Расчет электрической цепи постоянного и переменного тока

Знакомство с основными особенностями создания сильных магнитных полей. Этапы расчета электрической цепи постоянного и переменного тока и магнитного поля цилиндрической катушки. Общая характеристика уравнения Био-Совара-Лапласа, анализ особенностей.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 23.07.2013
Размер файла 239,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1.Магнитное поле двухпроводной линии

магнитный поле электрический цепь

По двухпроводной линии с заданными геометрическими размерами (рис. 277) (R - радиус проводов, d расстояние между осями проводов) протекает постоянный ток I.

Рис.

Результирующий вектор магнитной индукции в произвольной точке n можно определить по методу наложения как геометрическую сумму составляющих этого вектора и от каждого провода в отдельности: =+. Составляющие вектора и определяются по полученным ранее формулам, а их направления - по правилу правоходового винта:

,

Результирующую индуктивность линии на единицу длины можно найти как сумму индуктивностей прямого и обратного провода:

L = L1 + L2 = 2Lвнут + 2L внеш = .

При определении внешней индуктивности провода, внешний радиус интегрирования R следует принять равным расстоянию между проводами d.

Если провода линии выполнены из неферромагнитного материала (Сu, Al) то =1 и формула для индуктивности линии получит вид:

[ Гн / м ]

В схемах замещения трехфазных линий электропередачи учитывается индуктивность одного провода (фазы), следовательно:

[ Гн / м ] - индуктивность каждого провода (фазы) трехфазной транспонированной ЛЭП на единицу длины, где - среднегеометрическое значение межосевых расстояний проводов.

2. Взаимная индуктивность двух параллельных линий

Пусть задано геометрическое расположение проводов в пространстве двух параллельных двухпроводных линий (1 и 1 прямой и обратный провода первой линии, 2 и 2 прямой и обратный провода второй линии) (рис. 278).

Рис.

Предположим, что по 1-й линии протекает постоянный ток I. Магнитный поток от провода 1, пересекающий плоскость второй линии, определится по формуле:

Магнитный поток от провода 1', пересекающий плоскость второй линии:

Как следует из рисунка, магнитные потоки Ф1 и Ф1 в плоскости второй линии направлены одинаково, т.е. складываются. Результирующий магнитный поток взаимной индукции будет равен:

Взаимная индуктивность двух линий на единицу длины будет равна:

При использовании данного уравнения для расчетов следует учитывать, что индексы при расстояниях d зависят, во-первых, от обозначения проводов на чертеже, и во-вторых, от взаимной ориентации магнитных потоков Ф1 и Ф'1, и в каждом конкретном случае должны устанавливаться индивидуально.

3. Магнитное поле сложной системы проводов с током

В большинстве реальных случаев электрические токи, создающие магнитное поле, протекают по тонким каналам - электрическим проводам. Для создания сильных магнитных полей, используемых в технике, применяются системы проводов, образующие катушки индуктивности.

Рис.

Расчет магнитного поля в произвольной точке пространства n , создаваемого идеальным (бесконечно тонким) проводником с током I (рис. 279), может быть выполнен на основе известного из курса физики закона Био-Совара-Лапласа:

где dl - векторный элемент длины проводника; r - расстояние от элемента dl до рассматриваемой точки n;

- единичный радиус-вектор, направленный по радиусу r.

Результирующий вектор напряженности магнитного поля , создаваемый длинным проводом l или системой проводов, может быть найден путем интегрирования приведенного уравнения Био-Совара-Лапласа по всей длине провода или системы проводов.

В качестве примера рассмотрим расчет магнитного поля цилиндрической катушки длиной h, с внутренним диаметром D1 и наружным диаметром D2, содержащую w витков, расположенных в несколько слоев (рис. 280).

Рис.

Принимаем допущения, что 1)электрический ток протекает строго по оси провода, и 2)отдельные витки имеют кольцевую форму. Такие допущения не вносят существенных погрешностей в результат расчета магнитного поля вне провода, но позволяют упростить процедуру итегрирования уравнения Био-Совара-Лапласа. Результирующий вектор напряженности магнитного поля в произвольной точке n может быть найден как геометрическая сумма составляющих этого вектора от всех витков w, расположенных по длине катушки от -h/2 до +h/2 и по толщине катушки от D1 до D2 :

.

Магнитное поле катушки будет обладать центральной и осевой симметрией, поэтому исследование поля проводится только в одной из четвертей плоскости сечения (в области положительных значений координат x и y).

Анализ характера изменения магнитного поля в пространстве показывает, что магнитное поле имеет наибольшую интенсивность внутри катушки, и что оно убывает во всех направлениях по мере удаления от витков катушки.

4. Механические силы в магнитном поле

Пусть существует система из n магнитносвязанных электрических цепей, в которых протекают постоянные токи. Пусть одна из цепей перемещается в направлении оси х на величину dx. При перемещении цепи будет выполнена механическая работа:

,

где Fx - сила, действующая на цепь в направлении х.

Вследствие перемещения цепи произойдет изменение магнитного поля системы:

Изменение потокосцепления каждой цепи Шk вызовет появление напряжения на ее зажимах: , при этом в системе будет выполнена дополнительная электрическая работа:

В соответствии с законом сохранения энергии составим баланс энергий: , или , откуда следует, что

, или , т. е. составляющая силы, действующей на электрическую цепь в произвольном направлении равна производной от энергии магнитного поля в этом же направлении.

Составляющие силы, действующей на электрическую цепь в направлении осей координат x, y, z:

.

Результирующая сила:

Результирующая сила направлена в сторону наибольшего возрастания энергии магнитного поля.

Так как по условию токи цепей постоянны, то и энергия собственного магнитного поля, равная тоже постоянна, а изменяется только взаимная энергия системы Wвз и, следовательно, сила .

Если система состоит только из двух магнитносвязанных цепей, то энергия магнитного поля будет равна:

.

Тогда получим:

В измерительных приборах электродинамической системы вращающий момент, действующий на подвижную систему прибора, будет равен:

,

т.е. вращающий момент пропорционален скорости изменения взаимной индуктивности М при повороте подвижной системы прибора.

Размещено на Allbest.ru

...

Подобные документы

  • Исследование электрической цепи переменного тока при последовательном соединении активного, индуктивного емкостного сопротивления. Изменение активного сопротивления катушки индуктивности. Параметры электрической схемы переменного однофазного тока.

    лабораторная работа [701,1 K], добавлен 12.01.2010

  • Анализ основных методов расчёта линейных электрических цепей постоянного тока. Определение параметров четырёхполюсников различных схем и их свойства. Расчет электрической цепи синусоидального тока сосредоточенными параметрами при установившемся режиме.

    курсовая работа [432,3 K], добавлен 03.08.2017

  • Изучение общей методики расчета линейной электрической цепи постоянного тока, содержащей независимый источник электродвижущей силы. Описательная характеристика разветвленных электрических цепей однофазного синусоидального и несинусоидального тока.

    методичка [342,2 K], добавлен 01.12.2015

  • Основные характеристики электропривода. Расчет цепи постоянного и переменного тока по законам Кирхгофа, по методу контурных токов и узловых потенциалов. Сравнение результатов, полученных разными методами. Построение потенциальной и векторной диаграммы.

    курсовая работа [3,1 M], добавлен 02.07.2014

  • Расчет линейных электрических цепей постоянного тока. Расчет однофазных и трехфазных линейных электрических цепей переменного тока. Определение токов во всех ветвях схемы на основании законов Кирхгофа. Метод контурных токов. Баланс мощностей цепи.

    курсовая работа [876,2 K], добавлен 27.01.2013

  • Составление баланса мощностей для электрической схемы. Расчет сложных электрических цепей постоянного тока методом наложения токов и методом контурных токов. Особенности второго закона Кирхгофа. Определение реальных токов в ветвях электрической цепи.

    лабораторная работа [271,5 K], добавлен 12.01.2010

  • Определение параметров резистора и индуктивности катушки, углов сдвига фаз между напряжением и током на входе цепи. Расчет коэффициента усиления напряжения, добротности волнового сопротивления цепи. Анализ напряжения при активно-индуктивной нагрузке.

    контрольная работа [1,2 M], добавлен 11.06.2011

  • Работа терморезисторов в цепях постоянного, пульсирующего и переменного тока для температурной компенсации различных элементов электрической цепи с положительным температурным коэффициентом сопротивления. Определение температур бесконтактными методами.

    курсовая работа [956,5 K], добавлен 30.12.2014

  • Электрические машины постоянного и переменного тока. Трансформаторы, источники вторичного питания. Вентили, аккумуляторы и выпрямители. Преобразователи постоянного тока. Термоэлектрические генераторы. Защита человека от воздействия электромагнитного поля.

    дипломная работа [1,1 M], добавлен 10.03.2013

  • Роль преобразовательной техники в народном хозяйстве. Преобразователи переменного тока в постоянный без изменений параметров. Преобразователи постоянного тока в переменный, кондиционеры электроэнергии. Функциональные классы преобразовательной техники.

    реферат [1,0 M], добавлен 22.12.2013

  • Краткий обзор коммутационных устройств ручного управления. Разработка кнопки для коммутации электрических цепей постоянного и переменного тока низкой частоты: определение контактного усилия, переходного сопротивления и температур локального перегрева.

    контрольная работа [39,8 K], добавлен 29.08.2010

  • Измерение постоянного тока, расчет сопротивления шунта, определение погрешности измерения. Теоретические сведения. Параметры магнитоэлектрического прибора. Конcтруирование магнитоэлектрического прибора. Проверка миллиамперметра.

    лабораторная работа [9,0 K], добавлен 10.06.2007

  • Опытная проверка законов Кирхгофа и принципа наложения. Расчет токов в ветвях заданной электрической цепи методами контурных токов, узловых потенциалов, эквивалентного генератора. Построение потенциальной диаграммы. Сравнение результатов опыта и расчета.

    контрольная работа [1,0 M], добавлен 09.02.2013

  • Расчет режима цепи до коммутации. Определение корней характеристического уравнения. Начальные условия для тока в индуктивности. Оценка продолжительности переходного процесса. Графики токов в электрической цепи, напряжения на ёмкости и индуктивности.

    курсовая работа [737,0 K], добавлен 25.12.2014

  • Выбор параметров усилительного каскада. Построение статистических характеристик транзистора, нагрузочной прямой для режима постоянного тока в цепи коллектора. Выбор положения начальной рабочей точки Р для режима постоянного тока в цепи коллектора.

    курсовая работа [433,7 K], добавлен 23.11.2010

  • Методы измерения тока и напряжения. Проектирование цифрового измерителя мощности постоянного тока. Выбор элементной базы устройства согласно схеме электрической принципиальной, способа установки элементов. Расчет экономической эффективности устройства.

    курсовая работа [1,1 M], добавлен 21.07.2011

  • Разработка и проектирование принципиальной схемы вторичного источника питания. Расчет вторичного источника питания, питающегося от сети переменного тока, для получения напряжений постоянного и переменного тока. Анализ спроектированного устройства на ЭВМ.

    курсовая работа [137,3 K], добавлен 27.08.2010

  • Изучение понятия, классификации и способов производства резисторов. Принципы строения, материалы изготовления и преимущества металлопленочных, металлоокисных и проволочных (постоянного и переменного сопротивлений) пассивных элементов электрической цепи.

    практическая работа [254,1 K], добавлен 05.12.2010

  • Расчет простой электрической цепи. Составление системы уравнений для вычисления токов и напряжений в сложной электрической цепи методами Крамера и обращения матрицы. Составление выражения комплексного коэффициента передачи. Построение графиков АЧХ и ФЧХ.

    курсовая работа [508,9 K], добавлен 07.05.2012

  • Потенциометры и реостаты - простейшие регуляторы напряжения и тока. Виды и принцип работы. Высокая эффективность управляемых выпрямителей для регулирования U и I. Параметрические стабилизаторы постоянного и переменного тока, недостатки и применение.

    реферат [193,1 K], добавлен 10.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.