Розробка цифрового термометру
Державні еталони температур. Термоелектричні перетворювачі, принцип їх роботи та функціональні особливості, класифікація та різновиди, оцінка переваг та недоліків. Розробка структурної та функціональної схеми цифрового частотоміра середніх значень.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 09.04.2013 |
Размер файла | 25,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Розробка цифрового термометру
Вступ
В число величин, одиниці яких покладені в основу Міжнародної системи одиниць СІ, входить також термодинамічна температура, яку позначають символом Т і виражають в кельвінах (позначення К). Найменування дано по імені англійського вченого В. Кельвіна (1824-1907).
Кельвін - одиниця термодинамічної температури - 1/273,16 частина термодинамічної температури тройної точки води.
Кельвін як одиниця температурного інтервалу дорівнює 1/273,16 частини інтервалу термодинамічної температури між абсолютним нулем і тройною точкою води.
Тройна точка води - точка рівноваги води в твердому, рідкому і газоподібному стані.
В термодинамічній температурній шкалі нижньою межею являється абсолютний нуль температури (0 К) і основною реперною точкою - тройна точка води (273,15 К). Позначається Т. Вважається, що при такій температурі припиняється тепловий рух частинок, з яких складається тіло.
Абсолютний нуль за міжнародною шкалою дорівнює -273,15 оС (Цельсія).
Цельсій А. (1701-1744) - шведський астроном і фізик, який запропонував температурну шкалу, в якій 1 градус (1 оС) дорівнює 1/100 різниці температур кипіння води і танення льоду при атмосферному тиску. Позначається t oC.
Температурні шкали Кельвіна і Цельсія пов'язані формулою
Т = (273,15 + t) K.
1. Огляд первинних перетворювачів вимірюваної фізичної величини
1.1 Державні еталони температур
Для точного здійснення термодинамічної температурної шкали використовують еталонні газові термометри.
Азотний газовий термометр постійного об'єму створений для визначення термодинамічної температури деяких реперних точок. Прилад має платиноіридієвий резервуар місткістю 0,2 дм3 і призначений для роботи в області високих температур. Відношення вредного об'єму термометра до місткості робочого резервуару складає 0,02. Тиск газу вимірюється ртутним манометром. Похибка вимірювання термодинамічної температури в точці плавлення льоду ±0,013 К, в точці плавлення золота ±0,2 К.
В інших газових термометрах для вимірювання температур від 90 до 1373К використовується спеціально розроблена роздільна камера, яка являє собою нульовий мембранний манометр, похибка якого не перевищує ±0,13 Па. Використання роздільної камери дає газовому термометру ряд метрологічних переваг, основні з яких - захист робочого газу від забруднення ртуттю і забезпечення умов для підвищення точності основного манометра газового термометра. В газовому термометрі використовуються кварцеві резервуари, заповнені чистим азотом. Похибка вимірювання термодинамічної температури газовим термометром в точці плавлення цинку ± 0,02 К.
Державний первинний еталон одиниці температури - кельвіна - в діапазоні температур 273,15 - 2800 К складається із комплекса засобів вимірювання, до якого входять:
а) апаратура для здійснення реперних точок: тройної точки води, точки кипіння, точки затвердіння олова, точки затвердіння цинку, точки затвердіння срібла, точки затвердіння золота;
б) платинових термометрів опору, температурних ламп і фотоелектричної апаратури.
Похибка еталону складає від 0,0002 К в тройній точці води до 0,1 - 0,4 К в області високих температур.
В діапазоні від 630,74 до 1064,43 оС еталоном служить платино-платинородієва термопара.
Температуру вище 1064,43 оС визначають із співвідношення спектральної енергетичної яркості випромінювання абсолютно чорного тіла при даній температурі до спектральної енергетичної яркості випромінювання при тем-пературі застигання золота при тій же довжині хвилі.
1.2 Термоелектричні перетворювачі
Термоелектричними перетворювачами є термопари.
Термопара - термочутливий елемент в пристроях для вимірювання температури, системах управління і контролю. Складається з двох послідовно з'єднаних (спаяних) між собою різнорідних провідників або напівпровідників. Якщо спай знаходиться при різних температурах, то в колі термопари виникає термое. р.с., величина якої однозначно пов'язана з різницею температур «гарячого» і «холодного» електродів. Вільні кінці термоелектродів підмикають до вимірювального приладу або до підсилювача напруги.
Для вимірювання термое. р.с., яку розвиває термопара, в її коло вмикають вимірювальний прилад. На рисунку 1.1 зображено основні схеми увімкнення термопар. Найчастіше застосовують схему, зображену на рисунку 1.1, а. Диференціальну термопару використовують для вимірювання різниці темпе-ратур (рисунок 1.1, б).
Діапазон вимірювання температур термопарами: від температур близьких до «абсолютного нуля» до кількох тисяч градусів.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
а) б)
Рисунок 1.1 - Схема увімкнення вимірювального приладу в холодний спай а) і диференційна схема б)
1.3 Термометри опору
Термометри опору - прилади для вимірювання температури, дія яких основана на зміні електричного опору металів і напівпровідників від зміни температури. Термометри опору складаються із термоперетворювача (терморезистора або як і ще їх називають термістора), защитного чохла і з'єднувальної головки. Чутливий елемент металевого термометра опору являє собою обмотку на теплостійкому ізольованому каркасі із тонкої мідної, платинової, вольфрамової або молібденової проволки.
Діапазон вимірювання температур металевих термометрів опору типу ТСП від мінус 200 до плюс 650 оС, а типу ТСМ від мінус 50 до плюс 180 оС.
Чутливий елемент напівпровідникового термометрів опору виконаний у вигляді шайби або бусинки із напівпровідникового металу (мідно-маргенцеві, кобальто-маргенцеві порошки з добавками). Наприклад, КМТ-14, ТР-9, СТ1-19.
Зрівноваження моста здійснюється за допомогою потенціометра R, шкала якого проградуйована в значеннях температури. При вимірюванні, потенціометром R добиваються нульового положення гальванометра, яке наступить в момент рівноваги мостової схеми
Rt · R2 = R · R1. (1.1)
Недоліком одинарної мостової схеми є додаткова похибка, яка вноситься опорами провідників, якими термометр опору підключається до мостової схеми.
При зміні температури навколишнього середовища змінюється і опір цих провідників, що не дає можливості компенсувати вказану похибку. Для зниження цієї похибки використовують трипровідну схему підключення термометрів опору. В цьому випадку опори проводів виявляються не в одному, а в різних плечах моста і тому їх вплив суттєво зменшується. При симетрії моста їх опори віднімаються.
1.4 П'єзоелектричні термоперетворювачі
Принцип дії п'єзоелектричних перетворювачів ґрунтується на явищі п'єзоелектричного ефекту. Якщо на грані діалектрика діє механічна напруга
Р, то на них утворюються електричні заряди. Це явище називають прямим п'єзоефектом. Якщо на грані діалектрика діє зовнішне електричне поле, то діалектрик нако-пичує механічну деформацію; це явище називається зворотнім п'єзоефектом.
Відповідні термоперетворювачі засновані на використанні прямого п'єзоелектричного ефекту, що полягає у виникненні електричних зарядів на поверхні деяких кристалів (кварцу, сегнетової солі та ін.) під дією механічних напруг [4].
При вимірюванні температури, знаходять застосування п'єзорезонатори, в яких використовується одночасно прямий і зворотний п'єзоефекти. Останній полягає в тому, що якщо на електроди перетворювача подати змінну напругу, то в п'єзочутливому елементі (пластині) виникнуть механічні коливання, частота яких fp (резонансна частота) залежить від товщини пластини, модуля упругості, густини її матеріалу. При включенні такого перетворювача в резонансний контур генератора частоти, частота генерованих електричних коливань ft буде залежати від температури.
З урахуванням вище сказанного, можна записати рівняння перетворення п'єзоелектричного термоперетворювача
ft = fp + S tx, (1.2)
де fp - частота генерованих коливань при температурі t = 0 oC складає в середньому 1 кГц;
S - чутливість термоперетворювача, яка може досягати 1000 Гц/К;
t - вимірювана температура.
Таким чином можна навести якісну статичну характеристику п'єзоелектричного термоперетворювача.
Вказані п'єзоелектричні термоперетворювачі можуть функціонувати в широкому діапазоні температур, мають порівняно високу точність, що пояснюється високою стабільністю параметрів перетворювача і високими метрологічними характеристиками вимірювачів частоти.
До того ж п'єзоелектричні термоперетворювачі в порівнянні з термометрами опору і термопарами мають високу швидкодію (до кількох вимірів за секунду). Тоді як інерційність останніх складає десятки секунд.
Недоліком таких перетворювачів є обмежена взаємозамінюваність, що пояснюється розкидом параметрів f0 i S. Враховуючи сказане та умову курсової роботи виберемо для побудови цифрового термометра п'єзоелектричний вимірювальний термоперетворювач. Оскільки вихідною величиною п'єзоелектричного термоперетворювача є частота, а вказаний діапазон температур (300 - 2100 К) визиває високу частоту коливань, то в якості аналого-цифрового перетворювача (АЦП) доцільно вибрати цифровий частотомір середніх значень.
2. Розробка структурної схеми АЦП
Принцип дії цих АЦП ґрунтується на підрахунку імпульсів, частота слідування яких f пропорційна вимірюваній величині за чітко визначений інтервал часу Т0 [2]. Т0 - ще називають зразковим часовим інтервалом.
Схема починає працювати за командою «Пуск», яка встановлює тригер Т у стан логічної одиниці і таким чином відкриває схеми збігу SW1 і SW2. Імпульси, які слідують із частотою fx через формувач F і відкриту схему збігу SW1, надходять на вхід двійкового лічильника ЛТ, який їх підраховує. В цей самий момент часу через відкриту схему збігу SW2 імпульси зразкової частоти f0 з виходу генератора G надходять на вхід подільника частоти ПЧ.
Коефіцієнт поділу подільника розраховують з урахуванням забезпечення потрібного часового інтервалу Т0. Після закінчення зразкового часового інтервалу заднім фронтом імпульсу T0 тригерT встановлюється у стан логічного нуля, що закриває схеми збігу SW1 і SW2 і в лічильнику фіксується двійковий код N
N = = T0 fx, (2.1)
Де T0 - зразковий часовий інтервал;
fx - вимірювана частота.
Дана рівність є рівнянням перетворення частотоміра, оскільки вона характеризує, яким чином пов'язані між собою вихідна N і вхідна вимірювана величина fx.
З рівнянням перетворення частотоміра випливає, що число імпульсів пропорційне частоті fx і статична характеристика лінійна.
Рівняння похибки цифрового частотоміра середніх значень буде мати вигляд
д = 1/N = , (2.2)
Аналіз рівняння похибки показує, що можливими шляхами зменшення похибки є збільшення зразкового часового інтервалу Т0 і вимірюваної частоти fx. Але збільшення Т0 приведе до збільшення часу вимірювання, що знизить швидкодію. Оскільки похибка квантування зменшується із збільшенням вимірюваної частоти, то такі частотоміри ефективні в області середніх і високих частот (від одиниць кілогерц до десятків мегагерц).
3. Розробка функціональної схеми цифрового термометра
термоелектричний перетворювач частотомір
Даний цифровий термометр представляє собою сукупність п'єзоелект-ричного термоперетворювача включеного в схему цифрового частотоміра середніх значень.
Розрахуємо параметри схеми.
Для отримання рівняння перетворення цифрового термометра в рівняння (2.1) замість fx підставимо ft з (1.2)
Nt = T0 fx = T0 (fp + S tx), (3.1)
З урахуванням рівняння (2.2) похибка квантування термометра буде мати вигляд
д = 1/Nt = , (3.2)
З рівняння похибки квантування (3.2) і даних п. 1.4 визначимо зразковий часовий інтервал T0 на виході зразкової міри часу. Він повинен бути більший періода Ttx тому тут підставлямо значення ft min = fp + S tx min
T0 = , (3.3)
T0 = ,
Частоту квантування на виході імпульсного генератора G вибирають таку, щоб
Tкв <<T0.
Частіше за все вибирають генератор з частотою fкв = 1 МГц.
Виходячи з рівняння (3.3) нижня межа вимірювання визначиться так
tx min = (3.4)
Верхня межа вимірювання визначається значенням максимальної ємності двійкового лічильника Nmax.
З рівняння (3.1)
Nmax = T0 fxmax = T0 (fp + S txmax) (3.5)
Nmax = 6,6?10-4 (103 + 103 ?2100) = 1,4?103.
З врахуванням того, що Nmax = 2n, верхня межа вимірювання визначиться так
tx max = (3.6)
де n - розрядність двійкового лічильника.
Розрядність n, яка необхідна для реалізації двійкового лічильника визначимо за формулою
n = lоg2 Nmax ? 10.
Висновки
В курсовій роботі проведено огляд державних еталонів температур, первинних вимірювальних перетворювачів температури (термопари, термометри опору, п'єзоелектричні термоперетворювачі) і в якості вимірювального перетворювача вибрано п'єзоелектричний термоперетворювач, оскільки він задовільняє умові завдання на розробку.
В якості аналого-цифрового перетворюваача вибрано цифровий частотомір середніх значень, описано його роботу і проведено розрахунок основних параметрів схеми:
частоту f0 генератора зразкової частоти;
верхню tx max і нижню tx msn межу вимірювання;
розрядність n двійкового лічильника;
похибку квантування дK.
Література
1. Электрические измерения электрических и неэлектрических величин. Под ред. Е.С. Полищука. - К.: Вища шк. Головное изд-во, 1984.
2. Поджаренко В.О., Кухарчук В.В. Вимірювання і комп'ютерно-вимірювальна техніка.-К.:НМК ВО, 1991.
3. Автоматические измерения и приборы (аналоговые и цифровые) / П.П. Орнатский. - К.: Вища шк., 1986.
4 Поджаренко В.О. та ін. Метрологія та вимірювальна техніка. Для самостійної роботи студентів та виконання курсових робіт. / Вінниця: ВДТУ, 2000 - 65 с.
Размещено на Allbest.ru
...Подобные документы
Загальний огляд існуючих первинних перетворювачів температури. Розробка структурної схеми АЦП. Вибір п’єзоелектричного термоперетворювача, цифрового частотоміра середніх значень в якості аналого-цифрового перетворювача, розрахунок параметрів схеми.
курсовая работа [30,5 K], добавлен 24.01.2011Аналітичний огляд первинних перетворювачів температури. Розробка структурної та функціональної схеми цифрового термометру для вимірювання температури в діапазоні від 600 до 1000 С. Розрахунок частоти генератора та розрядності двійкового лічильника.
курсовая работа [40,2 K], добавлен 26.01.2011Розробка структури цифрового лінійного тракту і структурної схеми каналу зв'язку. Теоретичний аналіз алгоритму роботи модулятора. Опис роботи ідеального приймача. Ймовірність помилкового прийому комбінації коду Хемінга та безнадлишкового коду МТК-2.
курсовая работа [444,5 K], добавлен 09.01.2014Загальна характеристика та принцип дії пристроїв введення (виведення) аналогової інформації в аналого-цифрових інтерфейсах, їх структура та основні елементи. Порядок та етапи розробки структурної схеми АЦІ, необхідні параметри для даної операції.
реферат [100,9 K], добавлен 14.04.2010Призначення частотоміру середніх значень, принцип його дії. Використання генератора каліброваних часових інтервалів. Характеристика синхронного десяткового паралельного лічильника К155ИЕ9 та його схема. Особливості побудови цифрового відлікового пристрою.
реферат [665,6 K], добавлен 14.04.2012Розробка системи автомобільного охоронного сигналізатора на мікроконтролері PIC16F84A. Технічні характеристики сигналізатора, принцип роботи на транзисторах. Розробка структурної та функціональної схеми. Опис принципу дії. Електричні розрахунки.
курсовая работа [1,1 M], добавлен 26.01.2009Розробка структурної схеми системи цифрового зв’язку для заданого виду модуляції та способу приймання повідомлення. Пропускна здатність двійкового каналу. Аналіз результатів та рекомендації щодо їх покращення з метою підвищення рівня завадостійкості.
курсовая работа [1,1 M], добавлен 24.08.2012Основні види схем керування кроковими двигунами. Розробка варіантів структурної схеми електропривода та прийняття рішення принципу його побудови. Розробка вузла мікроконтролера, блока живлення. Забезпечення індикації режимів роботи схеми дослідження КД.
курсовая работа [1,6 M], добавлен 14.05.2013Вимірювання напруги. Принцип роботи цифрового вольтметру. Структурна схема цифрового вольтметра. Основні параметри цифрового вольтметра. Схема ЦВ з час-імпульс перетворенням та часові діаграми напруг. Метод час-імпульсного перетворення.
контрольная работа [84,9 K], добавлен 26.01.2007Докладний опис складових електричної схеми. Характеристика мікроконтролера PIC16F877. Рідкокристалічний індикатор МТ12864А. Призначення виводів рідкокристалічного індикатора. Цифро-аналоговий перетворювач MCP 4921. Алгоритм роботи цифрового генератора.
курсовая работа [1,5 M], добавлен 20.09.2011Огляд принципів роботи та будови аналого-цифрового перетворювача, його функціональна та електрична принципова схема. Призначення паралельного порту, опис інтерфейсу Cetronics. Розробка програмного забезпечення. Оцінка техніко-економічного рівня приладу.
дипломная работа [763,5 K], добавлен 09.06.2010Розробка блоку з генератором одиночних імпульсів, двійково-десятковим лічильником і вузлом індикації. Аналіз принципу роботи двійково-десяткового лічильника одиничних імпульсів. Вибір елементів генератора імпульсів, цифрового блоку та вузла індикації.
курсовая работа [775,0 K], добавлен 14.01.2015Складання логічної схеми алгоритмів при проектуванні системи управління агрегатом, формування мікрокоманд, що включають логічні та функціональні оператори. Розробка структурної та принципової схеми системи управління, її конструктивне оформлення.
курсовая работа [1,0 M], добавлен 28.09.2011Класифікація, характеристики та умови експлуатації підсилювачів. Галузь використання приладу і ціль. Аналіз структурної та електричної принципової схеми та принцип роботи. Тепловий розрахунок пристрою. Розробка топології та компонування друкованої плати.
курсовая работа [1,2 M], добавлен 10.01.2015Система реєстрації даних як високопродуктивний обчислювач з процесором або контролером, накопичувачем інформації й інтерфейсом зв'язку. Розробка функціональної схеми й вибір елементної бази. Аналіз принципової електричної схеми. Економічні розрахунки.
дипломная работа [694,4 K], добавлен 20.02.2011Розробка схеми логічного керування роботою кавового автомату. Граф функціонування цифрового автомата. Створення таблиць переходів та виходів. Основні елементи пам’яті автомата. Створення рівнянь функції збудження. Побудова структурної схеми автомату.
курсовая работа [434,7 K], добавлен 11.01.2013Розробка схеми приймача з цифровою обробкою інформації і обгрунтування вимог до нього. Аналіз аналого-цифрового перетворювача і вимоги до цього важливого елемента приймального тракту. Елементна база малошумлячого підсилювача. Знижка коефіцієнту шуму.
реферат [570,6 K], добавлен 18.02.2010Розробка структурної схеми пристрою. Підсилювач високої частоти. Амплітудний детектор. Розробка схеми електричної принципової. Розрахунок вхідного кола приймача з ємнісним зв’язком з антеною. Еквівалентна добротність контуру на середній частоті.
контрольная работа [169,8 K], добавлен 16.01.2014Загальні відомості, параметри та розрахунок підсилювача, призначення елементів і принцип роботи підсилювального каскаду. Розрахунок режиму роботи транзисторів, вибір пасивних елементів та номінальних значень пасивних і частотозадаючих елементів схеми.
курсовая работа [990,6 K], добавлен 16.11.2010Розробка структурної схеми проектованого пристрою для контролю і збору інформації, а також для керування об’єктами. Датчики температури. Сфера використання датчиків магнітного потоку. Вибір схеми вхідного підсилювача. Аналогово-цифрові перетворювачі.
методичка [81,1 K], добавлен 25.03.2014