Тактильные датчики
Основные тенденции в области создания тактильных датчиков: воспроизведение осязательных свойств человеческой кожи. Формирование чувствительных элементов пьезорезистивных датчиков из волокна углерода. Применение в датчиках интегральных оптических схем.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 14.10.2013 |
Размер файла | 18,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1
Тактильные датчики
Появление тактильных датчиков, предназначенных для геометрического распознавания предметов окружающего пространства, обусловлено развитием робототехники. Основная тенденция в области создания тактильных датчиков - воспроизведение осязательных свойств человеческой кожи. Этой тенденции в наибольшей степени удовлетворяют тактильные устройства матричного типа, так как каждая ячейка матрицы, представляющая собой микроэлектронный датчик силы (или деформации, момента), дает конкретную информацию, а все вместе позволяют сформировать целостное представление о форме предмета. Конструкторские и технологические разработки тактильных датчиков находятся на начальном этапе развития, еще не выработаны технические требования и не определен перечень их характеристик.
Исследователи Кливлендского университета (США) считают, что современный тактильный датчик для робота должен обладать такими свойствами: высокой чувствительностью, способность воспринимать давление (силу), преобразовывать его в электрические сигналы, позволяющие определить форму и материал предмета, т. е. распознавать образы; высоким пространственным разрешением, соответствующим восприимчивости пальцев человека (пространственное разрешение человеческой кожи 2 мм); достаточное для сварочных или сборочных роботов в машиностроении, а также для роботов, применяемых в микрохирургии и микроэлектронике; хорошими линейными характеристиками (допустимы лишь отклонения, компенсируемые при обработке сигнала на ЭВМ); незначительным гистерезисом; устойчивостью к перегрузкам и тяжелым условиям работы; небольшим размерам и массой; невысокой стоимостью.
Это может быть обеспечено при использовании в процессе разработки и производства тактильных датчиков микроэлектронной твердотельной технологии, обладающей широкими возможностями миниатюризации и формирования средств обработки сигнала на одном чипе с чувствительный элемент (ЧЭ) как, например в датчике, созданном специалистами университета Карнеги-Меллон.
Тактильные датчики на интегральных схемах с применением кремния, кварца и поликристаллической керамики могут обеспечить измерения в диапазоне 0.01-40 Н (т.е. динамический диапазон составляет 4000:1). Особенное распространение получили кремниевые датчики благодаря высокой плотности расположения ячеек в матрице ЧЭ, надежности, низкому гистерезису, выносливости и небольшой стоимости.
Исследователи Стенфордского университета предложили для формирования ЧЭ тактильных датчиков гибкую полоску толщиной 200-400 мкм. На полиамидной подложке располагаются кремниевые кристаллы, каждый из которых образует интегральную схему. "Островки" кристаллов соединяются золотыми проводниками, нанесенными методом фотолитографии. Датчики с ЧЭ из такой кремниевой ленты обеспечивают измерение "касания" в диапазоне 0-40 000 Па с чувствительностью 67 Па. В более узком диапазоне 5000-7000 Па чувствительность можно повысить до 13 Па.
Для выполнения ЧЭ пьезорезистивных тактильных датчиков используются различные материалы, например волокна углерода (графита). Пучки из нескольких тысяч волокон характеризуются высокими прочностью на растяжение, электропроводностью и гибкостью. При соответствующем подборе размеров пучка и подложки элементы могут воспринимать давление от 1 Па да десятков мегапаскалей. Они просты в изготовлении и относительно недороги.
Применяется также электропроводный эластомер на основе силиконовых каучуков с наполнителем (графитом, сажей, металлическим мелкодисперсным порошком). Анизотропная электропроводность эластеров дает возможность варьировать токопроводящие пути и места расположения контактов между электродами. Недостатки таких ЧЭ являются восприимчивость к электрическим помехам, нелинейность, значительный гистерезис, низкая чувствительность при существенной погрешности, малое быстродействие, довольно низкий порог усталости.
Применение волокон углерода и силиконовых эластомеров способствует миниатюризации пьезорезистивных датчиков, делает технологию их изготовления сравнимой с технологией изготовления интегральных схем. Эти датчики рассчитаны на широкий диапазон измерения и допускают значительные перегрузки.
Для изготовления резиновых мембран с рельефом сложной конфигурации и точным геометрическим профилем были использованы кремниевые литейные формочки, выполненные методом травления. Применение таких фасонных мембран позволило значительно улучить точность тактильных датчиков.
Пьезорезистивные тактильные датчики с матричными чувствительными элементами разрабатываются различными лабораториями США (Jet Propulsion Laboratory, Artificial Intelligence Laboratory MJT) и Франции (Laboratoire d'Automatique et d'Analyse des System).
Югославские и французские исследователи работают над совместным проектом создания руки робота, на которой будет смонтирован датчик с ЧЭ из электропроводной резины, покрытой тонким слоем краски.
Фирма Barrity Wright Corp. (США) недавно выпустила два резистивных датчика из эластомеров - размером 10х20 мм с матрицей 8х16 ячеек и размером 40х40 мм с матрицей 16х16 мм ячеек.
Совместно с Токийским университетом фирмой Yokohama Rubber Co. (Япония) разработан датчик из электропроводной резины толщиной менее 1 мм. Размеры трехслойного ЧЭ 4х4 или 8х8 мм. Датчик фиксирует силу и место ее приложения. Он смонтирован на созданном фирмой роботе, который оперирует деталями массой от 30 г до нескольких килограммов.
В Варвикском университете (США) сконструирован тактильный датчик на основе ЧЭ из углеродных волокон, нанесенных для эластичности на плоскую гибкую ленту. Произвольное пересечение волокон обеспечивает изменение сопротивления в широких пределах, однако закономерность этого изменения под воздействием давления от нуля до максимума не обнаружена.
В Пенсильванском университете (США) разработан тактильный датчик с пьезорезисторами, изолированными от окружающей среды, что позволило повысить стабильность датчика во времени, уменьшить дрейф нуля, повысить устойчивость к электростатическим напряжениям.
Материалом для ЧЭ пьезоэлектрических датчиков служит полимеры, например поливинилиденфторид-2 (PVF2 или PVDE), обладающие хорошими механическими и химическими свойствами. Поскольку деформация этих материалов под действием давления незначительна, для достижения пространственного разрешения, сравнимого с восприимчивостью пальцев человека, ЧЭ устанавливается на подложку из эластичного полимера. Он может монтироваться как на плоскости, так и на поверхности сложной конфигурации. Диапазон измерения пьезоэлектрических датчиков достаточно широк при допустимых для материалов ЧЭ напряжениях сжатия 80 МПа, растяжения 50 МПа.
В Пизанском университете (Италия) создан пьезоэлектрический датчик, образованный слоем PVF2 на гибком слое резистивной краски, сопротивление которой стабилизируется при 37 С. По разнице поглощения тепла обеими слоями идентифицируются различные материалы, из которых выполнены предметы. Линейность датчика 1 %. Следует отметить, что введение второго слоя вызывает увеличение гистерезиса.
Несмотря на нежелательную во многих случаях температурную чувствительность, исследователи Пизанского университета используют ЧЭ из PVF2 в тактильном датчике, являющимся продолжением пальца робота с четырьмя степенями свободы. Конструктивно датчик представляет собой полый цилиндр диаметром 28 и длиной 40 мм. Внутри его проходит тонкий коаксиальный кабель, к которому припаяны 35 электродов, организованных в матрицу 5х7 ячеек. Благодаря высокой чувствительности датчик за несколько мкс определяет смещение объекта на сотни микрометров.
В последние время получили развитие тактильные датчики, основанные на изменении оптических свойств материала под действием приложенной к ним силы. Интерес к таким оптическим датчикам объясняется их высокой чувствительностью, стойкостью к электромагнитным полям, нейтральностью к воздействиям окружающей среды и возможностью разнообразить конструктивные решения.
В оптическом тактильном датчике фирмы JPL (США) использованы гибкая отражающая мембрана, источник инфракрасного излучения, ЧЭ из 16 ячеек размером 5х5 мм (матрица 4х4 ячеек), два световода между источником и детектором. Интенсивность отраженного света прямо пропорциональна силе, приложенной к гибкой мембране. Однако технология изготовления датчиков такого типа достаточно сложна. Их недостатком являются значительные размеры, особенно при большом числе ячеек в матрице. Тем не менее, разработки в этом направлении продолжаются в Национальном бюро стандартов и на фирме Tictile Robotic System (США), которые сообщили о создании датчика с матрицей 16х16 ячеек.
Этой же фирмой разработан тактильный датчик с матрицей из 256 ячеек (16х16), впрессованных в латунную пластину размером 41х41 мм, что примерно соответствует размеру схвата робота. Датчик, смонтированный на печатной плате 50.8х63.5 мм, содержит источники света, приемники, формирователи сигнала. Он характеризуется хорошим отношением сигнал/шум, отсутствием гистерезиса. Диапазон измерения 0.01-1 Н. Сканирование матрицы производится при частоте 3 кГц, ограничиваемой только возможностями внешнего десятиразрядного аналого-цифрового преобразователя. Предполагается, что в следующей модели будут включены источник света и приемник на интегральных схемах (вместо дискретных), удвоится плотность расположения ячеек, соответственно возрастет пространственное разрешение. Более быстрый аналого-цифровой преобразователь позволяет увеличивать частоту сканирования до 100 кГц.
Исследователи Массачусетского Университета (США), предложили тактильный датчик, построенный по принципу модуляции отраженного света под действием давления. Благодаря размещению 330 ячеек на 1 см кв. ЧЭ пространственное разрешение чрезвычайно велико, причем существует возможность его повышения путем увеличения плотности волокон. Недостатки датчика - недолговечность эластомера, выдерживающего всего несколько сот циклов, и малый динамический диапазон измерений.
Датчик, разработанный в Массачусетском технологическом институте, содержит 1190 волокон сечением 0.027 мм кв., организованных в матрицу 35х34. Волокна покрыты полимерной оболочкой толщиной 0.5 мм и белой кремниевой резиной такой же толщины, выполняющего роль деформирующего отражателя.
Фирма British Robotic System (Великобритания) проводит исследования возможности создания тактильных датчиков с получением визуальной информации методом эндоскопии. Чувствительный элемент формируется из разделенных слоем воздуха прозрачной акрилиновой пластинки и упругой мембраны, воспроизводящей силовое воздействие объекта и в зависимости от этого меняющей коэффициент отражения. Отраженный свет фиксируется преобразователем изображения прибора с зарядовой связью. Из-за необходимости использовать пучок оптических волокон и источник света для каждого волокна датчик громоздок и тяжел. Специалисты фирмы предложили один источник света на каждый ряд матрицы и один детектор на каждую колонку, а для сканирования матрицы - пульсирующий источник излучения. тактильный датчик пьезорезистивный оптический
Многие исследователи предсказывают широкие возможности применения в тактильных датчиках интегральных оптических схем, один слой которых будет содержать светодиоды, а другой фоторезисторы. Это позволит не только уменьшить размеры датчиков, но и упростить технологию их изготовления.
Фирма Lord Corp (США) создала оптический тактильный датчик, в котором при воздействии объекта на гибкую поверхность ЧЭ из эластомера блокируется поток света от него к детектору. Пространственное разрешение 1.88 мм. Подобные датчики определяют составляющие силы контакта и момента.
Наибольшей простотой конструкции отличаются емкостные тактильные датчики, обладающие высокой чувствительностью, пространственным разрешением и быстродействием, невосприимчивостью к помехам и возможностью установки на пальцах робота любой конструкции. Как правило, емкостной датчик формируется в виде сэндвича из тонких пластинок меди, располагаемых слоями перпендикулярно друг другу и разделенных диэлектриком. Под действием давления изменяется его электрическая емкость.
В датчике, предложенном Стенфордским университетом, использованы пластины меди шириной 2.5 мм. Диэлектриком служит вулканизированные при комнатной температуре кремниевоорганические соединения. Матрица, содержащая 4х4 элемента, измеряет давление до 105 Па. Частота сканирования 100 кГц, входное сопротивление 1-5 МОм.
Фирмой Bell Laboratories, Inc. (США) разработан емкостной тактильный датчик с эластичный диэлектриком из нейлоновой сетки. Чувствительный элемент представляет собой трехслойный пакет, состоящий из разделительных диэлектриков восьми рядов медных пластин (8 пластин шириной 2.5 мм в ряду) и покрытый гибкой перчаткой. Датчик в сборе монтируется на гибкой печатной плате. Ему можно придать форму пальца робота. Верхний предел измеряемого давления 5 кПа. Предлагается также пакет из 32 рядов по 32 пластины, при этом пространственное разрешение ограничивается лишь технологией изготовления медных пластин методом литографии.
В Artificial Intelligence MJT создан один из самых миниатюрных емкостных датчиков. Матрица содержит 8х8 ячеек площадью 12.7х12.7 мм. Они расположены взаимно перпендикулярно на расстоянии 2.5 мм и разделены диэлектриком из силиконовой резины. Датчик крепится на небольшой печатной плате. В зависимости от эластичности диэлектрика он измеряет давление до 10 кПа. При этом измеряются емкость операционного усилителя, амплитуда синусоидальных сигналов, подсчитываемых шестиразрядным преобразователем. Такие датчики будут монтироваться на четырех пальцах руки робота, разработанного на MJT и Утахским университетом. Каждый палец обладает четырьмя степенями свободы, запястье - тремя, рука в целом управляется пятью микропроцессорами (один центральный и по одному на каждый палец). В комбинации с другими датчиками, установленными на пальцах и ладони (в частности, пьезоэлектрическими на PVF2), это обеспечивает возможность определения смещения пальцев относительно друг друга.
Использованная литература
Сенсоры в контрольно-измерительной технике. Автор: Таланчук П.М., С. П. Голубков, В. П. Маслов и др. Киев. Техника, 1991. -173 стр.
Размещено на Allbest.ru
...Подобные документы
Принцип эффекта Фарадея в работе волоконно-оптических датчиков тока. Разработка и исследование микроструктурных оптических волокон. Сравнение оптоволоконного датчика и трансформатора тока. Потенциальные сферы применения оптоволоконных датчиков тока.
реферат [934,2 K], добавлен 12.11.2015Понятие и общие свойства датчиков. Рассмотрение особенностей работы датчиков скорости и ускорения. Характеристика оптических, электрических, магнитных и радиационных методов измерения. Анализ реальных оптических, датчиков скорости вращения и ускорения.
курсовая работа [1,4 M], добавлен 14.01.2016Конструкция и принцип действия датчиков перемещения различных типов: емкостных, оптических, индуктивных, вихретоковых, ультразвуковых, магниторезистивных, магнитострикционных, потенциометрических, на основе эффекта Холла. Области использования приборов.
реферат [546,1 K], добавлен 06.06.2015Обзор некоторых специфических современных электронных датчиков: щелемеры, стрессметры, экстензометрические датчики, прямые и обратные отвесы, приборы для контроля напряженно-деформированного состояния сооружений. Датчики, используемые в строительстве.
контрольная работа [1,5 M], добавлен 16.10.2013Общая схема емкостного датчика уровня. Радарные уровнемеры, сферы их применения. Вертикальное крепление датчиков. Принцип действия ротационного сигнализатора уровня. Датчик уровня заполнения вибрационного типа. Способы установки ротационных датчиков.
реферат [5,5 M], добавлен 25.11.2014Понятие и назначение измерительных преобразователей - датчиков, принцип их действия и выполняемые функции, возможности и основные элементы. Классификация источников первичной информации. Датчики измерения технологических переменных.
курсовая работа [1,2 M], добавлен 04.05.2010Проектирование вычислительного модуля, состоящего из 2 датчиков давления и 4 датчиков температуры (до +125 и до +400). Составление схемы подключения датчиков. Написание демонстрационных программ для работы с устройствами DS18B20, АЦП DS2450 и MPX2010.
курсовая работа [190,3 K], добавлен 24.12.2010Создание интегральных схем и развитие микроэлектроники по всему миру. Производство дешевых элементов электронной аппаратуры. Основные группы интегральных схем. Создание первой интегральной схемы Килби. Первые полупроводниковые интегральные схемы в СССР.
реферат [28,0 K], добавлен 22.01.2013Критерии эффективности и обоснование выбора базисных элементов для записи отсчетов от 16 аналоговых датчиков в область памяти. Функциональная схема компьютерной системы управления железнодорожным переездом. Алгоритм работы микропроцессорной системы.
курсовая работа [1,4 M], добавлен 14.06.2016Виды и использование датчиков автоматического контроля режимных параметров технологических процессов химического производства. Принцип действия измеряемых датчиков, регуляторов температуры, модульных выключателей. Средства защиты электроустановок.
дипломная работа [770,6 K], добавлен 26.04.2014Особенности применения электрохимических датчиков в составе мультисенсорных пожарных извещателей. Сравнение технических характеристик. Конструкция, принцип действия электролитических датчиков. Перспективы развития технологий изготовления извещателей.
курсовая работа [1,7 M], добавлен 09.12.2015Принцип действия датчиков сейсмического типа, предназначенных для проведения исследований влияния ускорений и вибрационных нагрузок на элементы радиоэлектронной аппаратуры. Разработка схем приборов, расчет статических и динамических характеристик.
курсовая работа [737,5 K], добавлен 10.01.2014Разработка принципиальных схем блоков чтения информации с датчиков. Сопряжение с цифровыми и аналоговыми датчиками. Алгоритм работы блока чтения информации с цифровых датчиков. Расчет электрических параметров микропроцессорной системы управления.
дипломная работа [760,0 K], добавлен 27.06.2016Обзор современного состояния систем охранной сигнализации. Характеристика комбинированных датчиков обнаружения технических средств охраны. Помехи, влияющие на работу одноканальных датчиков обнаружения. Оценка финансовых затрат на установку и эксплуатацию.
дипломная работа [2,3 M], добавлен 05.11.2016Статические характеристики датчиков. Определение коэффициента передачи элемента и порога чувствительности. Гидравлические исполнительные механизмы, особенности их конструкций и области применения. Приборы автоматического контроля расхода и количества.
контрольная работа [228,5 K], добавлен 11.04.2009Особенности выбора типа датчиков. Создание датчиков контроля параметров внешней среды (уровня воды) в системе автоматизированного прогнозирования затоплений и подтоплений. Способы измерения уровня жидкости. Устройство датчиков для измерения уровня воды.
реферат [1,8 M], добавлен 04.02.2015Методики и средства измерения мутности. Характеристика моделей волоконно-оптических датчиков и турбидиметров. Разработка прибора для диагностики состояния и свойств технических сред и масел; метрологическое обеспечение расчета конструкции мутномера.
дипломная работа [3,5 M], добавлен 21.06.2013Емкостные датчики измерения влажности: требования и функции. Технические характеристики датчика измерения температуры. Устройство и принцип работы датчиков измерения качества воздуха, основные требования в соответствии с условиями их эксплуатации.
реферат [968,1 K], добавлен 17.06.2014Понятие и принцип работы датчиков, их назначение и функции. Классификация и разновидности датчиков, сферы и возможности их применения. Сущность и основные свойства регуляторов. Особенности использования и параметры усилителей, исполнительных устройств.
реферат [17,8 K], добавлен 28.03.2010Краткая историческая справка о развитии интегральных схем. Американские и советские ученные, которые внесли огромный вклад в разработку и дальнейшее развитие интегральных схем. Заказчики и потребители первых разработок микроэлектроники и ТС Р12-2.
реферат [28,1 K], добавлен 26.01.2013