Аппаратные компоненты ЛВС. Сетевые адаптеры. Повторители и концентраторы

Сетевые адаптеры: сущность, назначение и сфера применения. Кодирование и декодирование сигналов. Характерные черты адаптеров АТМ. Повторители и их виды: однопортовые и многопортовые. Логический сегмент, построенный с использованием концентраторов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 18.02.2013
Размер файла 48,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования Республики Беларусь

Учреждение образования

«Гродненский государственный университет имени Янки Купалы»

Физико-технический факультет

Кафедра радиофизики и электроники

РЕФЕРАТ

по курсу «Локальные вычислительные сети»

на тему:“Аппаратные компоненты ЛВС. Сетевые адаптеры. Повторители и концентраторы”

Выполнил студент заочного

отделения физико-технического

факультета 4 курса 1 группы

Научный руководитель:

Гродно 2012

CОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. Сетевые адаптеры

2. Повторители

3. Концентраторы

ЗАКЛЮЧЕНИЕ

ЛИТЕРАТУРА

Введение

Концентраторы вместе с сетевыми адаптерами, а также кабельной системой представляют тот минимум оборудования, с помощью которого можно создать локальную сеть. Такая сеть будет представлять собой общую разделяемую среду. Понятно, что сеть не может быть слишком большой, так как при большом количестве узлов общая среда передачи данных быстро становится узким местом, снижающим производительность сети. Поэтому концентраторы и сетевые адаптеры позволяют строить небольшие базовые фрагменты сетей, которые затем должны объединяться друг с другом с помощью мостов, коммутаторов и маршрутизаторов.

NIC - NetworkInterfacecard

Сетевая карта или сетевой адаптер - это плата расширения, вставляемая в разъем материнской платы (mainboard) компьютера. Также существуют сетевые адаптеры стандарта PCMCIA для ноутбуков (notebook), они вставляются в специальный разъем в корпусе ноутбука, или интегрированные на материнской плате компьютера, они подключаются по какой либо локальной шине. Появились Ethernet сетевые карты, подключаемые к USB (UniversalSerialBus) порту компьютера.

1. Сетевые адаптеры

Сетевые адаптеры предназначены для сопряжения сетевых устройств со средой передачи с соответствии с принятыми прасилами обмена информацией. Сетевым устройством может быть компьютер пользователя, сетевой сервер, рабочая станция и т.д. Набор выполняемых адаптером функций зависит от конкретного сетевого протокола. Ввиду того, что сетевой адаптер и в физическом, и в логическом смысле находится между устройством и сетевой средой, его функции можно разделить на функции сопряжения с сетевым устройством и функции обмена с сетью. Количественный и качественный состав функций сопряжения с сетевым устройством определяется его назначением и функциональной схемой. Если в качестве сетевого устройства выступает компьютер, то связь с сетевой средой можно реализовать двумя способами: через системную магистраль (шину) или через внешние интерфейсы (последовательные или параллельные порты). Наиболее распространенным является способ сопряжения через шину (в основном ISA или PCI). При этом адаптер буферизует данные, поступающие с системной магистрали, и вырабатывает внутренние управляющие сигналы.

Сетевые функции могут перераспределяться между адаптером и компьютером. Чем больше функций выполняет компьютер, тем проще функциональная схема адаптера. К основным сетевым функциям адаптера относятся:

Гальваническая развязка с коаксиальным кабелем или витой парой. Наиболее часто для этой цели применяют импульсные трансформаторы. В сети Ethernet (в связи с тем, что для определения конфликтной ситуации используется анализ постоянной составляющей) эта схема несколько усложнена. Иногда для развязки используют оптроны.

Кодирование и декодирование сигналов. Наиболее часто применяется самосинхронизирующийся манчестерский код.

Идентификация своего адреса в принимаемом пакете. Физический адрес адаптера может определяться установкой переключателей, храниться в специальном регистре или прошиваться в ППЗУ.

Преобразование параллельного кода в последовательный при передаче и обратное преобразование при приеме. В простейшем случае для этой цели используют сдвиговые регистры с параллельным входом и последовательным выходом. Эта функция может быть реализована и программными методами.

Промежуточное хранение данных и служебной информации в буфере. Использование буфера позволяет возложить функции контроля за сетью на адаптер. При наличии буфера компьютер может не отслеживать момент передачи данных.

Выявление конфликтных ситуаций и контроль состояния сети. В набольшей степени эта функция важна в сетях с топологией шина и со случайным методом доступа к среде передачи. Возможные конфликты адаптер должен разрешать самостоятельно.

Подсчет контрольной суммы. Наиболее распространенным способом определения контрольной суммы является вычисление при помощи сдвигового регистра через сумматор по модулю 2 с обратными связями от некоторых разрядов. Места включения обратных связей определяются выбранным полиномом.

Согласование скоростей пересылки данных компьютером в адаптер или из него со скоростью обмена в сети. При малой скорости обмена в сети компьютеру придется выжидать момент разрешенной передачи. При большой скорости он может не успевать отправлять свои данные. Адаптер при помощи буфера справляется с этой задачей.

Адаптеры Ethernet представляют собой плату, которая вставляется в слот системной платы компьютера. Чаще всего адаптеры Ethernet имеют для связи с сетью два внешних разъема: для коаксиального кабеля (разъем BNC) и для кабеля на витой паре. Наличие двух внешних разъемов позволяет работать по выбору в сети с "тонким" Ethernet или с витой парой. Для выбора типа кабеля применяются перемычки или переключатели, которые устанавливаются перед подключением адаптера к сети. Для подключения витой пары может использоваться 15-контактный разъем AUI или 8-контактный RJ-45.

Адаптеры FastEthernet производятся изготовителями с учетом определенного типа среды передачи. Сетевой кабель при этом подключается непосредственно к адаптеру (без трансивера). Тем не менее, иногда используют специальный трансивер. Это делается для того, чтобы сделать адаптер независимым от типа среды передачи. Такой трансивер совместим только с определенным типом кабеля. Адаптер подключается к трансиверу трансиверным кабелем, который оснащен 40-контактным разъемом. Таким образом, для разных кабелей вам необходимо использовать разные трансиверы, но, выбрав подходящий трансивер, вы можете подключить один и тот же адаптер к разным сетям.

Оптические адаптеры стандарта 10BASE-FL могут устанавливаться в компьютеры с шинами ISA, PCI, MCA. Эти адаптеры позволяют отказаться от внешних преобразователей среды и от микротрансиверов. При установке этих адаптеров возможна реализация полнодуплексного режима обмана информацией. Для повышения универсальности в оптических адаптерах сохраняется возможность соединения по витой паре разъемом RJ-45.

Для спецификации 100 BASE-FX соединение концентратора и адаптера по оптоволокну осуществляется с использованием оптических соединителей типа SC или ST. Выбор типа оптического соединителя зависит от того, новая или старая это инсталляция. Если соединители типа ST уже установлены, то их можно продолжать использовать. Однако в новых инсталляциях допускается применение только соединителей типа SC.

Для этой спецификации выпускаются сетевые адаптеры, совместимые с шиной PCI. Адаптеры способны поддерживать как полудуплексный, так и полнодуплексный режим работы. Для облегчения настройки и эксплуатации на переднюю панель адаптера вынесено несколько индикаторов состояния. Кроме того существуют модели адаптеров, способные работать как по одномодовому, так и по многомодовому оптоволокну.

Сетевые адаптеры для технологии GigabitEthernet предназначены для установки в сервера и мощные рабочие станции. Для повышения эффективности работы они способны поддерживать полнодуплексный режим обмена информацией.

Адаптеры FDDI могут использоваться на разнообразных рабочих и в устройствах межсетевого взаимодействия - мостах и маршрутизаторах. Существуют адаптеры FDDI, предназначенные для работы со всеми распростаненными шинами. В сети FDDI такие устройства, как рабочие станции или мосты, подсоединяются к кольцу через адаптеры одного из двух типов: с двойным (DAS) или одиночным (SAS) подключением. Адаптеры DAS осуществляют физическое соединение устройств как с первичным, так и со вторичным кольцом, что повышает отказоустойчивость сети. Такой адаптер имеет два разъема (розетки) оптического интерфейса. Адаптеры SAS подключают рабочие станции к концентратору FDDI через одиночную оптоволоконную линию в звездообразной топологии. Эти адаптеры представляют собой плату, на которой наряду с электронными компонентами установлен оптический трансивер с разъемом (розеткой) оптического интерфейса.

Одно из преимуществ FDDI - поддержка протокола управления станцией StationManagement (SMT), позволяющего адаптерам FDDI выполнять более широкий круг задач и быть “более самостоятельными”. В отличие от средств управления адаптерами других высокоскоростных ЛВС, протокол SMT включен в спецификации FDDI. Для обеспечения правильной работы каждого из колец адаптеры, поддерживающие SMT, обмениваются информацией о трех уровнях FDDI данного кольца - уровне управления доступом к среде передачи (MAC), физическом уровне и уровне физической среды. В SMT можно выделить три “сферы деятельности” при администрировании FDDI:

Средства управления на основе кадров отвечают за сбор информации и текущем режиме работы сети;

Контроль за соединениями охватывает физические соединения и сетевую топологию;

Администрирование кольца включает слежение за характеристиками логического кольца и его функционированием, например за правильностью циркулирования маркера.

SMT позволяет адаптерам самостоятельно инициализировать свою работу, локализовывать ошибки, выполнять восстановление после сбоя, а также собирать данные о производительности. В других средах для выполнения подобных функций администраторы сетей вынуждены прибегать к услугам анализатора протоколов.

Адаптеры для настольных систем, поддерживающие технологию АТМ, не получили широкого распространения. Основной причиной такого положения дел является широкое распространение коммутируемого Ethernet и его практически повсемесное господство в сетях рабочих групп. Простота реализации сетей Ethernet и их значительно меньшая стоимость давно поставили вопрос о целесообразности разработки и производства адаптеров АТМ для настольных систем. Среди других проблем, возникающих при подключении настольных систем к сетям АТМ, следует упомянуть отсутствие драйверов, ограниченность спектра поддерживаемых шин и небольшой выбор фирм производителей. Но главная причина, тормозящая развитие адаптеров АТМ для настольных систем (точнее не способствующая этому), пожалуй, заключается в том, что до сих пор не было разработано актуального, нужного пользователям приложения, которое бы работало только с технологией АТМ и оправдывало бы все достаточно существенные затраты на ее внедрение в настольные системы.

Характерной чертой адаптеров АТМ является поддержка шинной структуры устройств, подсоединяемых с ее помощью к сети. Большинство адаптеров использует высокоскоростные каналы ввода-вывода, благодаря чему данные проходят через адаптер практически мгновенно. Компания ForeSystems предлагает наиболее широкий ассортимент изделий, которые, однако, поддерживают только оптоволоконные линии. Эти адаптеры могут функционировать на мощных рабочих станциях различных фирм - DigitalEquipment, IBM, Hewlett-Packard, Sun и SiliconGraphics. Кроме того, данные продукты доступны в системах с шинами типа EISA или VMEbus. В моделях от ForeSystems используются 16-килобайтный буфер для данных, получаемых из сети, и 4-килобайтный буфер для данных передаваемых в сеть. Другие фирмы предлагают АТМ-адаптеры для конкретных рабочих станций.

2. Повторители

Повторитель (репимтер, от англ. repeater) -- сетевое оборудование, предназначеное для увеличения расстояния сетевого соединения путём повторения электрического сигнала «один в один». Бывают однопортовые повторители и многопортовые. В терминах модели OSI работает на физическом уровне.

Одной из первых задач, которая стоит перед любой технологией транспортировки данных, является возможность их передачи на максимально большое расстояние. Физическая среда накладывает на этот процесс своё ограничение -- рано или поздно мощность сигнала падает, и приём становится невозможным. Но ещё большее значение имеет то, что искажается «форма сигнала» -- закономерность, в соответствии с которой мгновенное значение уровня сигнала изменяется во времени. Это происходит в результате того, что провода, по которым передаётся сигнал, имеют собственную ёмкость и индуктивность. Электрические и магнитные поля одного проводника наводят ЭДС в других проводниках (длинная линия).

Привычное для аналоговых систем усиление не годится для высокочастотных цифровых сигналов. Разумеется, при его использовании какой-то небольшой эффект может быть достигнут, но с увеличением расстояния искажения быстро нарушат целостность данных.

Проблема не нова, и в таких ситуациях применяют не усиление, а повторение сигнала. При этом устройство на входе должно принимать сигнал, далее распознавать его первоначальный вид, и генерировать на выходе его точную копию. Такая схема в теории может передавать данные на сколь угодно большие расстояния (если не учитывать особенности разделения физической среды в Ethernet).

Первоначально в Ethernet использовался коаксиальный кабель с топологией «шина», и нужно было соединять между собой всего несколько протяжённых сегментов. Для этого обычно использовались повторители (repeater), имевшие два порта. Несколько позже появились многопортовые устройства, называемые концентраторами (concentrator). Их физический смысл был точно такой же, но восстановленный сигнал транслировался на все активные порты, кроме того, с которого пришёл сигнал.

С появлением протокола 10baseT (витой пары) для избежания терминологической путаницы многопортовые повторители для витой пары стали называться сетевыми концентраторами (хабами), а коаксиальные -- повторителями (репитерами), по крайней мере, в русскоязычной литературе. Эти названия хорошо прижились и используются в настоящее время очень широко.

3. Концентраторы

Концентратор -- это многопортовый повторитель сети с автосегментацией. Все порты концентратора равноправны. Получив сигнал от одной из подключенных к нему станций, концентратор транслирует его на все свои активные порты. При этом, если на каком-либо из портов обнаружена неисправность, то этот порт автоматически отключается (сегментируется), а после ее устранения снова делается активным.Автосегментациянеобходима для повышения надежности сети. Обработка коллизий и текущий контроль состояния каналов связи обычно осуществляется самим концентратором. Концентраторы можно использовать как автономные устройства или соединять друг с другом, увеличивая тем самым размер сети и создавая более сложные топологии. Кроме того, возможно их соединение магистральным кабелем в шинную топологию. Так как логика доступа к разделяемой среде существенно зависит от технологии, то для каждого типа технологии выпускаются свои модели -- концентраторы Ethernet, концентраторы TokenRing, концентраторы FDDI, концентраторы VG-AnyLAN.

Концентратор -- это обобщенное название устройств, образующих разделяемую среду вне зависимости от типа реализуемого протокола. Для конкретного протокола иногда используется свое, узкое название этого устройства, отражающее более точно его функции, или же использующееся в силу традиций, например, как название MAU для концентраторов TokenRing.

сетевой адаптер повторитель концентратор

Рисунок 1. Логический сегмент, построенный с использованием концентраторов

Назначение концентраторов -- объединение отдельных рабочих мест в рабочую группу в составе локальной сети. Для рабочей группы характерны следующие признаки: определенная территориальная сосредоточенность; коллектив пользователей рабочей группы решает сходные задачи, использует однотипное программное обеспечение и общие информационные базы; в пределах рабочей группы существуют общие требования по обеспечению безопасности и надежности, происходит одинаковое воздействие внешних источников возмущений (климатических, электромагнитных и т. п.); совместно используются высокопроизводительные периферийные устройства; обычно содержат свои локальные серверы, нередко территориально расположенные на территории рабочей группы

Концентраторы работают на физическом уровне (Уровень 1 базовой эталонной модели OSI). Поэтому они не чувствительны к протоколам верхних уровней. Результатом этого является возможность совместного использования различных операционных систем (NovellNetWare, SCO UNIX, EtherTalk, LAN Manager и пр., совместимые с сетями Ethernet или IEEE 802.3). Есть, правда, определенное "давление" на хозяина сети при использовании программ управления сетью: управляющие программы, как правило, используют для связи с SNMP оборудованием протокол IP. Поэтому в части управления сетью приходится использовать только этот протоколы и соответственно операционные оболочки на станциях управления сетью. Но это не очень серьезное давление, ибо протокол IP является, наверное, самым популярным.

Все концентраторы обладают следующими характерными эксплуатационными признаками:

оснащены светодиодными индикаторами, указывающими состояние портов (PortStatus), наличие коллизий (Collisions), активность канала передачи (Activity), наличие неисправности (Fault) и наличие питания (Power), что обеспечивает быстрый контроль состояния всего концентратора и диагностику неисправностей;

при включении электропитания выполняют процедуру самотестирования, а в процессе работы - функцию самодиагностики;

имеют стандартный размер по ширине - 19'';

обеспечивают автосегментацию портов для изоляции неисправных портов и улучшения сохранности сети (networkintegrity);

обнаруживают ошибку полярности при использовании кабеля на витой паре и автоматически переключают полярность для устранения ошибки монтажа;

поддерживают конфигурации с применением нескольких концентраторов, соединенных друг с другом либо посредством специальных кабелей и stack-портов, либо тонкой коаксиальной магистрали, включенной между портами BNC, либо посредством оптоволоконного или толстого коаксиального кабеля подключенного через соответствующие трансиверы к порту AUI, либо посредством UTP кабелей, подключенных между портами концентраторов;

поддерживают речевую связь и передачу данных через один и тот же кабельный жгут;

прозрачны для программных средств сетевой операционной системы;

могут быть смонтированы и введены в действие в течении нескольких минут.

Концентраторы начального уровня - 8-ми, 5-ти, реже 12...16-ти портовые концентраторы. Часто имеют дополнительный BNC, реже AUI порт. Не обеспечивает возможности управления ни через консольный порт (в виду его отсутствия), ни по сети (по причине отсутствия SNMP модуля). Являются простым и дешевым решением для организации рабочей группы небольшого размера.

Концентраторы среднего класса - 12-ми, 16-ти, 24-х портовые концентраторы. Имеют консольный порт, часто дополнительные BNC и AUI порты. Этот тип концентраторов предоставляет возможности для внеполосного управления сетью (out-of-bandmanagement) через консольный порт RS232 под управлением какой-либо стандартной терминальной программы, что дает возможность конфигурировать другие порты и считывать статистические данные концентратора. Этот тип концентраторов позиционируют для построения сетей в диапазоне от малых до средних, которые в дальнейшем будут развиваться и потребуют введения программного управления.

SNMP-управляемые концентраторы - 12-ми, 16-ти, 24-х и 48-ми портовые концентраторы. Их отличает не только наличие консольного порта RS-232 для управления, но и возможность осуществления управление и сбор статистики по сети используя протоколы SNMР/IР или IРХ. Владельцу подобного hub-а становятся доступными следующие сбор статистики на узлах сети (концентраторах), ее первичная обработка и анализ: идентифицируются главные источники сообщений /toptalkers/, наиболее активные пользователи /heavyusers/, источники ошибок и коммуникационные пары /communicationspairs/. Эти типы концентраторов целесообразно применять для построения LAN-сетей в диапазоне от средних и выше, которые безусловно будут развиваться. Эти сети всегда требуют программного управления сетью, в том числе удаленного.

BNC-концентраторы или концентраторы ThinLAN - многопортовые повторители для тонких коаксиальных кабелей, используемых в сетях стандартов 10Base2. Они имеют в своем составе порты BNC и, как правило, один порт AUI, часто поддерживают SNMP протоколы. Они, как и hub-ы 10Base-T, сегментируют порты (отключая при этом не одну станцию, а абонентов всего луча) и транслируют входящие пакеты во все порты. На каждый BNC-порт распространяются все те же ограничения, что и на фрагмент сети стандарта 10Base-2: поддерживается работа сегментов тонкого коаксиального кабеля протяженностью до 185 метров на каждый порт, обеспечивается до 30 сетевых соединений на сегмент включая "пустые T-коннекторы", если произойдет нарушение целостности кабельного сегмента, этот сегмент исключается из работы, но остальная часть концентратора будет продолжать функционировать. Сфера применения концентраторов данного типа - модернизация старых сетей стандарта 10Base2 с целью повышения их надежности, модернизация сетей, достигших ограничений на применение репитеров и не требующих частых изменений.

10/100Hub-ы появились в последнее время. Если просто читать рекламу на них, то можно "попасть в засаду". Дело в том, что Hub не умеет буферизировать пакеты, а посему не умеет согласовывать разные скорости. Поэтому, если к такому hub-у подключена хотя бы одна станция стандарта 10Base-T, то все порты будут рабртать на скорости 10. По слухам, уже существуют hub-ы, поддерживающие две скорости одновременно. Я таких не встречал, но считаю, что в этом случае словом "hub" производитель называет некое промежуточное устройство (нечто среднее между hub-ом и switch-ом), как, например, MicroLAN фирмы CabletronSystems.

Redundantlink. Концентраторы среднего класса и SNMP-управляемые концентраторы поддерживают одну избыточную связь (redundantlink) на каждый концентратор для создания резервных связь (backuplink) между любыми двумя концентраторами. Это обеспечивает отказоустойчивость сети на аппаратном уровне. Резервная связь представляет собой отдельный кабель, смонтированный между двумя концентраторами. Используя консольный порт концентратора, надо просто задать конфигурацию основного канала связи и резервного канала связи одного из концентраторов. Резервный канал связи автоматически деблокируется при отказе основного канала связи двух концентраторов. Не смотря на то, что концентратор может контролировать только одну резервную связь, он может находиться на удаленном конце одной резервной связи и на контролирующем конце резервной связи с другим концентратором! После устранения неисправности на основном кабельном сегменте, основная связь автоматически не возобновит работу. Для возобновления работы главной связи придется использовать консоль концентратора или нажать кнопку Reset (выключить/включить) на концентраторе.

Связной бит у концентраторов представляет собой периодический импульс длительностью 100 нс, посылаемый через каждые 16 мс. Он не влияет на трафик сети. Связной бит посылается в тот период, когда сеть не передает данные. Эта функция осуществляет текущий контроль сохранности UTP канала. Данную функцию следует использовать во всех возможных случаях и блокировать ее только тогда, когда к порту концентратора подсоединяется устройство, не поддерживающее ее, например, оборудование типа HP StarLAN 10.

Обеспечение секретности в сетях, построенных с использованием концентраторов, довольно неблагодарное занятие, т.к. Hub по определению является широковещательным устройством. Но, при необходимости, Вам могут быть доступны следующие средства: блокирование неиспользуемых портов, установка пароля на консольный порт, установка шифрования информации на каждом из портов (некоторые модели имеют эту возможность).

Заключение

От производительности сетевых адаптеров зависит производительность любой сложной сети, так как данные всегда проходят не только через коммутаторы и маршрутизаторы сети, но и через адаптеры компьютеров, а результирующая производительность последовательно соединенных устройств определяется производительностью самого медленного устройства.

Сетевые адаптеры характеризуются типом поддерживаемого протокола, производительностью, шиной компьютера, к которой они могут присоединяться, типом приемопередатчика, а также наличием собственного процессора, разгружающего центральный процессор компьютера от рутинной работы.

Сетевые адаптеры для серверов обычно имеют собственный процессор, а клиентские сетевые адаптеры -- нет.

Современные адаптеры умеют адаптироваться к временным параметрам шины и оперативной памяти компьютера для повышения производительности обмена «сеть--компьютер».

Литература

1. http://kunegin.narod.ru/ref1/net_dev/nic.htm

2. http://citforum.ru/nets/protocols/1_03_03.shtml

3. http://ru.wikipedia.org/wiki/Повторитель

4. http://www.velcom.ru/ar132-page2.html

5. http://citforum.ru/nets/articles/hub.shtml

Размещено на Allbest.ru

...

Подобные документы

  • Изучение основ соединения компьютеров с использованием средств коммутации. Характеристика кабелей и программного обеспечения. Обзор международных организаций по стандартизации. Применение беспроводных сетей. Сетевые адаптеры, модемы, их функции и типы.

    курс лекций [1,9 M], добавлен 17.12.2014

  • Функции и характеристики сетевых адаптеров. Особенности применения мостов-маршрутизаторов. Назначение и функции повторителей. Основные виды передающего оборудования глобальных сетей. Назначение и типы модемов. Принципы работы оборудования локальных сетей.

    контрольная работа [143,7 K], добавлен 14.03.2015

  • Сетевые модели: одноранговые, комбинированные, с централизованным управлением. Технология клиент-сервер. Системы управления базами данных. Принцип построения сетевых соединений: шина, кольцо, звезда. Основные сетевые архитектуры: Ethernet, Token Ring.

    презентация [268,9 K], добавлен 25.06.2013

  • Вероятностное описание символов, аналого-цифровое преобразование непрерывных сигналов. Информационные характеристики источника и канала, блоковое кодирование источника. Кодирование и декодирование кодом Лемпела-Зива. Регенерация цифрового сигнала.

    курсовая работа [1,2 M], добавлен 22.09.2014

  • Основные компоненты технической системы передачи информации, аппаратура для коммутации и передачи данных. Интерфейсы доступа к линиям связи. Передача дискретной информации в телекоммуникационных системах, адаптеры для сопряжения компьютера с сетью.

    презентация [1,6 M], добавлен 20.07.2015

  • Компаратор как устройство, предназначенное для сравнения двух сигналов. Основная функция этого комбинационного логического устройства, сфера применения, параметры, виды, микросхема. Основные факторы, обусловливающие случайную составляющую ошибки.

    контрольная работа [96,1 K], добавлен 17.05.2014

  • Общие сведения о сетевых анализаторах, особенности их применения. Виды и анализ конвергентных (мультисервисных) сетей. Обратная сторона использования и сущность анализаторов сетевых протоколов. Принцип действия и работа системы мониторинга безопасности.

    курсовая работа [3,5 M], добавлен 01.03.2013

  • Региональные спутниковые навигационные системы: Бэйдау, Галилео, индийская и квазизенитная. Принцип работы и основные элементы: орбитальная группировка, наземный сегмент и аппаратура потребителя. Создание карт для навигационных спутниковых систем.

    курсовая работа [225,5 K], добавлен 09.03.2015

  • Импульсные, частотные коды, многоступенчатая модуляция. Корректирующее кодирование - метод повышения помехозащищенности. Разработка системы передачи цифровой информации повышенной помехозащищенности с использованием одночастотных псевдослучайных сигналов.

    дипломная работа [3,2 M], добавлен 11.06.2012

  • Словарные методы кодирования. Сущность их состоит в том, что фразы в сжимаемом тексте заменяются указателем на то место, где они в этом тексте уже pанее появлялись. Декодирование сжатого текста. Алгоритм Абрахама Лемпела и Якоба Зива - LZ77, LZ-сжатие.

    реферат [30,5 K], добавлен 11.02.2009

  • Пути и методы повышения эффективности использования каналов передачи данных (повышение вероятностно-временных характеристик декодирования). Помехоустойчивое кодирование информации. Задание циклических кодов. Мажоритарное декодирование циклических кодов.

    дипломная работа [244,9 K], добавлен 24.02.2010

  • Назначение и виды генераторов испытательных сигналов. Проектирование ГИС с использованием аналоговых и цифровых интегральных микросхем серии К155. Работа основных его элементов. Выбор функциональной схемы. Конструкция, детали и налаживание устройства.

    курсовая работа [173,9 K], добавлен 18.10.2010

  • Расчет информационных параметров сообщения. Статистическое кодирование буквенного сообщения по Хаффману. Произведение помехоустойчивого кодирования циклическим кодом двоичного сообщения. Модуляция и демодуляция сигналов. Подсчет вероятности ошибки.

    курсовая работа [689,2 K], добавлен 20.11.2021

  • Понятие сигнала, его взаимосвязь с информационным сообщением. Дискретизация, квантование и кодирование как основные операции, необходимые для преобразования любого аналогового сигнала в цифровую форму, сферы их применения и основные преимущества.

    контрольная работа [30,8 K], добавлен 03.06.2009

  • Выбор метода модуляции, разработка схемы модулятора и демодулятора для передачи данных по каналу ТЧ. Расчет параметров устройства синхронизации. Методика коррекции фазо-частотной характеристики канала ТЧ. Кодирование и декодирование циклического кода.

    курсовая работа [910,4 K], добавлен 22.10.2011

  • Волноводы, их назначение и виды: однородный, с сосредоточенной на конце массой. Концентраторы упругих колебаний, ограничения при проектировании и виды: ступенчатый, экспоненциальный, конусный, катеноидальный, каплевидный, их преимущества и недостатки.

    реферат [168,8 K], добавлен 26.01.2009

  • Методы кодирования и декодирования циклических кодов, метод кодирования и декодирования сверточных кодов, формирование проверочных разрядов. Изучение обнаруживающей и исправляющей способности циклических кодов, исследование метода коммутации.

    лабораторная работа [709,6 K], добавлен 26.08.2010

  • Видеоадаптеры (дисплейные процессоры) - специализированные процессоры с собственным набором команд, специфическими форматами данных и собственным счетчиком команд. Графические видеоадаптеры - с произвольным сканированием и адаптеры растрового типа.

    лекция [63,2 K], добавлен 15.08.2008

  • Проектирование устройства, принимающего и передающего данные по радиоканалу, при этом выполняющего кодирование и декодирование информации, используя цифровой сигнальный процессор. Выбор цифрового сигнального процессора, кодека и драйвера интерфейса.

    дипломная работа [949,9 K], добавлен 20.10.2010

  • Методы помехоустойчивого кодирования и декодирования информации с помощью линейных групповых кодов. Принципы построения и функционирования кодирующих и декодирующих устройств этих кодов. Способы их декодирования с учетом помех различной кратности.

    лабораторная работа [39,2 K], добавлен 26.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.