Расчет электрической цепи постоянного и переменного тока
Знакомство с основными особенностями создания сильных магнитных полей. Этапы расчета электрической цепи постоянного и переменного тока и магнитного поля цилиндрической катушки. Общая характеристика уравнения Био-Совара-Лапласа, анализ особенностей.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 23.07.2013 |
Размер файла | 239,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1.Магнитное поле двухпроводной линии
магнитный поле электрический цепь
По двухпроводной линии с заданными геометрическими размерами (рис. 277) (R - радиус проводов, d расстояние между осями проводов) протекает постоянный ток I.
Рис.
Результирующий вектор магнитной индукции в произвольной точке n можно определить по методу наложения как геометрическую сумму составляющих этого вектора и от каждого провода в отдельности: =+. Составляющие вектора и определяются по полученным ранее формулам, а их направления - по правилу правоходового винта:
,
Результирующую индуктивность линии на единицу длины можно найти как сумму индуктивностей прямого и обратного провода:
L = L1 + L2 = 2Lвнут + 2L внеш = .
При определении внешней индуктивности провода, внешний радиус интегрирования R следует принять равным расстоянию между проводами d.
Если провода линии выполнены из неферромагнитного материала (Сu, Al) то =1 и формула для индуктивности линии получит вид:
[ Гн / м ]
В схемах замещения трехфазных линий электропередачи учитывается индуктивность одного провода (фазы), следовательно:
[ Гн / м ] - индуктивность каждого провода (фазы) трехфазной транспонированной ЛЭП на единицу длины, где - среднегеометрическое значение межосевых расстояний проводов.
2. Взаимная индуктивность двух параллельных линий
Пусть задано геометрическое расположение проводов в пространстве двух параллельных двухпроводных линий (1 и 1 прямой и обратный провода первой линии, 2 и 2 прямой и обратный провода второй линии) (рис. 278).
Рис.
Предположим, что по 1-й линии протекает постоянный ток I. Магнитный поток от провода 1, пересекающий плоскость второй линии, определится по формуле:
Магнитный поток от провода 1', пересекающий плоскость второй линии:
Как следует из рисунка, магнитные потоки Ф1 и Ф1 в плоскости второй линии направлены одинаково, т.е. складываются. Результирующий магнитный поток взаимной индукции будет равен:
Взаимная индуктивность двух линий на единицу длины будет равна:
При использовании данного уравнения для расчетов следует учитывать, что индексы при расстояниях d зависят, во-первых, от обозначения проводов на чертеже, и во-вторых, от взаимной ориентации магнитных потоков Ф1 и Ф'1, и в каждом конкретном случае должны устанавливаться индивидуально.
3. Магнитное поле сложной системы проводов с током
В большинстве реальных случаев электрические токи, создающие магнитное поле, протекают по тонким каналам - электрическим проводам. Для создания сильных магнитных полей, используемых в технике, применяются системы проводов, образующие катушки индуктивности.
Рис.
Расчет магнитного поля в произвольной точке пространства n , создаваемого идеальным (бесконечно тонким) проводником с током I (рис. 279), может быть выполнен на основе известного из курса физики закона Био-Совара-Лапласа:
где dl - векторный элемент длины проводника; r - расстояние от элемента dl до рассматриваемой точки n;
- единичный радиус-вектор, направленный по радиусу r.
Результирующий вектор напряженности магнитного поля , создаваемый длинным проводом l или системой проводов, может быть найден путем интегрирования приведенного уравнения Био-Совара-Лапласа по всей длине провода или системы проводов.
В качестве примера рассмотрим расчет магнитного поля цилиндрической катушки длиной h, с внутренним диаметром D1 и наружным диаметром D2, содержащую w витков, расположенных в несколько слоев (рис. 280).
Рис.
Принимаем допущения, что 1)электрический ток протекает строго по оси провода, и 2)отдельные витки имеют кольцевую форму. Такие допущения не вносят существенных погрешностей в результат расчета магнитного поля вне провода, но позволяют упростить процедуру итегрирования уравнения Био-Совара-Лапласа. Результирующий вектор напряженности магнитного поля в произвольной точке n может быть найден как геометрическая сумма составляющих этого вектора от всех витков w, расположенных по длине катушки от -h/2 до +h/2 и по толщине катушки от D1 до D2 :
.
Магнитное поле катушки будет обладать центральной и осевой симметрией, поэтому исследование поля проводится только в одной из четвертей плоскости сечения (в области положительных значений координат x и y).
Анализ характера изменения магнитного поля в пространстве показывает, что магнитное поле имеет наибольшую интенсивность внутри катушки, и что оно убывает во всех направлениях по мере удаления от витков катушки.
4. Механические силы в магнитном поле
Пусть существует система из n магнитносвязанных электрических цепей, в которых протекают постоянные токи. Пусть одна из цепей перемещается в направлении оси х на величину dx. При перемещении цепи будет выполнена механическая работа:
,
где Fx - сила, действующая на цепь в направлении х.
Вследствие перемещения цепи произойдет изменение магнитного поля системы:
Изменение потокосцепления каждой цепи Шk вызовет появление напряжения на ее зажимах: , при этом в системе будет выполнена дополнительная электрическая работа:
В соответствии с законом сохранения энергии составим баланс энергий: , или , откуда следует, что
, или , т. е. составляющая силы, действующей на электрическую цепь в произвольном направлении равна производной от энергии магнитного поля в этом же направлении.
Составляющие силы, действующей на электрическую цепь в направлении осей координат x, y, z:
.
Результирующая сила:
Результирующая сила направлена в сторону наибольшего возрастания энергии магнитного поля.
Так как по условию токи цепей постоянны, то и энергия собственного магнитного поля, равная тоже постоянна, а изменяется только взаимная энергия системы Wвз и, следовательно, сила .
Если система состоит только из двух магнитносвязанных цепей, то энергия магнитного поля будет равна:
.
Тогда получим:
В измерительных приборах электродинамической системы вращающий момент, действующий на подвижную систему прибора, будет равен:
,
т.е. вращающий момент пропорционален скорости изменения взаимной индуктивности М при повороте подвижной системы прибора.
Размещено на Allbest.ru
...Подобные документы
Исследование электрической цепи переменного тока при последовательном соединении активного, индуктивного емкостного сопротивления. Изменение активного сопротивления катушки индуктивности. Параметры электрической схемы переменного однофазного тока.
лабораторная работа [701,1 K], добавлен 12.01.2010Анализ основных методов расчёта линейных электрических цепей постоянного тока. Определение параметров четырёхполюсников различных схем и их свойства. Расчет электрической цепи синусоидального тока сосредоточенными параметрами при установившемся режиме.
курсовая работа [432,3 K], добавлен 03.08.2017Изучение общей методики расчета линейной электрической цепи постоянного тока, содержащей независимый источник электродвижущей силы. Описательная характеристика разветвленных электрических цепей однофазного синусоидального и несинусоидального тока.
методичка [342,2 K], добавлен 01.12.2015Основные характеристики электропривода. Расчет цепи постоянного и переменного тока по законам Кирхгофа, по методу контурных токов и узловых потенциалов. Сравнение результатов, полученных разными методами. Построение потенциальной и векторной диаграммы.
курсовая работа [3,1 M], добавлен 02.07.2014Расчет линейных электрических цепей постоянного тока. Расчет однофазных и трехфазных линейных электрических цепей переменного тока. Определение токов во всех ветвях схемы на основании законов Кирхгофа. Метод контурных токов. Баланс мощностей цепи.
курсовая работа [876,2 K], добавлен 27.01.2013Составление баланса мощностей для электрической схемы. Расчет сложных электрических цепей постоянного тока методом наложения токов и методом контурных токов. Особенности второго закона Кирхгофа. Определение реальных токов в ветвях электрической цепи.
лабораторная работа [271,5 K], добавлен 12.01.2010Определение параметров резистора и индуктивности катушки, углов сдвига фаз между напряжением и током на входе цепи. Расчет коэффициента усиления напряжения, добротности волнового сопротивления цепи. Анализ напряжения при активно-индуктивной нагрузке.
контрольная работа [1,2 M], добавлен 11.06.2011Работа терморезисторов в цепях постоянного, пульсирующего и переменного тока для температурной компенсации различных элементов электрической цепи с положительным температурным коэффициентом сопротивления. Определение температур бесконтактными методами.
курсовая работа [956,5 K], добавлен 30.12.2014Электрические машины постоянного и переменного тока. Трансформаторы, источники вторичного питания. Вентили, аккумуляторы и выпрямители. Преобразователи постоянного тока. Термоэлектрические генераторы. Защита человека от воздействия электромагнитного поля.
дипломная работа [1,1 M], добавлен 10.03.2013Роль преобразовательной техники в народном хозяйстве. Преобразователи переменного тока в постоянный без изменений параметров. Преобразователи постоянного тока в переменный, кондиционеры электроэнергии. Функциональные классы преобразовательной техники.
реферат [1,0 M], добавлен 22.12.2013Краткий обзор коммутационных устройств ручного управления. Разработка кнопки для коммутации электрических цепей постоянного и переменного тока низкой частоты: определение контактного усилия, переходного сопротивления и температур локального перегрева.
контрольная работа [39,8 K], добавлен 29.08.2010Измерение постоянного тока, расчет сопротивления шунта, определение погрешности измерения. Теоретические сведения. Параметры магнитоэлектрического прибора. Конcтруирование магнитоэлектрического прибора. Проверка миллиамперметра.
лабораторная работа [9,0 K], добавлен 10.06.2007Опытная проверка законов Кирхгофа и принципа наложения. Расчет токов в ветвях заданной электрической цепи методами контурных токов, узловых потенциалов, эквивалентного генератора. Построение потенциальной диаграммы. Сравнение результатов опыта и расчета.
контрольная работа [1,0 M], добавлен 09.02.2013Расчет режима цепи до коммутации. Определение корней характеристического уравнения. Начальные условия для тока в индуктивности. Оценка продолжительности переходного процесса. Графики токов в электрической цепи, напряжения на ёмкости и индуктивности.
курсовая работа [737,0 K], добавлен 25.12.2014Выбор параметров усилительного каскада. Построение статистических характеристик транзистора, нагрузочной прямой для режима постоянного тока в цепи коллектора. Выбор положения начальной рабочей точки Р для режима постоянного тока в цепи коллектора.
курсовая работа [433,7 K], добавлен 23.11.2010Методы измерения тока и напряжения. Проектирование цифрового измерителя мощности постоянного тока. Выбор элементной базы устройства согласно схеме электрической принципиальной, способа установки элементов. Расчет экономической эффективности устройства.
курсовая работа [1,1 M], добавлен 21.07.2011Разработка и проектирование принципиальной схемы вторичного источника питания. Расчет вторичного источника питания, питающегося от сети переменного тока, для получения напряжений постоянного и переменного тока. Анализ спроектированного устройства на ЭВМ.
курсовая работа [137,3 K], добавлен 27.08.2010Изучение понятия, классификации и способов производства резисторов. Принципы строения, материалы изготовления и преимущества металлопленочных, металлоокисных и проволочных (постоянного и переменного сопротивлений) пассивных элементов электрической цепи.
практическая работа [254,1 K], добавлен 05.12.2010Расчет простой электрической цепи. Составление системы уравнений для вычисления токов и напряжений в сложной электрической цепи методами Крамера и обращения матрицы. Составление выражения комплексного коэффициента передачи. Построение графиков АЧХ и ФЧХ.
курсовая работа [508,9 K], добавлен 07.05.2012Потенциометры и реостаты - простейшие регуляторы напряжения и тока. Виды и принцип работы. Высокая эффективность управляемых выпрямителей для регулирования U и I. Параметрические стабилизаторы постоянного и переменного тока, недостатки и применение.
реферат [193,1 K], добавлен 10.02.2009