Работа с радиоэлементами
Требования к современной проводке. Соединение проводов при помощи зажимов. Конструкция винтовых клеммников. Технологии изготовления печатных плат, нанесение покрытия. Особенности применения фоторезисторов. Принципиальная и монтажная схема D-триггера.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | отчет по практике |
Язык | русский |
Дата добавления | 16.04.2013 |
Размер файла | 906,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ВВЕДЕНИЕ
Практика проходила в радиомонтажной мастерской техникума, и нами была поставлена цель, сформировать первоначальные профессиональные навыки работы с радиоэлементами; научиться изготовлять схемы для печатных плат, и сами печатные платы. Подбирать элементы по номиналам; различать детали, определять их номиналы по маркировкам, указанными на них.
Овладеть основными навыками пайки радиоэлементов. Освоение методов монтажа, таких как навесной монтаж и монтаж на печатной плате. Научиться демонтировать детали с плат, не испортив как сами детали, так и плату.
Сформировать навыки работы с инструментом необходимым для работы в радиоэлектронике, и использовать его в нужных целях.
Освоить методы нанесения рисунков на печатные платы, методы травления и обработку платы после травления для дальнейшего использования.
Изучить конструкцию транзисторов, более подробно изучить логические элементы на основных микросхемы серии К155, принцип работы этих микросхем. Развить умение самостоятельной работы и умение устранять неисправности устройств. Научиться работать с комбинированным радиоприбором таким, как мультиметр в который входит множество других приборов: амперметр, вольтметр, омметр и др.
Изучить программы, которые во многом облегчают разработку принципиальных схем и схем для печатных плат.
Программа SPLAN позволяет разрабатывать принципиальные схемы, программа Sprint-Layout позволяет непосредственно разрабатывать схемы для печатных плат. Научиться работать с электронными справочниками, в которых заложено множество радиодеталей, и описан принцип их работы и состав. Также указано много аналогов, которыми можно заменить ту деталь, которую не удалось найти.
Освоить метод распознавания цветной маркировки резисторов с помощью картинок или специальных такие программы очень просты в использовании и облегчают поиск резисторов нужных номиналов.
1. ОСНОВЫЕ ТЕОРИТИЧЕСКИЕ НАВЫКИ
1.1 Соединение проводов
Устройство электропроводки требует надежного соединения проводов. В шестидесятые - семидесятые годы двадцатого века, во времена строительства «хрущевских» домов, проводка, чисто из экономических соображений, выполнялась алюминиевым проводом.
Все соединения в этой проводке выполнялись методом скруток, которые изолировались черной матерчатой изолентой, и прослужить могли десять и более лет, не требуя никакого обслуживания и профилактики. Конечно, если скрутка была выполнена по всем правилам. Поэтому старые электрики утверждают, что надежней скрутки, соединения просто не бывает.
Отчасти они правы. В те времена другого способа не было, да и не требовалось, поскольку в квартирах еще не было такого обилия электрической и электронной техники, как сейчас. Мощность тогдашних холодильников, стиральных машин, утюгов и электрочайников была намного ниже, чем современных. Да и не у всех они были холодильники, телевизоры и стиральные машины.
А такие потребители электроэнергии, как кондиционеры, компьютеры, домашние кинотеатры в квартирах вообще не применялись. Тогда их просто еще не изобрели. Поэтому и можно было выполнить проводку алюминиевыми проводами, а соединение при помощи скруток.
Требования к современной проводке
В современных условиях проводка чаще всего выполняется медными проводами, что позволяет подключать нагрузку практически любой мощности. Для соединения проводов сейчас применяются различные способы. Это оговорено в правилах устройства электроустановок (ПУЭ).
Соединение проводов при помощи зажимов
Для соединения проводов в настоящее время существуют клеммники.. Наиболее распространены три вида клеммников. Это самозажимные, винтовые и соединительные изолирующие зажимы. На рисунке 1 показан самозажимной клеммник.
Рисунок 1 - Самозажимной клеммник
Самозажимные клеммники предназначены для соединения проводов сечением до 2,5 мм2, их рабочий ток достигает до 24А, что позволяет подключать нагрузку до 5КВт. Количество мест в таких клеммниках от 2 до 8, что значительно ускоряет монтаж проводки в целом. Правда, по сравнению со скруткой, они занимают в распаячных коробках больше места, что не всегда удобно.
Конструкция винтовых клеммников показана на рисунке 2.
Рисунок 2 - Винтовой клеммник
Такой тип клеммников наиболее распространен и поэтому применяется чаще других типов. Основная область их применения это соединение проводов в распределительных коробках. Однако, если проводка выполняется алюминиевым проводом от применения таких клеммников следует воздержаться, так как при затягивании винтов возможно пережать и обломить мягкий алюминиевый провод.
Третий вид механических соединителей проводов это соединительные изолирующие зажимы (СИЗ). Их внешний вид показан на рисунке 3.
Рисунок 3 - Зажимы СИЗ
Такой зажим представляет собой пластмассовый корпус, внутри которого находится анодированная коническая пружина. Для соединения проводов их зачищают на длину около 10 - 15 мм и складывают в общий пучок. После чего на него накручивают СИЗ, вращая по часовой стрелке до упора. С их помощью возможно соединение нескольких одиночных проводов общей площадью 2,5 - 20 мм2. Естественно, что колпачки в этих случаях разного типоразмера.
Такие зажимы ускоряют монтаж, а за счет изолированного корпуса не требуют дополнительной изоляции. Правда, качество соединения у них несколько ниже, чем у винтовых клеммников. Поэтому, при прочих равных условиях, предпочтение все-таки следует отдать последним.
Соединение проводов пайкой
Соединение проводов пайкой и сваркой наиболее надежно, нежели с помощью клеммных соединителей различной конструкции. Лучше всего пайке поддаются медные провода, и хотя в настоящее время существуют различные флюсы для пайки алюминия, лучше от такой пайки воздержаться.
По сравнению со сваркой пайка является более простой и доступной: она не требует дорогостоящего оборудования, менее пожароопасна, навыки для выполнения хорошего качества пайки потребуются более скромные, чем при выполнении сварного соединения.
Если пайка скруток производится время от времени, например, вы решили поменять проводку в своей квартире, то вполне можно обойтись обычным паяльником мощностью не менее 100 Вт.
После установки жала обратно в паяльник отверстие необходимо облудить изнутри, так же, как это делается для простого паяльника. Таким образом, получается малогабаритная лудильная ванна.
Перед пайкой, конечно, сначала снимается изоляция с каждого провода на длину 40..50 мм, и каждый отдельный провод зачищается до металлического блеска, после чего облуживается.
Для этого в отверстии паяльного стержня надо расплавить небольшое количество припоя, после чего добавить немного канифоли и погрузить в отверстие провод. Если есть какой-нибудь жидкий флюс, например, раствор канифоли в спирте, то достаточно просто смазать провод жидким флюсом, и окунуть провод в расплавленный припой.
Затем облуженные провода тщательно скрутить, концы подрезать на одном уровне и, прихватив пассатижами, окунуть в паяльную ванну.
В подобном устройстве возможно пропаять скрутку из 4 - 6 жил сечением до 2,5 мм2. При этом скрутку следует для полного прогрева подержать в отверстии жала примерно 3 - 4 секунды. Пайка должна остывать на воздухе и иметь блестящий контурный вид.
При использовании в качестве флюса сосновой канифоли паяное соединение в промывке не нуждается. В случае применения других флюсов надо действовать согласно прилагаемой к ним инструкции.
Совершенно недопустимо для ускорения процесса охлаждать пайку водой: это приводит к образованию микротрещин и, естественно, ухудшению качества соединения.
Изоляцию скруток лучше всего произвести при помощи термоусадочной трубки, соответствующего диаметра, прогревая ее техническим феном. При отсутствии трубки можно воспользоваться обычной изолентой, намотав ее не менее трех слоев
1.2 Технологии изготовления печатных плат
Вопрос о том, как можно дешево изготавливать печатные платы в домашних условиях, волнует радиолюбителей всего мира, наверное, с самого момента изобретения печатных плат. И если несколько лет назад выбор технологий был не так уж велик, то сегодня благодаря развитию современной техники радиолюбители получают возможность быстро и качественно изготавливать печатные платы без применения какого-либо дорогостоящего оборудования. Из всего множества существующих технологий были выбраны только те, которые не требуют значительных материальных затрат и достаточно просты в осуществлении.
Собственно, весь процесс изготовления печатной платы можно условно разделить на пять основных этапов:
предварительная подготовка заготовки (очистка поверхности, обезжиривание);
нанесение тем или иным способом защитного покрытия;
удаление лишней меди с поверхности платы (травление);
очистка заготовки от защитного покрытия;
сверловка отверстий, покрытие платы флюсом, лужение.
Мы рассматриваем только наиболее распространенную «классическую» технологию, при которой лишние участки меди с поверхности платы удаляются путем химического травления. Помимо этого, возможно, например, удаление меди путем фрезерования или с использованием электроискровой установки. Однако эти способы не получили широкого распространения ни в радиолюбительской среде, ни в промышленности (хотя изготовление плат фрезерованием иногда применяется в тех случаях, когда необходимо очень быстро изготовить несложные печатные платы в единичных количествах).
Особенно хотелось бы отметить, что при изготовлении печатных плат в домашних условиях следует стремиться при разработке схемы использовать как можно больше компонентов для поверхностного монтажа, что в некоторых случаях позволяет развести практически всю схему на одной стороне платы. Связано это с тем, что до сих пор не изобретено никакой реально осуществимой в домашних условиях технологии металлизации переходных отверстий. Поэтому в случае, если разводку платы не удается выполнить на одной стороне, следует выполнять разводку на второй стороне с использованием в качестве межслойных переходов выводов различных компонентов, установленных на плате, которые в этом случае придется пропаивать с двух сторон платы. Конечно, существуют различные способы замены металлизации отверстий (использование тонкого проводника, вставленного в отверстие и припаянного к дорожкам с обеих сторон платы), однако все они имеют существенные недостатки и неудобны в использовании. В идеальном случае плата должна разводиться только на одной стороне с использованием минимального количества перемычек.
Предварительная подготовка заготовки
Данный этап является начальным и заключается в подготовке поверхности будущей печатной платы к нанесению на нее защитного покрытия. В целом за продолжительный промежуток времени технология очистки поверхности не претерпела сколько-нибудь значительных изменений. Весь процесс сводится к удалению окислов и загрязнений с поверхности платы с использованием различных абразивных средств и последующему обезжириванию.
Для удаления сильных загрязнений можно использовать мелкозернистую наждачную бумагу («нулевку»), мелкодисперсный абразивный порошок или любое другое средство, не оставляющее на поверхности платы глубоких царапин. Иногда можно просто вымыть поверхность печатной платы жесткой мочалкой для мытья посуды с моющим средством или порошком (для этих целей удобно использовать абразивную мочалку для мытья посуды, которая похожа на войлок с мелкими вкраплениями какого-то вещества; часто такая мочалка бывает наклеена на кусок поролона). Кроме того, при достаточно чистой поверхности печатной платы можно вообще пропустить этап абразивной обработки и сразу перейти к обезжириванию.
Заключительный этап подготовки поверхности заключается в обезжиривании. Для этого можно использовать кусочек мягкой ткани, не оставляющей волокон, смоченный спиртом, бензином или ацетоном. Здесь следует обратить внимание на чистоту поверхности платы после обезжиривания, поскольку в последнее время стали попадаться ацетон и спирт со значительным количеством примесей, которые оставляют на плате после высыхания беловатые разводы. Если это так, то стоит поискать другой обезжиривающий состав. После обезжиривания плату следует промыть в проточной холодной воде. Качество очистки можно контролировать, наблюдая за степенью смачивания водой поверхности меди. Полностью смоченная водой поверхность, без образования на ней капель и разрывов пленки воды, является показателем нормального уровня очистки. Нарушения в этой пленке воды указывают, что поверхность очищена недостаточно.
Нанесение защитного покрытия
Нанесение защитного покрытия является самым важным этапом в процессе изготовления печатных плат, и именно им на 90 % определяется качество изготовленной платы. В настоящее время в радиолюбительской среде наиболее популярными являются три способа нанесения защитного покрытия. Мы их рассмотрим в порядке возрастания качества получаемых при их использовании плат.
1. Ручное нанесение защитного покрытия. При этом способе чертеж печатной платы переносится на стеклотекстолит вручную при помощи какого-либо пишущего приспособления. В последнее время в продаже появилось множество маркеров, краситель которых не смывается водой и дает достаточно прочный защитный слой. Кроме того, для ручного рисования можно использовать рейсфедер или какое-либо другое приспособление, заправленное красителем. Так, например, удобно использовать для рисования шприц с тонкой иглой (лучше всего для этих целей подходят инсулиновые шприцы с диаметром иглы 0,3-0,6 мм), обрезанной до длины 5-8 мм. При этом шток в шприц вставлять не следует - краситель должен поступать свободно под действием капиллярного эффекта. Также вместо шприца можно использовать тонкую стеклянную или пластмассовую трубку, вытянутую над огнем для достижения нужного диаметра. Особое внимание следует обратить на качество обработки края трубки или иглы: при рисовании они не должны царапать плату, в противном случае можно повредить уже закрашенные участки. В качестве красителя при работе с такими приспособлениями можно использовать разбавленный растворителем битумный или какой-либо другой лак. При этом необходимо подобрать консистенцию красителя таким образом, чтобы он свободно поступал при рисовании, но в то же время не вытекал и не образовывал капель на конце иглы или трубки. Стоит отметить, что ручной процесс нанесения защитного покрытия достаточно трудоемок и годится только в тех случаях, когда необходимо очень быстро изготовить небольшую плату. Минимальная ширина дорожки, которой можно добиться при рисовании вручную, составляет порядка 0,5 мм.
2. Использование «технологии лазерного принтера и утюга». Данная технология появилась сравнительно недавно, однако сразу получила широчайшее распространение в силу своей простоты и высокого качества получаемых плат. Основу технологии составляет перенос тонера (порошка, используемого при печати в лазерных принтерах) с какой-либо подложки на печатную плату. При этом возможны два варианта: либо используемая подложка отделяется от платы перед травлением, либо, если в качестве подложки используется алюминиевая фольга, она стравливается вместе с медью.
Первый этап использования данной технологии заключается в печати зеркального изображения рисунка печатной платы на подложке. Параметры печати принтера при этом должны быть установлены на максимальное качество печати (поскольку в этом случае происходит нанесение слоя тонера наибольшей толщины). В качестве подложки можно использовать тонкую мелованную бумагу (обложки от различных журналов), бумагу для факсов, алюминиевую фольгу. При использовании слишком тонкой бумаги или фольги может потребоваться приклеить их по периметру на лист плотной бумаги. В идеальном случае принтер должен иметь тракт для прохождения бумаги без перегибов, что предотвращает смятие подобного бутерброда внутри принтера. Большое значение это имеет и при печати на фольге или основе от пленки Oracal, поскольку тонер на них держится очень слабо, и в случае перегиба бумаги внутри принтера существует большая вероятность, что придется потратить несколько неприятных минут на очистку печки принтера от налипших остатков тонера. Лучше всего, если принтер может пропускать бумагу через себя горизонтально, печатая при этом на верхней стороне. Также помимо принтера можно использовать и копировальный аппарат, применение которого иногда дает даже лучшие по сравнению с принтерами результаты за счет нанесения толстого слоя тонера. Основное требование, которое предъявляется к подложке, - легкость ее отделения от тонера. Кроме того, в случае использования бумаги она не должна оставлять в тонере ворсинок. При этом возможны два варианта: либо подложка после перенесения тонера на плату просто снимается, либо предварительно размачивается в воде и потом постепенно отделяется (мелованная бумага).
Перенос тонера на плату заключается в прикладывании подложки с тонером к предварительно очищенной плате с последующим нагревом до температуры, немного превышающей температуру плавления тонера. Возможно огромное количество вариантов как это сделать, однако наиболее простым является прижим подложки к плате горячим утюгом. При этом для равномерного распределения давления утюга на подложку рекомендуется проложить между ними несколько слоев плотной бумаги. Очень важным вопросом является температура утюга и время выдержки. Эти параметры варьируются в каждом конкретном случае, поэтому, возможно, придется поставить не один эксперимент, прежде чем вы получите качественные результаты. Критерий тут один: тонер должен успеть достаточно расплавиться, чтобы прилипнуть к поверхности платы, и в то же время должен не успеть дойти до полужидкого состояния, чтобы края дорожек не расплющились. После «приварки» тонера к плате необходимо отделить подложку (кроме случая использования в качестве подложки алюминиевой фольги: ее отделять не следует, поскольку она растворяется практически во всех травильных растворах). Пленка для лазерных принтеров просто аккуратно снимаются, в то время как обычная бумага требует предварительного размачивания в горячей воде.
Стоит отметить, что в силу особенностей печати лазерных принтеров слой тонера в середине больших сплошных полигонов достаточно мал, поэтому следует по мере возможности избегать использования таких областей на плате, либо после снятия подложки придется подретушировать плату вручную. В целом использование данной технологии после некоторой тренировки позволяет добиться ширины дорожек и зазоров между ними вплоть до 0,3 мм.
3. Применение фоторезистов. Фоторезистом называется чувствительное к свету вещество, которое под воздействием освещения изменяет свои свойства. В последнее время на российском рынке появилось несколько видов импортных фоторезистов в аэрозольной упаковке, которые особенно удобны для использования в домашних условиях. Сущность применения фоторезиста заключается в следующем: на плату с нанесенным на нее слоем фоторезиста накладывается фотошаблон и производится ее засветка, после чего засвеченные (или незасвеченные) участки фоторезиста смываются специальным растворителем, в качестве которого обычно выступает едкий натр (NaOH). Все фоторезисты делятся на две категории: позитивные и негативные. Для позитивныхфоторезистов дорожке на плате соответствует черный участок на фотошаблоне, а для негативных, соответственно, прозрачный. Наибольшее распространение получили позитивныефоторезисты как наиболее удобные в применении. Остановимся более подробно на позитивныхфоторезистов в аэрозольной упаковке. Первым этапом является подготовка фотошаблона. В домашних условиях его можно получить, напечатав рисунок платы на лазерном принтере на пленке. При этом необходимо особое внимание уделить плотности черного цвета на фотошаблоне, для чего необходимо отключить в настройках принтера все режимы экономии тонера и улучшения качества печати. Кроме того, некоторые фирмы предлагают вывод фотошаблона на фотоплоттере - при этом вам гарантирован качественный результат.
На втором этапе на предварительно подготовленную и очищенную поверхность платы наносится тонкая пленка фоторезиста. Делается это путем распыления его с расстояния порядка 20 см. При этом следует стремиться к максимальной равномерности получаемого покрытия. Кроме того, очень важно обеспечить отсутствие пыли в процессе распыления - каждая попавшая в фоторезист пылинка неминуемо оставит свой след на плате.
После нанесения слоя фоторезиста необходимо высушить получившуюся пленку. Делать это рекомендуется при температуре 70-80 градусов, причем сначала нужно подсушить поверхность при небольшой температуре и лишь затем постепенно довести температуру до нужного значения. Время сушки при указанной температуре составляет порядка 20-30 мин. В крайнем случае допускается сушка платы при комнатной температуре в течение 24 часов. Платы с нанесеннымфоторезистом должны храниться в темном прохладном месте.
Следующим после нанесения фоторезиста этапом является экспонирование. При этом на плату накладывается фотошаблон (желательно стороной печати к плате: это способствует увеличению четкости при экспонировании), который прижимается тонким стеклом или куском плексигласа. При достаточно небольших размерах плат для прижима можно использовать крышку от коробки компакт-диска либо отмытую от эмульсии фотопластинку. Поскольку область максимума спектральной чувствительности большинства современных фоторезистов приходится на ультрафиолетовый диапазон, для засветки желательно использовать лампу с большой долей УФ-излучения в спектре (ДРШ, ДРТ и др.). В крайнем случае, можно использовать мощную ксеноновую лампу. Время экспонирования зависит от многих причин (тип и мощность лампы, расстояние от лампы до платы, толщина слоя фоторезиста, материал прижимного покрытия и др.) и подбирается экспериментально. Однако в целом время экспонирования составляет обычно не более 10 минут даже при экспонировании под прямыми солнечными лучами.
Проявление большинства фоторезистов осуществляется раствором едкого натра (NaOH) - 7 граммов на литр воды. Лучше всего использовать свежеприготовленный раствор, имеющий температуру 20-25 градусов. Время проявления зависит от толщины пленки фоторезиста и находится в пределах от 30 секунд до 2 минут. После проявления плату можно подвергать травлению в обычных растворах, поскольку фоторезистустойчив к воздействию кислот. При использовании качественных фотошаблонов применение фоторезиста позволяет получить дорожки шириной вплоть до 0,15-0,2мм.
1.3 Травление
Известно много составов для химического стравливания меди. Все они отличаются скоростью протекания реакции, составом выделяющихся в результате реакции веществ, а также доступностью необходимых для приготовления раствора химических реактивов.
1. Хлорное железо (FeCl) - пожалуй, самый известный и популярный реактив. Сухое хлорное железо растворяется в воде до тех пор, пока не будет получен насыщенный раствор золотисто-желтого цвета (для этого потребуется порядка двух столовых ложек на стакан воды). Процесс травления в этом растворе может занять от 10 до 60 минут. Время зависит от концентрации раствора, температуры и перемешивания. Перемешивание значительно ускоряет протекание реакции. В этих целях удобно использовать компрессор для аквариумов, который обеспечивает перемешивание раствора пузырьками воздуха. Также реакция ускоряется при подогревании раствора. По окончании травления плату необходимо промыть большим количеством воды, желательно с мылом (для нейтрализации остатков кислоты). К недостаткам данного раствора следует отнести образование в процессе реакции отходов, которые оседают на плате и препятствуют нормальному протеканию процесса травления, а также сравнительно низкую скорость реакции.
2. Персульфат аммония - светлое кристаллическое вещество, растворяется в воде исходя из соотношения 35 г вещества на 65 г воды. Процесс травления в этом растворе занимает порядка 10 минут и зависит от площади медного покрытия, подвергающегося травлению. Для обеспечения оптимальных условий протекания реакции раствор должен иметь температуру порядка 40 градусов и постоянно перемешиваться. По окончании травления плату необходимо промыть в проточной воде. К недостаткам этого раствора относится необходимость поддержания требуемого температурного режима и перемешивания.
3. Раствор соляной кислоты (HCl) и перекиси водорода (H 2 O 2). Для приготовления этого раствора необходимо к 770 мл воды добавить 200 мл 35 % соляной кислоты и 30 мл 30 % перекиси водорода. Готовый раствор должен храниться в темной бутылке, не закрытой герметически, так как при разложении перекиси водорода выделяется газ. Внимание: при использовании данного раствора необходимо соблюдать все меры предосторожности при работе с едкими химическими веществами. Все работы необходимо производить только на свежем воздухе или под вытяжкой. При попадании раствора на кожу ее необходимо немедленно промыть большим количеством воды. Время травления сильно зависит от перемешивания и температуры раствора и составляет порядка 5-10 минут для хорошо перемешиваемого свежего раствора при комнатной температуре. Не следует нагревать раствор выше 50 градусов. После травления плату необходимо промыть проточной водой.
Данный раствор после травления можно восстанавливать добавлением H 2 O 2 . Оценка требуемого количества перекиси водорода осуществляется визуально: погруженная в раствор медная плата должна перекрашиваться из красного в темнокоричневый цвет. Образование пузырей в растворе свидетельствует об избытке перекиси водорода, что ведет к замедлению реакции травления. Недостатком данного раствора является необходимость строгого соблюдения при работе с ним всех мер предосторожности.
Очистка заготовки, сверловка, нанесение флюса, лужение
После завершения травления и промывки платы необходимо очистить ее поверхность от защитного покрытия. Сделать это можно каким-либо органическим растворителем, например, ацетоном.
Далее необходимо просверлить все отверстия. Делать это нужно остро заточенным сверлом при максимальных оборотах электродвигателя. В случае, если при нанесении защитного покрытия в центрах контактных площадок не было оставлено пустого места, необходимо предварительно наметить отверстия (сделать это можно, например, шилом). Прижимное усилие в процессе сверления не должно быть слишком большим, чтобы на обратной стороне платы не образовывались бугорки вокруг отверстий. Обычные электродрели практически не подходят для сверления плат, поскольку, во-первых, имеют низкие обороты, а во-вторых, обладают достаточно большой массой, что затрудняет регулирование прижимного усилия. Удобнее всего для сверления плат использовать электродвигатели типа ДПМ-35Н и им подобные с насаженным на их вал небольшим цанговым патроном. После сверловки нужно обработать отверстия: удалить все зазубрины и заусенцы. Сделать это можно наждачной бумагой.
Следующим этапом является покрытие платы флюсом с последующим лужением. Можно использовать специальные флюсы промышленного изготовления (лучше всего смываемые водой или вообще не требующие смывания) либо просто покрыть плату слабым раствором канифоли в спирте. Лужение можно производить двумя способами: погружением в расплав припоя либо при помощи паяльника и металлической оплетки, пропитанной припоем. В первом случае необходимо изготовить железную ванночку и заполнить ее небольшим количеством сплава Розе или Вуда. Расплав должен быть полностью покрыт сверху слоем глицерина во избежание окисления припоя. Для нагревания ванночки можно использовать перевернутый утюг или электроплитку. Плата погружается в расплав, а затем вынимается с одновременным удалением излишков припоя ракелем из твердой резины.
1.4 Типы микросхем
Микросхемы выпускаются в двух конструктивных вариантах - корпусном и бескорпусном.
Бескорпусная микросхема - это полупроводниковый кристалл, предназначенный для монтажа в гибридную микросхему или микросборку.
Корпус - это часть конструкции микросхемы, предназначенная для защиты от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Корпуса стандартизованы для упрощения технологического процесса изготовления изделий из разных микросхем. Число стандартных корпусов исчисляется сотнями! В российских корпусах расстояние между выводами измеряется в миллиметрах и наиболее часто это 2,5 мм или 1,25 мм. У импортных микросхем расстояние измеряют в дюймах, используя величину 1/10 или 1/20 дюйма, что соответствует 2,54 и 1,28 мм. В корпусах до 16 выводов эта разница не значительна, а при больших размерах идентичные корпуса уже несовместимы.
В современных импортных корпусах для поверхностного монтажа применяют и метрические размеры: 0,8 мм; 0,65 мм и другие.
Для герметизации полупроводниковых микросхем используются металлические, керамические или пластмассовые корпуса различной формы. Для процессоров производства Intel используются корпуса типа PGA (PinGridArray). Это керамический корпус, ряды золоченых выводов которого расположены по периметру корпуса перпендикулярно его плоскости. В зависимости от модели процессора корпус имел разные размеры и количество выводов (контактов).
В ходе учебной практике нами были использованы три типа интегральных микросхем:
1) К155ЛА3:Микросхема представляет собой четыре логических элемента 2И-НЕ. Корпус К155ЛА3 типа 201.14-1, масса не более 1 г и у КМ155ЛА3 типа 201.14-8, масса не более 2,2 г.
Рисунок 4
1,2,4,5,9,10,12,13-входы 3-выход; 6-выход; 7-общий; 8-выход 11-выход 14-напряжение питания
Электрические параметры
1 |
Номинальное напряжение питания |
5 В 5 % |
|
2 |
Выходное напряжение низкого уровня |
не более 0,4 В |
|
3 |
Выходное напряжение высокого уровня |
не менее 2,4 В |
|
4 |
Напряжение на антизвонном диоде |
не менее -1,5 В |
|
5 |
Входной ток низкого уровня |
не более -1,6 мА |
|
6 |
Входной ток высокого уровня |
не более 0,04 мА |
|
7 |
Входной пробивной ток |
не более 1 мА |
|
8 |
Ток короткого замыкания |
-18...-55 мА |
|
9 |
Ток потребления при низком уровне выходного напряжения |
не более 22 мА |
|
10 |
Ток потребления при высоком уровне выходного напряжения |
не более 8 мА |
|
11 |
Потребляемая статическая мощность на один логический элемент |
не более 19,7 мВт |
|
12 |
Время задержки распространения при включении |
не более 15 нс |
|
13 |
Время задержки распространения при выключении |
не более 22 нс |
2)К155ТМ2:Микросхема представляет собой два независимых D-триггера, срабатывающих по положительному фронту тактового сигнала. Корпус К155ТМ2 типа 201.14-2, масса не более 1 г и у КМ155ТМ2 типа 201.14-8, масса не более 2,2 г.
Условное графическое обозначение
Рисунок 5 - 1 - инверсный вход установки "0"; 2 - вход ; 3 - вход синхронизации ; 4 - инверсный вход установки "1" ; 5 - выход ; 6 - выход инверсный; 7 - общий; 8 - выход инверсный; 9 - вход ; 10 - инверсный вход установки "1" ; 11 - вход синхронизации; 12 - вход ; 13 - инверсный вход установки "0" ; 14 - напряжение питания
Электрические параметры
1 |
Номинальное напряжение питания |
5 В 5 % |
|
2 |
Выходное напряжение низкого уровня |
не более 0,4 В |
|
3 |
Выходное напряжение высокого уровня |
не менее 2,4 В |
|
4 |
Напряжение на антизвонном диоде |
не менее -1,5 В |
|
5 |
Входной ток низкого уровня по входам 2,4,10,12 по входам 1,3,11,13 |
не более -1,6 мА не более -3,2 мА |
|
6 |
Входной ток высокого уровня по входам 2,12 по входам 4,3,11,10 |
не более 0,04 мА не более 0,08 мА |
|
7 |
Входной пробивной ток |
не более 1 мА |
|
8 |
Ток короткого замыкания |
-18...-55 мА |
|
9 |
Ток потребления |
не более 30 мА |
|
10 |
Потребляемая статическая мощность на один триггер |
не более 78,75 мВт |
|
11 |
Время задержки распространения при включении |
не более 40 нс |
|
12 |
Время задержки распространения при выключении |
не более 25 нс |
|
13 |
Тактовая частота |
не более 15 мГц |
Зарубежные аналоги
SN7474N, SN7474J
3) К155ТВ1- Микросхема представляет собой два независимых тактируемых J-K триггера с установкой в 0 и 1. Считывание информации с входов J и K происходит во время положительного перепада на входе С, а на выходы она передается во время отрицательного перепада, наличие низкого уровня на входах R и S одновременно дает неопределенное состояние на выходах. Логические уровни на J и K не должны изменяться, пока на С высокий уровень. Если соединить выводы J и K триггер будет работать как обычный счетный (делить частоту на 2).
Корпус К155ТВ1 типа 201.14-2, масса не более 1 г и у КМ155ТВ1 типа 201.14-8, масса не более 2,2 г.
Рисунок 6 - 1 - свободный; 2 - вход ; 3-5 - входы ; 6 - выход ; 7 - общий; 8 - выход; 9-11 - входы ; 12 - вход ; 13 - вход ; 14 - напряжение питания
Электрические параметры
1 |
Номинальное напряжение питания |
5 В 5 % |
|
2 |
Выходное напряжение низкого уровня |
не более 0,4 В |
|
3 |
Выходное напряжение высокого уровня |
не менее 2,4 В |
|
4 |
Напряжение на антизвонном диоде |
не менее -1,5 В |
|
5 |
Входной ток низкого уровня по входам 3-5,9-11 по входам 2,12,13 |
не более -1,6 мА не более -3,2 мА |
|
6 |
Входной ток высокого уровня |
не более 0,04 мА |
|
7 |
Входной пробивной ток |
не более 1 мА |
|
8 |
Ток короткого замыкания |
-18...-55 мА |
|
9 |
Ток потребления |
не более 20 мА |
|
10 |
Потребляемая статическая мощность |
не более 105 мВт |
|
11 |
Время задержки распространения при включении |
не более 40 нс |
|
12 |
Время задержки распространения при выключении |
не более 25 нс |
|
13 |
Тактовая частота |
не более 15 мГц |
2. ОПИСАНИЕ УСТРОЙСТВ
D-триггер (триггер с входом для данных) имеет один или два входа (один из них синхронизирующий). Выходной сигнал триггера повторяет входной сигнал, если синхронизирующий вход С=1. Выход триггера не меняет своего состояния при условии, что С=0. D-триггер реализует логическую функцию: Qt+1=Dt
Рисунок 7 - Принципиальная схема D триггера
проводка печатный плата триггер
Рисунок 8 - Монтажная схема D-триггер на ИМС К155ТМ2
RS-триггер - триггер, который сохраняет своё предыдущее состояние при нулевых входах и меняет своё выходное состояние при подаче на один из его входов единицы.
При подаче единицы на вход S (от англ. Set - установить) выходное состояние становится равным логической единице. А при подаче единицы на вход R (от англ. Reset - сбросить) выходное состояние становится равным логическому нулю. Состояние, при котором на оба входа R и S одновременно поданы логические единицы, в простейших реализациях является запрещённым, в более сложных реализациях RS-триггер переходит в третье состояние QQ=00. Одновременное снятие двух «1» практически невозможно. При снятии одной из «1» RS-триггер переходит в состояние, определяемое оставшейся «1». Таким образом RS-триггер имеет три состояния, из которых два устойчивых (при снятии сигналов управления RS-триггер остаётся в установленном состоянии) и одно неустойчивое (при снятии сигналов управления RS-триггер не остаётся в установленном состоянии, а переходит в одно из двух
Рисунок 9 - Принципиальная и монтажная схема RS-триггера
Синхронные RS-триггеры. Синхронный одноступенчатый RS-триггер отличается от асинхронного наличием С-входа для синхронизирующих (тактовых) импульсов. Синхронный триггер состоит из асинхронного RS-триггера и двух логических элементов на его входе. Рассмотрим работу триггера, построенного на элементах И-НЕ (рис. 2.2, a).
При С = 0 входные логические элементы 1 и 2 блокированы: их состояния не зависят от сигналов на S- и R-входах и соответствуют логической 1, . е. q1 = q2 = 1. Для асинхронного RS-триггера на элементах И-НЕ такая комбинация входных сигналов является нейтральной, поэтому триггер находится в режиме хранения записанной информации. При С = 1 входные логические элементы открыты для восприятия информационных сигналов и передачи их на входы асинхронного RS-триггера. Таким образом, синхронный триггер при наличии разрешающего сигнала на S-входе работает по правилам для асинхронного триггера. Временные процессы в триггере при его переключении из нулевого состояния в единичное иллюстрируются диаграммами на рис. 4.13, в, на которых обозначено: t1, t2, t3, t4 - задержки переключения соответствующих логических элементов; t' с, t" с - длительности тактовых импульсов и пауз между ними. Из диаграмм следует, что минимальный период повторения тактовых импульсов равен 4tзд.р,ср, а наибольшая частота F = 1/4tзд.р,ср. Синхронные RS-триггеры строятся и на логических элементах ИЛИ-НЕ, И-ИЛИ-НЕ и их сочетаниях.
Рисунок 10 - Синхронный RS-триггер: а - на логических элементах И-НЕ; б - условное обозначение; в - временные диаграммы; г - RS-триггер на логических элементах ИЛИ-НЕ; д - условное обозначение RS-триггера
Рисунок 11 - Монтажная схема RSС-триггера
Четырехразрядный счетчик импульсов.В цифровой технике передаваемую, принятую или преобразованную информацию выражают набором символов двоичной системы счисления - двоичным кодом.
Любое привычное нам десятичное число может быть представлено как совокупность единиц и нулей этой системы. Десятичное число 7, например, в двоичной системе пишут так: 0111. Здесь крайний левый символ - старший разряд, а крайний правый символ-младший разряд четырехразрядного двоичного кодового числа. Перевод этого двоичного числа в число десятичной системы счисления выполняют в таком порядке: 0111=0X23+1X22+1X21+1Х20 =0+4+2+1 =7.
В основе преобразования двоичного числа в десятичное лежит число 2. Сам же код в этом случае называют двоичным натуральным или кодом 8-4-2-1.
Переводить десятичные числа в двоичные и обратно в пределах четырехразрядного кода вам поможет таблица 1.
Таблица 1
Десятичное число |
Двоичное число |
|
0 |
0000 |
|
1 |
0001 |
|
2 |
0010 |
|
3 |
0011 |
|
4 |
0100 |
|
5 |
0101 |
|
6 |
0110 |
|
7 |
0111 |
|
8 |
1000 |
|
9 |
1001 |
|
10 |
1010 |
|
11 |
1011 |
|
12 |
1100 |
|
13 |
1101 |
|
14 |
1110 |
|
15 |
1111 |
Чтобы прочнее закрепить в памяти принцип кодирования цифровой информации в двоичной системе, предлагаем опытным путем проанализировать работу четырехразрядного двоичного счетчика, собранного, например, на JK-триггерах по схеме, приведенной на рис. 8.
Рисунок 12 - Четырехразрядный счетчик
Все детали счетчика смонтируйте на макетной панели. К прямым выходам всех триггеров подключите светодиоды или иные индикаторы, по которым можно было бы визуально наблюдать за логическими состояниями триггеров. Функцию источника входных счетных импульсов большой длительности выполняет RS-триггер, собранный на логических элементах 2И-НЕ DD1.1, DD1.2 и управляемый кнопкой SB1.
Заготовьте таблицу (табл. 2), в которую символами двоичной системы счисления будете записывать логические состояния триггеров счетчика импульсов. В крайней левой колонке «Счет» сразу же запишите порядковые номера входных импульсов от 0 до 15. Во второй колонке слева (Q1) записывайте логическое состояние первого триггера при каждом очередном импульсе, в третьей колонке (Q2) - логическое состояние второго триггера и т.д.
Итак, проверьте монтаж, надежность паек и, если ошибок не обнаружите, включите питание. При этом некоторые светодиоды могут загореться, сигнализируя о том, что относящиеся к ним триггеры в момент включения питания оказались в единичном состоянии. Нажмите на кнопку SB2, чтобы на вход R триггеров подать напряжение низкого уровня и тем самым установить все триггеры счетчика в нулевое состояние. Теперь все индикаторы погасли. Это логическое состояние всех триггеров четырехразрядного счетчика импульсов обозначьте в таблице нулями.
Таблица 2
Счет |
Q1 |
Q2 |
Q3 |
Q4 |
|
0 |
0 |
0 |
0 |
0 |
|
1 |
1 |
0 |
0 |
0 |
|
2 |
0 |
1 |
0 |
0 |
|
3 |
1 |
1 |
0 |
0 |
|
4 |
0 |
0 |
1 |
0 |
|
5 |
1 |
0 |
1 |
0 |
|
6 |
0 |
1 |
1 |
0 |
|
7 |
1 |
1 |
1 |
0 |
|
8 |
0 |
0 |
0 |
1 |
|
9 |
1 |
0 |
0 |
1 |
|
10 |
0 |
1 |
0 |
1 |
|
11 |
1 |
1 |
0 |
1 |
|
12 |
0 |
0 |
1 |
1 |
|
13 |
1 |
0 |
1 |
1 |
|
14 |
0 |
1 |
1 |
1 |
|
15 |
1 |
1 |
1 |
1 |
Теперь кратковременно нажмите и отпустите кнопку SB1. При этом RS-триггер переключится из нулевого состояния в единичное сам и напряжением высокого уровня на прямом выходе переключит в такое же состояние первый триггер счетчика. В результате включится светодиод HL1. Остальные триггеры счетчика будут сохранять нулевое состояние, и их светодиоды, естественно, светить не должны.
Запишем это состояние триггеров в таблицу: в колонку Ql-1, в остальные-0. Нажмите второй раз на кнопку SB1, имитируя второй входной импульс. Сразу же погаснет первый светодиод и включится второй - HL2. Теперь в единичном состоянии оказался второй триггер, а остальные в нулевом. Запишем эти логические состояния триггеров в строку, соответствующую второму входному импульсу.
Третий входной импульс снова установит первый триггер счетчика в единичное состояние и не изменит состояние второго триггера, поэтому будут светить индикаторы HL1 и HL2. В таблице такое состояние счетчика запишите в таком виде: 1100. При четвертом входном импульсе будет светить только светодиод HL3, а в таблице должна появиться запись 0010.
Так, не торопясь, нажимая на кнопку SB1 и считывая по свечению индикаторов состояния триггеров, вы постепенно заполните всю таблицу логических состояний четырехразрядного счетчика. Подведем итоги. Первый триггер вашего опытного счетчика представляет собой младший разряд, а четвертый - старший разряд четырехразрядного счетчика. Соответственно расположены в таблице и колонки символов логических состояний триггеров. Но в двоичной системе символы младших разрядов по отношению к старшим располагают с правой стороны. Поэтому, чтобы по составленной вами таблице определить кодовое состояние счетчика при каждом из пятнадцати входных импульсов, записи в ней следует читать справа налево или предварительно таблицу перевернуть зеркально.
В результате получится: при первом входном импульсе-0001, при втором-0010, при третьем-0011 и т. д. до пятнадцатого импульса, когда кодовое состояние счетчика будет 1111, после чего счет импульсов повторяется. Короче говоря, эта таблица кода состояния счетчика, но, конечно, в перевернутом виде.
ЗАКЛЮЧЕНИЕ
В ходе производственной практики я освоил профессиональные первоначальные навыки. Научился разрабатывать электрические схемы на фальгированномгетинаксе, изготавливать печатные платы, и производить монтаж и демонтаж деталей. Теперь я умею определять номиналы деталей по их маркировки, как цифровой, так и цветной для резисторов. Освоил навесной и печатный метод монтажа деталей. Научился пользоваться электромонтажным инструментом. Более подробно ознакомился с программой Sprint-layout и работу со справочниками.
Также во время практике я исследовал электромонтажный стенд и разработали три лабораторные работы, теперь я могу провести дома электропроводку к осветительным приборам и устройствам электропитания.
В ходе практики я изготовил пять устройств: RS-триггер, RSC-триггер, D - триггер, четырехбитный счетчик импульсов, светодиодную цветомузыку. Теперь светодиодная цветомузыка стала украшением моего стола.
Размещено на Allbest.ru
...Подобные документы
Материалы, используемые при изготовлении однослойных печатных плат. Маркировка печатных плат, контроль и автоматизация технологического процесса изготовления однослойных печатных плат. Система печатных проводников. Длина сигнальных проводников в плате.
курсовая работа [1,2 M], добавлен 14.06.2011Принципиальная схема усилителя-формирователя и блока питания, параметры их элементов. Основные виды фоторезисторов. Вид статической характеристики усилителя формирователя. Принципиальная схема моста постоянного тока с терморезистором и фоторезистором.
курсовая работа [430,8 K], добавлен 26.01.2010Условные графические изображения элементов. Правила выполнения принципиальных электрических схем. Требования ГОСТов к чертежам печатных плат, к графическим документам. Порядок выполнения чертежа печатной платы устройства гальванической развязки.
курсовая работа [976,7 K], добавлен 08.12.2011Внешний вид ряда датчиков: света, давления, температуры, скорости, перемещения. Перечень разновидностей фоторезисторов и перечисление области их применения. Внешний вид и принципиальная схема работы лабораторного стенда "Исследование фоторезисторов".
презентация [3,2 M], добавлен 14.03.2011Структура универсального триггера. Принцип действия устройства. Выбор и обоснование типов элементов. Корпусы микросхем и выбор в библиотеках DT. Проектирование триггера в САПР DipTrace. Электрическая принципиальная схема универсального триггера.
курсовая работа [1,3 M], добавлен 15.11.2014Назначение и основные функциональные элементы радиопередатчика телеметрической системы. Структурная и принципиальная схемы устройства. Характеристики микросхем: MAX4617, MAX1178, КХО-210, RF 2713. Конструкция печатных плат и используемые программы САПР.
курсовая работа [603,8 K], добавлен 19.11.2010Схема подключения сумеречного включателя. Принципиальная схема ФР-2 с выносным фотоэлементом. Выбор печатной платы. Проверка падения напряжения. Назначение и порядок пользования инструкцией по ремонту. Требования безопасности, монтаж проводов и линий.
курсовая работа [1,9 M], добавлен 22.06.2015Методы создания печатных плат и характерные размеры элементов. Субтрактивный, аддитивный и полуаддитивный метод. Размеры сетки для отображения печатных плат, контактных площадок и отверстий. Создание макета печатной платы в среде Sprint-Layout 5.0.
дипломная работа [2,5 M], добавлен 11.01.2016Процесс производства печатных плат. Методы создания электрических межслойных соединений. Химическая и электрохимическая металлизация. Контроль качества химического меднения. Растворы для тонкослойного и меднения. Виды брака на линии химического меднения.
курсовая работа [2,2 M], добавлен 14.05.2011Анализ создания электрической принципиальной схемы. Программные средства разработки для микроконтроллера. Описание технологии изготовления печатной платы. Мероприятия по устранению или уменьшению влияния вредных факторов при производстве печатных плат.
дипломная работа [855,4 K], добавлен 13.06.2021Проектирование универсального цифрового контроллера, его функции, возможности и недостатки. Разработка структурной схемы устройства. Расчет элементов печатных плат. Компоновочный расчет устройства. Стоимостная оценка затрат, эргономичность устройства.
дипломная работа [1,5 M], добавлен 29.06.2010Конструкция современной ЭВМ. Требования по условиям эксплуатации. Интегральные микросхемы, используемые в печатной плате. Разработка конструкции блока. Задачи компоновки и покрытия. Критерии оптимального размещения модулей. Расчет теплового режима.
курсовая работа [609,6 K], добавлен 16.08.2012Определение элементной базы электронного устройства. Определение технологии изготовления печатной платы. Обзор современных систем автоматизированного проектирования печатных плат. Анализ трудоемкости работ по проектированию электронного устройства.
курсовая работа [1,9 M], добавлен 18.12.2013Понятие координатографа как прибора для быстрого и точного нанесения на карту или план точек по их прямоугольным координатам. Операция изготовления фотошаблонов в производстве печатных плат. Классификация фотоплоттеров, характеристика основных видов.
презентация [808,9 K], добавлен 13.12.2013Принципиальная схема установки для ДТА. Вещества, использующиеся для изготовления держателей образцов-блоков и тиглей. Принцип действия и сфера применения дериватографа. Описание модуля термогравиметрического и дифференциального термического анализа.
презентация [407,1 K], добавлен 04.11.2015Характеристика оборудования фирмы LPKF для производства печатных плат в домашних условиях. Исследование набора инструментов для скрайбирования и сверления, конструкции фрезерного станка для высокоточной обработки, оборудования для металлизации отверстий.
курсовая работа [1,2 M], добавлен 07.12.2011Схема электронной сирены на транзисторах. Монтажная схема, печатная плата мощной сирены для охранной сигнализации. Внешний вид конденсаторов, их состав и обозначения. Принцип действия, способы применения транзисторов. Схема сирены на PIC-микроконтроллере.
курсовая работа [4,3 M], добавлен 15.02.2015Топология и элементы МОП-транзистора с диодом Шоттки. Последовательность технологических операций его производства. Разработка технологического процесса изготовления полупроводниковых интегральных схем. Характеристика используемых материалов и реактивов.
курсовая работа [666,0 K], добавлен 06.12.2012Основные понятия и принципы работы GSM-сетей. Сущность метода и структура временного разделения каналов (TDMA). Принцип работы генератора пакетов. Особенности изготовления печатных плат. Технические характеристики блокиратора сигнала сотовых телефонов.
курсовая работа [2,5 M], добавлен 09.12.2012Анализ блок-схемы включения приемника излучения и вариантов предварительных усилителей, выбор типа фоторезистора по минимальному уровню флуктуационных шумов. Принципиальная схема и уровни шума предварительных усилителей на полевом транзисторе и ОУ.
курсовая работа [409,3 K], добавлен 16.01.2015