Кодирование в цифровых устройствах
Основные процессы, происходящие в обычных аналоговых электронных схемах. Методы кодирования, применяемые в цифровых устройствах (параллельный, весовой, числовой), их характеристика. Процедура аналого-цифрового преобразования непрерывного сигнала.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 01.05.2013 |
Размер файла | 691,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Методы кодирования, применяемые в цифровых устройствах
В системах управления различными объектами и процессами, при измерении физических величин первичная информация, получаемая от различных датчиков, как правило, поступает в аналоговой форме. Эту информацию в дальнейшем необходимо обрабатывать в соответствии с заданным алгоритмом. Обработка аналоговых сигналов, хранение, передача, отображение представляет определенные трудности и осуществляется с большой погрешностью. Обработку этой информации удобнее вести в цифровой форме.
Процессы, происходящие в обычных аналоговых электронных схемах, можно рассматривать как результат математических вычислений. Например, усиление можно считать умножением на константу, смешивание сигналов - сложением, а ослабление в делителе напряжения - делением на константу, модуляцию - умножением двух чисел. Для фильтрации сигналов можно использовать цифровые фильтр г .
В будущем обработка сигналов, их передача и регистрация в большинстве случаев будет осуществляться цифровыми методами. Достоинством цифровой обработки сигналов являются абсолютная повторяемость, свободная от влияния случайных изменений параметров, их разброса, легкость цифрового управления и запоминание всех функций. Возможность свободно манипулировать сигналами во времени обеспечивает реализацию такой обработки, которая слишком дорога или невозможна в аналоговом исполнении.
Любая система, использующая цифровую обработку сигналов, предполагает преобразование сигналов из аналогового вида в цифровой и затем, после обработки, из цифрового в аналоговый вид. Для этих целей применяются аналого-цифровые (АЦП) и цифро-аналоговые преобразователи (ЦАП).
Рис.1. Непрерывная (а) и квантованная (б) функция
Процедура аналого-цифрового преобразования непрерывного сигнала представляет собой преобразование непрерывной функции напряжения U(t) в последовательность чисел U(tn) , где п = 0,1,2 ..., отнесенных к некоторым фиксированным моментам времени. При дискретизации непрерывная функция U(t) преобразуется в последовательность ее отсчетов U(tn), как показано на рис.1, а.
Вторая операция, называемая квантованием, состоит в том, что мгновенные значения функции U(t) ограничиваются только определенными уровнями, которые называются уровнями квантования. В результате квантования непрерывная функция U(t) принимает вид ступенчатой кривой, показанной на рис.1, б.
Третья операция - кодирование представляет дискретные квантованные величины в виде цифрового кода. С помощью операции кодирования осуществляется условное представление численного значения величины. Переходы от исходной функции U(t) к дискретной и далее к квантованной по уровню сопряжены с некоторой потерей информации. На этапе кодирования подобные потери отсутствуют.
Дискретизация сигнала заключается в регулярном взятии отсчетов его мгновенных значений, называемых выборками.
Чем меньше интервал дискретизации, тем точнее представляется сигнал. Однако при малом интервале дискретизации необходим большой объем памяти и высокое быстродействие АЦП. На рис.2 показаны примеры различного соотношения частоты сигнала и интервала дискретизации. Первый рисунок показывает, что результат будет неудовлетворительным, если частота выборок сравнима с частотой сигнала. Увеличение частоты выборок дает значительно более достоверное представление о сигнале.
Рис. 2. Неправильный (а) и правильный (б) выбор интервала дискретизации
Частоту взятия выборок определяют из теоремы Котельникова:
где - наибольшая частота спектра дискретизируемого сигнала.
Для синусоидального сигнала выборки могут осуществляться по одной на каждый полупериод сигнала. На первый взгляд, это условие не позволит восстановить первоначальный сигнал из выборок. Однако теорема справедливо предполагает, что сигнал, из которого взяты выборки, будет восстанавливаться путем пропускания через фильтр низких частот с крутым срезом. При этом из колебания будут удалены изгибы, которые сформированы высокочастотными составляющими, лежащими в области спектра, лежащей выше требуемой полосы частот.
Рис. 3 Спектр дискретизированного сигнала
На рис. 3 показано, как можно представить теорему Котельникова, представив процесс взятия выборок, как модуляцию.
Колебание с частотой выборок умножается на колебания всех частот в спектре входного сигнала. Результирующий спектр располагается по обе стороны частоты fв. Если частотные составляющие этих компонентов попадают в полосу от 0 до fмакс , то они накладываются на спектральные составляющие исходного сигнала. В этом случае исходный сигнал не может быть восстановлен. Этот эффект носит название искажений вследствие наложения спектров. По этой причине частота выборок должна, по крайней мере, вдвое превосходить частоту fмакс, чтобы избежать перекрытия.
В общем случае выбор частоты дискретизации будет зависеть от вида сигнала выборки и допустимого уровня погрешностей, возникающих при восстановлении исходного сигнала по его отсчетам. Все это требует принимать во внимание при выборе частоты дискретизации, которая определяет требуемое быстродействие АЦП.
При дискретизации возникает погрешность, обусловленная конечным временем одного преобразования и неопределенностью момента времени его окончания. При равномерной дискретизации отсчеты берутся с периодом Тв, однако в эти моменты только начинается процесс преобразования. Окончание этого процесса зависит от времени преобразования АЦП и скорости изменения входной величины. В результате вместо равномерной дискретизации получается дискретизация с переменным периодом. Погрешность, обусловленная этим эффектом, называется апертурной. Апертурным временем называют время, в течение которого сохраняется неопределенность между значением выборки и временем, к которому она относится (рис. 4). С некоторой долей погрешности можно считать апертурное время временем преобразования АЦП.
Обычно для оценки апертурной погрешности используют синусоидальный сигнал, в котором относительная апертурная погрешность
Сравнивая период дискретизации с апертурным временем, получают
Это означает, что для снижения апертурной погрешности приходится увеличивать частоту преобразования АЦП. [1]
Рис.4. Апертурная погрешность
Задача АЦ-преобразователя состоит в преобразовании входного напряжения в пропорциональное ему число. При этом можно выделить три принципиально различных метода: параллельный, весовой, числовой.
В первом случае входное напряжение одновременно сравнивают с и опорными напряжениями и точно определяют, между какими двумя уровнями оно лежит. При этом результат получают в один шаг. Конечно, аппаратурные затраты в этом случае очень велики, так как для каждого возможного числа необходим компаратор. Для области измерений от 0 до 100 с единичным шагом необходимо, следовательно, 100 компараторов.
При весовом методе результат не может быть получен за один шаг, поскольку на каждом шаге определяется лишь один разряд двоичного числа. Сначала устанавливают, превышает ли входное напряжение опорное напряжение старшего разряда. Если оно выше, то старший разряд получает значение «1» и из входного напряжения вычитается опорное. Остаток сравнивают с соседним младшим разрядом и т.д. Очевидно, что для этого необходимо столько шагов сравнения, сколько разрядов в числе и сколько опорных напряжений. Простейший метод - числовой. В этом случае подсчитывается число суммирований опорного напряжения младшего разряда, необходимое для получения входного напряжения. Если максимальное число, которое может быть представлено, равно n, то необходимо, следовательно, максимум n шагов для получения результата. На практике часто используют комбинации различных способов.
2. Параллельный метод кодирования
Рис.5. АЦ-преобразователь, работающий по параллельному методу
На рис 5 показана реализация параллельного способа для 3-разрядного числа. С помощью трех разрядов можно представить восемь различных чисел, включая нуль. Необходимо, следовательно, семь компараторов. Семь соответствующих эквидистантных опорных напряжений образуются с помощью делителя.
Если приложенное входное напряжение не выходит за пределы диапазона от 5/2 до 7/2 ULSB, то компараторы с 1-го до 3-го устанавливаются в состояние «1», а компараторы с 4-го по 7-й-в состояние «0». Необходимы логические схемы, преобразующие эти состояния в число 3. Необходимое преобразование можно произвести, используя шифратор приоритета.
Однако приоритетный шифратор нельзя подсоединять непосредственно к выходам компараторов. Если входное напряжение изменяется, может быть получен ошибочный результат. Рассмотрим, например, переход от трех к четырем, следовательно, в двоичном коде от 011 к 100. Если старший разряд вследствие меньшего времени задержки изменит свое состояние раньше других разрядов, то временно возникнет число 111, т.е. семь. Величина ошибки соответствует половине измеряемого диапазона. Так как результаты АЦ-преобразования записываются, как правило, в запоминающее устройство, существует, таким образом, определенная вероятность получить полностью неверную величину. Решить эту проблему можно, например, предотвратив с помощью схемы выборки-хранения изменение входного напряжения в течение времени измерения. Однако при этом способе ограничивается допустимая частота входного напряжения, так как для установки схемы выборки-хранения необходимо время. Кроме того, вероятность изменения выходных состояний компараторов полностью не исключается, поскольку схемы выборки-хранения обладают заметным дрефом.
3. Весовой метод кодирования
Рис.6. АЦ-преобразователь работающий по весовому методу
На рис. 6 представлен АЦ-преобразователь, который работает в соответствии с весовым методом. Логическое устройство управления (например, микрокомпьютер) перед началом измерения записывает в память нули (производит стирание информации). Непосредственно за этим в старшем разряде устанавливается «1», т.е. здесь z7 = 1. Благодаря этому напряжение на выходе ЦА-преобразователя составляет
Это половина возможного диапазона преобразуемых сигналов. Если входное напряжение больше, чем эта величина, то должно быть z7 = 1. Если меньше, то z7 = 0. Устройство управления, должно, следовательно, переключить z7 обратно в состояние нуля, если выходная переменная к компаратора принимает значение 0. Непосредственно вслед за этим остаток
таким же образом сравнивается с ближайшим младшим разрядом и т.д. После восьми подобных выравнивающих шагов в память записывается двоичное число Z., из которого после цифро-аналогового преобразования получается напряжение, соответствующее
Следовательно
Если входное напряжение в течение времени преобразования изменяется, необходима схема выборки--хранения для промежуточного запоминания значения функции, чтобы все разряды были образованы из одного и того же входного напряжения.
электронная схема кодирование цифровое устройство непрерывный сигнал
4. Числовой метод кодирования
АЦ-преобразование, осуществляемое по этому методу, требует незначительных аппаратурных затрат. При этом используются простые средства и достигается высокая точность. Конечно, время преобразования оказывается значительно большим, чем при других методах. Как правило, оно составляет 1-100 мс. Для многих применений этого вполне достаточно. Поэтому числовой метод наиболее широко распространен и осуществляется в большинстве схемных вариантов. Для примера рассмотрим компенсационный метод.
Рис.7. Построение АЦ-преобразователя, работающего по компенсационному методу с постоянным выравниванием
Компенвационный АЦ-преобразователь, представленный на рис.7 очень похож на ранее рассмотренные схемы.
Существенное отличие состоит в том, что здесь память представляет собой счетчик. При этом можно значительно упростить устройство управления. С помощью вычитателя входное напряжение сравнивается с компенсирующим напряжением. Если разность больше чем Ѕ ULSB счетчик работает в суммирующем режиме. Благодаря этому компенсирующее напряжение приближается к входному напряжению. Если разность меньше, чем Ѕ ULSB счетчик является вычитающим. При этом компенсирующее напряжение всегда отслеживает входное напряжение. Исходя из этого, такую схему называют отслеживающим АЦ-преобразователем.
В отличие от весового метода здесь число на выходе может быть достаточно просто представлено в двоично-десятичной форме. Для этого вместо двоичного счетчика применяют двоично-десятичный. Упрощение устройства управления по сравнению с весовым методом достигается ценой существенного снижения скорости преобразования, так как компенсированное напряжение изменяется ступенями. В случае когда входное напряжение изменяется медленно, все же можно получить малые времена срабатывания, так как благодаря свойству отслеживания аппроксимация носит непрерывный характер, а не начинается каждый раз с нуля, как при весовом методе. [2]
Размещено на Allbest.ru
...Подобные документы
Структурная схема цифровых систем передачи и оборудования ввода-вывода сигнала. Методы кодирования речи. Характеристика методов аналого-цифрового и цифро-аналогового преобразования. Способы передачи низкоскоростных цифровых сигналов по цифровым каналам.
презентация [692,5 K], добавлен 18.11.2013Системы счисления в цифровых устройствах. Теоремы, логические константы и переменные операции булевой алгебры. Назначение, параметры и классификация полупроводниковых запоминающих устройств, их структурная схема. Процесс аналого-цифрового преобразования.
курсовая работа [1,8 M], добавлен 21.02.2012Применение аналого-цифровых преобразователей (АЦП) для преобразования непрерывных сигналов в дискретные. Осуществление преобразования цифрового сигнала в аналоговый с помощью цифроаналоговых преобразователей (ЦАП). Анализ принципов работы АЦП и ЦАП.
лабораторная работа [264,7 K], добавлен 27.01.2013Способы контроля информационных слов и адресов в цифровых устройствах автоматики. Структурные и функциональные схемы контролирующих устройств. Обеспечение надежности устройств автоматики и вычислительной техники. Числовой аппаратурный контроль по модулю.
контрольная работа [5,0 M], добавлен 08.06.2009Основные положения алгебры логики. Составление временной диаграммы комбинационной логической цепи. Разработка цифровых устройств на основе триггеров, электронных счётчиков. Выбор электронной цепи аналого-цифрового преобразования электрических сигналов.
курсовая работа [804,2 K], добавлен 11.05.2015Понятие аналого-цифрового преобразователя, процедура преобразования непрерывного сигнала. Определение процедур дискретизации и квантования. Место АЦП при выполнении операции дискретизации. Классификация существующих АЦП, их виды и основные параметры.
курсовая работа [490,2 K], добавлен 27.10.2010Система аналого-цифрового преобразования быстроизменяющегося аналогового сигнала в параллельный десятиразрядный код, преобразования параллельного цифрового кода в последовательный код. Устройство управления на логических элементах, счетчик импульсов.
курсовая работа [98,8 K], добавлен 29.07.2009Выбор частоты дискретизации широкополосного аналогового цифрового сигнала, расчёт период дискретизации. Определение зависимости защищенности сигнала от уровня гармоничного колебания амплитуды. Операции неравномерного квантования и кодирования сигнала.
курсовая работа [2,0 M], добавлен 18.07.2014Изучение принципа работы аналого-цифровых преобразователей (АЦП и ADC) . Классическая схема аналого-цифрового преобразования: аналоговый сигнал, компараторы, выходной код, шифратор. Характеристика отсчётов аналогового сигнала и частей опорного напряжения.
статья [344,1 K], добавлен 22.09.2010Расчет параметров системы цикловой синхронизации и устройств дискретизации аналоговых сигналов. Исследование защищенности сигнала от помех квантования и ограничения, изучение операции кодирования, скремблирования цифрового сигнала и мультиплексирования.
курсовая работа [1,5 M], добавлен 31.05.2010Преобразование непрерывной функции в дискретную. Квантование сигнала по уровню. Методы преобразования непрерывной величины в код. Виды, статистические и динамические параметры аналого-цифровых преобразователей. Функциональные схемы интегральных АЦП.
курсовая работа [605,9 K], добавлен 11.05.2016Задачи при передаче речи и данных. Цифровая передача речи. Категории методов цифрового кодирования речи. Кодеры формы сигнала. Вид амплитудной характеристики компрессора. Дискретная модель речеобразования. Особенности метода кратковременного анализа.
контрольная работа [56,6 K], добавлен 18.12.2010Представление информации в цифровых устройствах, кодирование символов и основы булевой алгебры. Классификация полупроводниковых запоминающих устройств. Базовая структура микропроцессорной системы, ее функциональное назначение и способы передачи данных.
учебное пособие [1,7 M], добавлен 19.12.2011Электронные ключи – элементы, производящие под воздействием управляющего сигнала различные коммутации в импульсных и цифровых устройствах. Схемы электронных ключей на полевых транзисторах. Принцип их работы, схожесть с ключами на биополярных транзисторах.
контрольная работа [168,4 K], добавлен 12.07.2009Процедура аналого-цифрового преобразования непрерывных сигналов. Анализ преобразователей последовательных кодов в параллельный. Преобразователи с распределителями импульсов. Разработка преобразователя пятнадцатиразрядного последовательного кода.
курсовая работа [441,5 K], добавлен 09.12.2011Технические характеристики цифрового компаратора. Описание цифровых и аналоговых компонентов: микросхем, датчиков, индикаторов, активных компонентов, их условные обозначения и принцип работы. Алгоритм работы устройства, структурная и принципиальная схемы.
курсовая работа [1023,2 K], добавлен 29.04.2014Исследование внутреннего устройства и архитектуры современных модемов. Распределение функций между составными частями модема. Анализ функций аналоговых и цифровых модемов, связанных с обработкой сигналов. Метод преобразования аналоговых данных в цифровые.
курсовая работа [335,9 K], добавлен 09.11.2014Задачи применения аналого-цифровых преобразователей в радиопередатчиках. Особенности цифро-аналоговых преобразователей (ЦАП) для работы в низкочастотных трактах, системах управления и специализированных быстродействующих ЦАП с высоким разрешением.
курсовая работа [825,8 K], добавлен 15.01.2011Способы поверки пригодности к применению эталона по критерию стабильности. Критерии установления МПИ. Порядок установки и корректировки МПИ эталонов. Требования к исходной информации. Поверка электронных аналоговых и цифровых вольтметров и амперметров.
реферат [31,1 K], добавлен 09.02.2009Телекоммуникации как одна из наиболее быстро развивающихся областей современной науки и техники. Методы проектирования подсистемы аналого-цифрового преобразования. Принципы расчета частоты дискретизации. Характеристика способа кодирования амплитуды.
курсовая работа [636,6 K], добавлен 31.03.2015