 1,3 МГц. Подберем такие емкости и резисторы, чтобы обеспечить нужную частоту. В нашем случае частота будет равна f = 1 МГц.
Рис. 5. Генератор тактовых импульсов
Так как на вход CLK АЦП нужно подавать инвертированный сигнал то он подключается к первому выходу генератора, а все остальные - ко второму выходу.
В схеме используются логические элементы «И-НЕ» микросхемы К155ЛА3, которые имеют следующие характеристики:
Назначение выводов ИС К155ЛА3
1. Вход данных
2. Вход данных
3. Выход данных
4. Вход данных
5. Вход данных
6. Выход данных
7. Общий GND
8. Выход данных
9. Вход данных
10. Вход данных
11. Выход данных
12. Вход данных
13. Вход данных
14. Питание Ucc
Рис. 6. ИС К155ЛА3
(Ucc = 5,25 В; U1вых і 2,4 В; U0вых Ј 0,4 В; Iпотр Ј 8,5 мА; I0вх Ј 0,04 мА; I1вх Ј 0,25 мА;
I0вых і 8 мА; I1вых Ј -0,4 мА; tздр Ј 19 нс)
Потребляемая мощность для одного логического элемента «И-НЕ» равна: Pпотр = 44,625 мВт
Суммарная потребляемая мощность микросхемы К155ЛА3 равна:
Pпотр сум = 178,5 мВт
10. Счетчик импульсов
Используем микросхему К555ИЕ9 (DD7) четырехразрядный двоично-десятичный счетчик с асинхронным сбросом, дешифрующим счетным выходом, с возможностью асинхронной установки в произвольное состояние от нуля до девяти.
Данный счетчик является составной частью системы управления АЦП и преобразователя параллельного кода в последовательный. Его задача состоит в счете от 0 до 9, преобразование последовательности тактовых импульсов в параллельный четырехразрядный код, для последующего преобразования его ТТЛ логикой в сигналы управления.
Тактовые импульсы подаются с генератора на вход С. Он работает по переднему фронту входного импульса (0®1). Так как счетчик работает постоянно, то нас не интересует какое значение установится при его запуске, т.е. предварительный сброс счетчика в ноль не требуется, поэтому на вход R подадим потенциал высокого уровня.
Предварительная запись значения в счетчик по входам D1, D2, D3, D4 нас не интересует поэтому необходимо эти выводы микросхемы заземлить. Так как нет предварительной записи, то не требуется и вход разрешающий предварительную запись V2. На этот вывод подадим потенциал высокого уровня.
Вывод P2 выдает высокий уровень напряжения через каждые десять тактов, когда значение в счетчике равно девяти (Q1 = Q4 = 1; Q2 = Q3 = 0). В нашей схеме мы его не используем.
Вывод P1 используется для разрешения переноса импульса в следующий каскад (если соединяются несколько счетчиков последовательно). У нас только один счетчик поэтому на вывод P1 должно постоянно подаваться напряжение высокого уровня. На вход разрешения счета V1 так же должно подаваться напряжение высокого уровня.
Выводы P1, V1, V2, R - подаем высокий уровень напряжения
Выводы D1, D2, D3, D4 - заземляем
Назначение выводов ИС К555ИЕ9
1. Вход «установка L» R
2. Вход синхронизации С
3. Вход информационный D1
4. Вход информационный D2
5. Вход информационный D3
6. Вход информационный D4
7. Вход разрешения счета V1
8. Общий GND
9. Вход разрешения предварительной записи V2
10. Вход разрешения переноса P1
11. Выход четвертого разряда Q4
12. Выход третьего разряда Q3
13. Выход второго разряда Q2
14. Выход первого разряда Q1
15. Выход переноса
16. Питание Ucc
Рис. 7. ИС К555ИЕ9
Микросхема К555ИЕ9 имеет следующие характеристики
(Ucc = 5,25 В; U1вых і 2,7 В; U0вых Ј 0,5 В; Iпотр Ј 31 мА; I0вх і -0,4 мА; I1вх Ј 0,02 мА;
I0вых і 8 мА; I1вых Ј -0,4 мА; tздр Ј 39 нс)
Потребляемая мощность микросхемы К555ИЕ9 равна: Pпотр = 162,75 мВт.
11. Устройство управления на логических элементах
Четырехразрядный код с двоично-десятичного счетчика подается на логические элементы. Если код равен нулю, то срабатывает первый элемент «И» (DD3.1) и импульс подается на АЦП, на вход запуска ST. Так как с элемента «И» (DD3.1) импульс идет не инвертированный, то перед ST необходимо поставить инвертор - логический элемент «НЕ» (DD2.5).
Если на выходе счетчика появляется код равный девяти, то срабатывает второй элемент «И» (DD3.2). Подаем импульс с выхода «И» (DD3.2) сразу на пять входов элемента «И-НЕ» (DD4). Это совпадает с выходом на выводе RAD АЦП логического нуля. Инвертируем этот импульс элементом «НЕ» (DD2.6) и подаем на три оставшихся входа элемента «И-НЕ» (DD4). Инвертированный импульс подается сразу на два вывода, на вывод ERD считывания данных с АЦП и вывод записи ®WR регистра.
Рис. 8. Устройство управления на логических элементах
Устройство управления на логических элементах содержит следующие микросхемы: К555ЛН1, К555ЛИ6, К555ЛА2
Рис. 9. ИС К555ЛН1
Назначение выводов ИС К555ЛН1
1. Вход данных
2. Выход данных
3. Вход данных
4. Выход данных
5. Вход данных
6. Выход данных
7. Общий GND
8. Выход данных
9. Вход данных
10. Выход данных
11. Вход данных
12. Выход данных
13. Вход данных
14. Питание Ucc
Микросхема К555ЛН1 (инвертор) имеет следующие характеристики
(Ucc = 5,25 В; U1вых і 2,7 В; U0вых Ј 0,5 В; Iпотр Ј 2,4 мА; I0вх і -0,36 мА; I1вх Ј 0,02 мА; I0вых і 8 мА; I1вых Ј -0,4 мА; tздр Ј 28 нс).
Потребляемая мощность для одного логического элемента «НЕ» равна:
Pпотр = 12,6 мВт
Суммарная потребляемая мощность микросхемы К555ЛН1 равна:
Pпотр сум = 75,6 мВт
Рис. 10. ИС К555ЛИ6
Назначение выводов ИС К555ЛИ6
1. Вход данных
2. Вход данных
3. Выход данных
4. Вход данных
5. Вход данных
6. Не используется
7. Общий GND
8. Выход данных
9. Вход данных
10. Вход данных
11. Не используется
12. Вход данных
13. Вход данных
14. Питание Ucc
Микросхема К555ЛИ6 имеет следующие характеристики
(Ucc = 5,25 В; U1вых і 2,7 В; U0вых Ј 0,5 В; Iпотр Ј 2,4 мА; I0вх і -0,36 мА; I1вх Ј 0,02 мА; I0вых і 8 мА; I1вых Ј -0,4 мА; tздр Ј 24 нс).
Потребляемая мощность для одного логического элемента «И» равна:
Pпотр = 12,6 мВт
Суммарная потребляемая мощность микросхемы К555ЛИ6 равна:
Pпотр сум = 25,2 мВт
Назначение выводов ИС К555ЛА2
Рис. 11. ИС К555ЛА2
1. Вход данных
2. Вход данных
3. Вход данных
4. Вход данных
5. Вход данных
6. Вход данных
7. Общий GND
8. Выход данных
9. Не используется
10. Не используется
11. Вход данных
12. Вход данных
13. Не используется
14. Питание Ucc
Микросхема К555ЛА2 имеет следующие характеристики
(Ucc = 5,25 В; U1вых і 2,7 В; U0вых Ј 0,5 В; Iпотр Ј 0,5 мА; I0вх і -0,4 мА; I1вх Ј 0,02 мА; I0вых і 8 мА; I1вых Ј -0,4 мА; tздр Ј 28 нс).
Потребляемая мощность микросхемы К555ЛА2 равна:
Pпотр = 2,625 мВт
Общая потребляемая мощность устройства управления на логических элементах равна:
Pпотр рез= 103,425 мВт.
Заключение
В результате выполненной курсовой работы разработана схема высокоскоростного преобразователя аналогового сигнала в цифровой код. Были разработаны структурная и принципиальная схемы преобразователя, а так же системы управления преобразователя. Принципиальная схема содержит 7 микросхем, 1 операционный усилитель, 5 диодов, 10 резисторов, 9 конденсаторов, 1 кварцевый резонатор. Все элементы являются хорошо распространенными и доступными для использования.
Список литературы
цифровой преобразователь аналоговый сигнал
1. Федорков Б.Г., Телец В.А. Микросхемы ЦАП и АЦП: функционирование, параметры, применение.-М.; Энергоатомиздат, 2010.
2. Ерофеев Ю.Н. Импульсные устройства.-М.; Высшая школа, 2009.
3. Шило В.Л. Популярные цифровые микросхемы.-М.; Радио и связь, 2010
4. Мальцев П.П., Долидзе Н.С., Критенко М.И. Цифровые интегральные микросхемы: Справочник. - М.; Радио и связь, 2008.
5. Аванесян Г.Р., Левшин В.П. Интегральные микросхемы ТТЛ, ТТЛШ: Справочник.-М.; Машиностроение, 2008.
6. Гусев В.Г., Гусев Ю.М. Электроника.-М.; Высшая школа, 2010.
7. Интегральные микросхемы: Справочник / Б.В. Тарабрин, Л.Ф. Лунин, Ю.Н. Смирнов и др.; Под ред. Б.В. Тарабрина.-М. Радио и связь, 2009
8. Справочник по полупроводниковым диодам, транзисторам и интегральным схемам / Под ред. Н.Н. Горюнова.-М.; Энергия, 2010.
Размещено на Allbest.ru
...Подобные документы
Описание модели упрощения обработки поступающего сигнала. Структурная схема преобразователя аналоговой информации. Расчет принципиальной схемы устройства: блок интегрирования, генератор прямоугольных импульсов, источник напряжения и усилитель мощности.
курсовая работа [254,0 K], добавлен 22.12.2012Подготовка аналогового сигнала к цифровой обработке. Вычисление спектральной плотности аналогового сигнала. Специфика синтеза цифрового фильтра по заданному аналоговому фильтру-прототипу. Расчет и построение временных характеристик аналогового фильтра.
курсовая работа [3,0 M], добавлен 02.11.2011Параметры цифрового потока формата 4:2:2. Разработка принципиальной электрической схемы. Цифро-аналоговый преобразователь, фильтр нижних частот, усилитель аналогового сигнала, выходной каскад, кодер системы PAL. Разработка топологии печатной платы.
дипломная работа [615,9 K], добавлен 19.10.2015Векторное представление сигнала. Структурная схема универсального квадратурного модулятора. Процесс преобразования аналогового сигнала в цифровой. Наложение и спектры дискретных сигналов. Фильтр защиты от наложения спектров. Расчет частоты дискретизации.
курсовая работа [808,3 K], добавлен 19.04.2015Изучение принципа работы аналого-цифровых преобразователей (АЦП и ADC) . Классическая схема аналого-цифрового преобразования: аналоговый сигнал, компараторы, выходной код, шифратор. Характеристика отсчётов аналогового сигнала и частей опорного напряжения.
статья [344,1 K], добавлен 22.09.2010Проектирование системы аналого-цифрового преобразования быстроизменяющегося аналогового сигнала в параллельный восьмиразрядный код, разработка ее структурной и принципиальной схемы. Основные элементы системы и порядок их взаимодействия, принцип работы.
курсовая работа [88,1 K], добавлен 14.07.2009Общее понятие и классификация сигналов. Цифровая обработка сигналов и виды цифровых фильтров. Сравнение аналогового и цифрового фильтров. Передача сигнала по каналу связи. Процесс преобразования аналогового сигнала в цифровой для передачи по каналу.
контрольная работа [24,6 K], добавлен 19.04.2016Моделирование процесса дискретизации аналогового сигнала, а также модулированного по амплитуде, и восстановления аналогового сигнала из дискретного. Определение системной функции, комплексного коэффициента передачи, параметров цифрового фильтра.
курсовая работа [1,5 M], добавлен 07.01.2014Микропроцессорное вычислительное устройство для обработки информации и управления в составе радиотехнической системы. Формирование программы генерации "пилы". Преобразование цифрового сигнала в аналоговый с помощью цифро-аналогового преобразователя.
курсовая работа [31,0 K], добавлен 23.02.2013Особенности архитектуры и принцип работы конвейерных аналого-цифровых преобразователей. Использование цифровой корректировки для устранения избыточности. Схемы КМОП ключа, выборки-хранения, компаратора, умножающего цифро-аналогового преобразователя.
курсовая работа [2,4 M], добавлен 06.02.2013Процесс преобразования аналогового сигнала в цифровой. Шаг дискретизации, его взаимосвязь с формой восстановленного сигнала. Сущность теоремы Котельникова. Процесс компандирования, его стандарты. Системы передачи информации с импульсно-кодовой модуляцией.
презентация [190,4 K], добавлен 28.01.2015Расчет тактовой частоты, параметров электронной цепи. Определение ошибки преобразования. Выбор резисторов, триггера, счетчика, генераторов, формирователя импульсов, компаратора. Разработка полной принципиальной схемы аналого-цифрового преобразователя.
контрольная работа [405,1 K], добавлен 23.12.2014Аналоговые и релейные сигналы. Выбор цифро-аналогового преобразователя, элементной базы запоминающих устройств. Карта распределения адресного пространства. Расчет на потребляемую мощность, на нагрузочную способность, на задержку формирования сигнала.
курсовая работа [146,9 K], добавлен 23.06.2012Разработка адаптера аналого-цифрового преобразователя и активного фильтра низких частот. Дискретизация, квантование, кодирование как процессы преобразования сигналов для микропроцессорной секции. Алгоритм работы устройства и его электрическая схема.
реферат [847,2 K], добавлен 29.01.2011Система аналого-цифрового преобразования быстроизменяющегося аналогового сигнала в параллельный десятиразрядный код, преобразования параллельного цифрового кода в последовательный код. Устройство управления на логических элементах, счетчик импульсов.
курсовая работа [98,8 K], добавлен 29.07.2009Структурная схема цифровых систем передачи и оборудования ввода-вывода сигнала. Методы кодирования речи. Характеристика методов аналого-цифрового и цифро-аналогового преобразования. Способы передачи низкоскоростных цифровых сигналов по цифровым каналам.
презентация [692,5 K], добавлен 18.11.2013Расчет источника опорного напряжения для схемы аналого-цифрового преобразователя (АЦП). Выбор компаратора, составление счетчика. Принцип работы АЦП. Получение полосового фильтра. Граничная частота входных сигналов. Перевод сигнала в аналоговую форму.
курсовая работа [925,5 K], добавлен 05.11.2012Импульсно-кодовая модуляция - метод цифрового представления. Преобразование аналогового сигнала в цифровой, операции: дискретизация по времени, квантование полученной совокупности отсчетов, замена квантованных значений сигнала последовательностью чисел.
реферат [210,9 K], добавлен 09.11.2010Обзор цифровых синтезаторов сигнала: прямого аналогового и косвенного. Создание структурной схемы генератора. Регистр управления цифрового синтезатора частоты AD9833 и микроконтроллера AT90USB162. Аналоговая часть устройства и выбор его элементной базы.
курсовая работа [1,2 M], добавлен 04.05.2015Достоинства цифровой обработки сигнала. Выбор частоты дискретизации. Расчет импульсной характеристики. Определение коэффициента передачи. Описание работы преобразователя Гильберта. Выбор микросхем и описание их функций. Требования к источнику питания.
дипломная работа [1,3 M], добавлен 26.10.2011